首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Older adults are more likely than young to fall upon a loss of balance, yet the factors responsible for this difference are not well understood. This study investigated whether age-related differences in movement stability, limb support, and protective stepping contribute to the greater likelihood of falling among older adults. Sixty young and 41 older, safety-harnessed, healthy adults were exposed to a novel and unexpected forward slip during a sit-to-stand task. More older than young adults fell (76% vs. 30%). Falls in both age groups were related to lesser stability and lower hip height at first step touchdown, with 97.1% of slip outcomes correctly classified based on these variables. Decreases in hip height at touchdown had over 20 times greater effect on the odds of falling than equivalent decreases in stability. Three age differences placed older adults at greater risk of falling: older adults had lower and more slowly rising hips at slip onset, they were less likely to respond to slipping with ample limb support, and they placed their stepping foot less posterior to their center of mass. The first two differences, each associated with deficient limb support, reduced hip ascent and increased hip descent. The third difference resulted in lesser stability at step touchdown. These results suggest that deficient limb support in normal movement patterns and in the reactive response to a perturbation is a major contributor to the high incidence of falls in older adults. Improving proactive and reactive limb support should be a focus of fall prevention efforts.  相似文献   

2.
The purpose of this study was to determine whether stability and limb support play a similar role in governing slip outcome in gait-slip as in sit-to-stand-slip, and whether such prediction could also be derived based on measures of these variables during regular, unperturbed movements. Fifty-three and forty-one young subjects all took one recovery step following an unannounced, novel, forward slip induced in gait and in sit-to-stand, respectively. Logistic regression was used to predict recovery outcome based on preslip and reactive measures of stability and limb support across tasks. Following slip onset, all subjects in both tasks experienced rapid decay in stability and limb support (indicated by a hip descent), leading to some actual falls that could not have been predicted from regular, preslip walking. Immediately before recovery step touchdown, stability and limb support could together best predict 88.9% and 100% falls, respectively, for gait-slip and sit-to-stand-slip. Because of differences in the execution of the recovery step, stability became a better predictor of fallers in sit-to-stand-slip than in gait-slip after recovery limb touchdown. Recovery steps were highly effective in restoring stability, regardless of outcome and task. The predictive strength of stability diminished in gait-slip or reduced in sit-to-stand-slip after recovery touchdown, while limb support remained able to differentiate fallers from those who recovered in both tasks. When slip-induced instability was combined with inadequate limb support, falls were nearly inevitable in both tasks.  相似文献   

3.
Aging-associated fall-risk assessment is crucial for fall prevention. Thus, this study aimed to develop a prognostic model to predict fall-risk following an unexpected over-ground slip perturbation based on normal gait pattern in healthy older adults. 112 healthy older adults who experienced a novel slip in a safe laboratory environment were included. Their slip trial and natural walking trial immediately prior to it were analyzed. To identify the best fall-risk predictive model, gait related variables including step length, segment angles, center of mass state, and ground reaction force (GRF) were determined and inputted into a stepwise logistic regression. The optimal slip-induced fall prediction model was based on the right thigh angle at slipping foot touchdown (TD), the maximum GRF of the slipping limb after TD, and the momentum change from TD to recovery foot liftoff (LO), with an overall prediction accuracy of 75.9%, predicting 74.5% of falls (sensitivity) and 77.2% of recoveries (specificity). Conversely, a model based on clinical and demographic measures predicted 78.2% of falls and 47.4% of recoveries, resulting in a much lower overall accuracy of 62.5%. The fall-risk model based on normal gait pattern which was developed for slip-induced perturbations in healthy older adults was able to provide a high predictive accuracy. This information could provide insight about the ideal normal gait measures which could be used to contribute towards development of therapeutic strategies related to dynamic balance and fall prevention to enhance preventive interventions in populations with high-risk for slip-induced falls.  相似文献   

4.
The inherit injury risk associated with high-impact exercises calls for alternative ways to achieve the benefits of aerobic exercise while minimizing excessive stresses to body tissues. Skipping presents such an alternative, incorporating double support, flight, and single support phases. We used ground reaction forces (GRFs), lower extremity joint torques and powers to compare skipping and running in 20 healthy adults. The two consecutive skipping steps on each limb differed significantly from each other, and from running. Running had the longest step length, the highest peak vertical GRF, peak knee extensor torque, and peak knee negative and positive power and negative and positive work. Skipping had the greater cadence, peak horizontal GRF, peak hip and ankle extensor torques, peak ankle negative power and work, and peak ankle positive power. The second vs first skipping step had the shorter step length, higher cadence, peak horizontal GRF, peak ankle extensor torque, and peak ankle negative power, negative work, and positive power and positive work. The first skipping step utilized predominately net negative joint work (eccentric muscle action) while the second utilized predominately net positive joint work (concentric muscle action). The skipping data further highlight the persistence of net negative work performed at the knee and net positive work performed at the ankle across locomotion gaits. Evidence of step segregation was seen in distribution of the braking and propelling impulses and net work produced across the hip, knee, and ankle joints.ConclusionsSkipping was substantially different than running and was temporally and spatially asymmetrical with successive foot falls partitioned into a dominant function, either braking or propelling whereas running had a single, repeated step in which both braking and propelling actions were performed equally.  相似文献   

5.
Yang F  Bhatt T  Pai YC 《Journal of biomechanics》2011,44(15):2607-2613
Slip-induced falls in gait often have devastating consequences. The purposes of this study were 1) to select the determinants that can best discriminate the outcomes (recoveries or falls) of an unannounced slip induced in gait (and to find their corresponding threshold, i.e., the limits of recovery, which can clearly separate these two outcomes), and 2) to verify these results in a subset of repeated-slip trials. Based on the data collected from 69 young subjects during a slip induced in gait, nine different ways of combining the center of mass (COM) stability, the hip height, and its vertical velocity were investigated with the aid of logistic regression. The results revealed that the COM stability (s) and limb support (represented by the quotient of hip vertical velocity to hip height, S(hip)) recorded at the instant immediately prior to the recovery step touchdown were sufficiently sensitive to account for all (100%) variance in falls, and specific enough to account for nearly all (98.3%) variability in recoveries. This boundary (S(hip)=-0.22s-0.25), which quantifies the risk of falls in the stability-limb support quotient (s-S(hip)) domain, was fully verified using second-slip and third-slip trials (n=76) with classification of falls at 100% and recoveries at 98.6%. The severity of an actual fall is likely to be greater further below the boundary, while the likelihood of a fall diminishes above it. Finally, the slope of the boundary also indicates the tradeoff between the stability and limb support, whereby high stability can compensate for the insufficiency in limb support, or vice versa.  相似文献   

6.
Adults with intellectual disability (ID) experience more falls than their non-disabled peers. A gait analysis was conducted to quantify normal walking, and an additional slip trial was performed to measure slip response characteristics for adults with ID as well as a group of age- and gender-matched controls. Variables relating to gait pattern, slip propensity, and slip severity were assessed to compare the differences between groups. The ID group was found to have significantly slower walking speed, shorter step lengths, and increased knee flexion angles at heel contact. These gait characteristics are known to reduce the likelihood of slip initiation in adults without ID. Despite a more cautious gait pattern, however, the ID group exhibited greater slip distances indicating greater slip severity. This study suggests that falls in this population may be due to deficient slip detection or insufficient recovery response.  相似文献   

7.
8.
Balance recovery from an unpredictable postural perturbation can be a challenging task for many older people and poor recovery could contribute to their risk of falls. This study examined associations between responses to unpredictable perturbations and fall risk in older people. 242 older adults (80.0±4.4 years) underwent assessments of stepping responses to multi-directional force-controlled waist-pull perturbations. Participants returned monthly falls calendars for the subsequent 12 months. Future falls were associated with lower force thresholds for stepping in the posterior and lateral but not anterior directions. Those with lower posterior force thresholds for stepping were 68% more likely to fall at home than those with higher force thresholds for stepping. These results suggest that amount of force that can be withstood following an unpredictable balance perturbation predicts future falls in community-dwelling older adults. Perturbations in the posterior direction best discriminated between future fallers and non-fallers.  相似文献   

9.
To examine the control of dynamic stability and characteristics of the compensatory stepping responses to an unexpected anterior gait slip induced under the non-involved limb in people with hemi-paretic stroke (PwHS) and to examine any resulting adaptive changes in these on the second slip due to experience from prior slip exposure. Ten PwHS experienced overground slip (S1) during walking on the laboratory walkway after 5–8 regular walking (RW) trials followed by a second consecutive slip trial (S2). The slip outcome (backward loss of balance, BLOB and no loss of balance, NLOB) and COM state (i.e. its COM position and velocity) stability were examined between the RW and S1 and S1 and S2 at touchdown (TD) of non-involved limb and at liftoff (LO) of the contralateral limb. At TD there was no difference in stability between RW and S1, however at LO, subjects demonstrated a lower stability on S1 than RW resulting in a 100% backward loss of balance (BLOB) with compensatory stepping response (recovery step, RS, 4/10 or aborted step, AS, 6/10). On S2, although there was no change in stability at TD, there was a significant improvement in stability at LO with a 40% decrease in BLOB. There was also a change in step strategy with a decrease in AS response (60% to 35%, p<0.05) which was replaced by an increase in the ability to step (increased compensatory step length, p<0.05) either via a recovery step or a walkover step. PwHS have the ability to reactively control COM state stability to decrease fall-risk upon a novel slip; prior exposure to a slip did not significantly alter feedforward control but improved the ability to use such feedback control for improved slip outcomes.  相似文献   

10.
The purposes of this study were: (1) to determine the frequency of protective stepping for balance recovery in subjects of different ages and fall-status, and (2) to compare predicted stepping based on a dynamic model (Pai and Patton, 1997. Journal of Biomechanics 30, 347–354) involving displacement and velocity combinations of the center of mass (COM) versus a static model based on displacement alone against experimentally induced stepping. Responses to three different magnitudes of forward waist pulls were recorded for 13 young, 18 older-non-fallers and 18 older-fallers. The COM phase plane trajectories derived from motion analysis were compared with the model-predicted threshold values for stepping. We found that the older fallers had the highest percentage of stepping trials (52%), followed by older-non-fallers (17.3%), and young (2.7%) at the lowest perturbation level. Younger subjects stepped less often than the elderly at the middle level. Everyone consistently stepped at the highest level of perturbation. Overall, the dynamic model showed better predictive capacity (65%) than the static model (5%) for estimating the initiation of stepping. Furthermore, the threshold for step initiation derived from the dynamic model could consistently predict when a step must occur. However, it was limited, especially among older fallers at the low perturbation level, in that it considered some steps ‘unnecessary’ that were presumably triggered by fear of falling or other factors.  相似文献   

11.
This opportune case study describes visual and stepping behaviours of an 87 year old female (P8), both prior to, and following two falls. Before falling, when asked to walk along a path containing two stepping guides positioned before and after an obstacle, P8 generally visually fixated the first stepping guide until after foot contact inside it. However, after falling P8 consistently looked away from the stepping guide before completing the step into it in order to fixate the upcoming obstacle in her path. The timing of gaze redirection away from the target (in relation to foot contact inside it) correlated with absolute stepping error. No differences in eyesight, cognitive function, or balance were found between pre- and post-fall recordings. However, P8 did report large increases in fall-related anxiety and reduced balance confidence, supporting previously suggested links between anxiety/increased fear or falling and maladaptive visual/stepping behaviours. The results represent a novel insight into how psychological and related behavioural factors can change in older adults following a fall, and provide a possible partial rationalisation for why recent fallers are more likely to fall again in the following 12 months. These findings highlight novel possibilities for falls prevention and rehabilitation.  相似文献   

12.
To prevent falls, control of the swing foot during walking is crucial. Recently, some studies demonstrated that the coordinated movement of lower limbs by kinematic synergy is important for stable walking. However, no study has been carried out to reveal the relation between falls and kinematic synergy, and it is unclear whether fall history alters the kinematic synergy. Thus, the purpose of this study was to test the effects of fall history on kinematic synergy using uncontrolled manifold (UCM) analysis. Older adults were divided into two groups: older adults without fall history (non-fallers, n = 14) and older adults with fall history of at least one fall in the 12 months prior to the measurements (fallers, n = 10). Subjects walked at their own comfortable speed on a pathway and kinematic data were collected. UCM analysis was performed to assess how variability of segmental configurations in the frontal plane, the mediolateral and vertical directions, affects the frontal trajectory of the swing foot. Fallers had a greater variability of segmental configurations than non-fallers in all phases. In the mediolateral direction, the kinematic synergy in fallers was significantly greater than that in non-fallers during the early and late swing phases. On the other hands, fallers continuously had greater kinematic synergy compared to non-fallers in the vertical direction. The results revealed that fall history increased the kinematic synergy, although fallers needed a greater variability of segmental configurations as a compensatory strategy to ensure kinematic synergy.  相似文献   

13.
Stepping down an elevation in ongoing gait is a common task that can cause falls when the level change is unexpected. The aim of this study was to compare expected and unexpected stepping down. We hypothesized that unexpected stepping would lead to loss of control over the movement and potentially falls due to buckling of the leading leg at landing. Ten male subjects repeatedly walked over a platform on which they stepped down an expected 10-cm height difference. In 5 out of 50 trials, the height difference was encountered unexpectedly early. Kinematics and ground reaction forces under both feet were measured during the stride in which the height difference was negotiated. Stepping down involved a substantial increase in forward horizontal and angular momenta (approximately 40 N s and 20 N ms). In expected stepping down, step length was significantly increased (17%), which allowed control of these forward horizontal and angular momenta immediately following landing. In unexpected stepping down, the time between expected ground contact and actual ground contact (110 ms) appeared too short to substantially adjust leg movement and increase step length. Although buckling of the leg did not occur, presumably due to its more vertical orientation at landing, momentum could not be sufficiently attenuated at landing, but a fall was prevented by a rapid step of the trailing limb. The lack of control of momentum might cause a fall, when the capacity to make such a rapid step falls short, as in the elderly, or when the height difference is larger.  相似文献   

14.
Aging brings about challenges in the ability to recover balance through protective stepping, especially in the lateral direction. Previous work has suggested that lateral protective stepping during weight transfer may be affected by impaired muscle composition and performance of the hip abductors (AB) in older adults. Hence, this study investigated the influence of hip abductor-adductor (AB-AD) neuromuscular performance on the weight transfer phase of lateral protective stepping in younger and older adults. Healthy younger (n = 15) and older adults (n = 15) performed hip AB-AD isometric maximal voluntary contractions (IMVC). Lateral balance perturbations were applied via motorized waist-pulls. Participants were instructed to recover their balance using a single lateral step. Kinetic, kinematic and electromyographic (EMG) data were analyzed during the weight transfer phase. In the hip IMVC task, older adults showed reduced peak AB-AD torque, AB rate of torque development and AB-AD rate of EMG neuromuscular activation (RActv). During the lateral balance perturbations, older individuals had a lower incidence of lateral steps, reduced hip AB-AD RActv and delayed weight transfer. However, several outcomes were larger in the older group, such as, center of mass momentum at step onset, step-side peak rate of vertical force development, hip AB net joint torque, and power. Although older adults had greater hip muscular output during the weight transfer phase, their lateral balance recovery was still impaired. The reduced maximal hip AB-AD capacity, especially RActv, may have been a greater contributor to this impairment, as it affects the ability to generate rapid force, crucial for balance recovery.  相似文献   

15.
《Journal of biomechanics》2014,47(16):3876-3881
The primary purpose of this study was to systematically evaluate and compare the predictive power of falls for a battery of stability indices, obtained during normal walking among community-dwelling older adults. One hundred and eighty seven community-dwelling older adults participated in the study. After walking regularly for 20 strides on a walkway, participants were subjected to an unannounced slip during gait under the protection of a safety harness. Full body kinematics and kinetics were monitored during walking using a motion capture system synchronized with force plates. Stability variables, including feasible-stability-region measurement, margin of stability, the maximum Floquet multiplier, the Lyapunov exponents (short- and long-term), and the variability of gait parameters (including the step length, step width, and step time), were calculated for each subject. Sensitivity of predicting slip outcome (fall vs. recovery) was examined for each stability variable using logistic regression. Results showed that the feasible-stability-region measurement predicted fall incidence among these subjects with the highest sensitivity (68.4%). Except for the step width (with an sensitivity of 60.2%), no other stability variables could differentiate fallers from those who did not fall for the sample included in this study. The findings from the present study could provide guidance to identify individuals at increased risk of falling using the feasible-stability-region measurement or variability of the step width.  相似文献   

16.
The effects of walking speed and age on the peak external moments generated about the joints of the trailing limb during stance just prior to stepping over an obstacle and on the kinematics of the trailing limb when crossing the obstacle were investigated in 10 healthy young adults (YA) and 10 healthy older adults (OA). The peak hip and knee adduction moments in OA were 21-43% greater than those in YA (p相似文献   

17.
Descending stairs requires elevated joint moment-generating capability in the lower limbs, making it a challenging daily activity, particularly for older individuals. The aim of the study was to investigate the influence of three different strategies for descending standard and increased height stairs: step-over-step (SoS), step-by-step (SbS) and side-step (SS) on lower limb kinetics in older people. Eleven participants (mean ± SD age: 74.8 ± 3.1 years, height: 1.63 ± 0.07 m, mass: 67.7 ± 9.5 kg) descended a four-step custom built instrumented staircase at a self-selected speed, adopting each of the three strategies, at two configurations: a step-rise height of 170 mm (standard; STD) and a step-rise height of 255 mm (increased; INC). 3D motion capture, synchronised with embedded force plates enabled the calculation of joint kinetics of lead and trail limbs. Data were analysed using a Linear Mixed Model with gait speed selected as a covariate during weight acceptance (WA) and controlled lowering (CL) phases. A large increase in hip extensor moment in both WA and CL in the lead limb was evident during both SoS and SbS at INC step height compared to STD (P < .015 for all), with no such increase in hip flexor moment evident in SS strategy (P = .519). Lead limb knee extensor moment decreased and plantarflexor moment increased in INC SoS compared to STD SoS during CL (P < .001 for both). In the trail limb, increased hip extensor and plantarflexor moments were seen in INC SS compared to STD SS (P < .001 for both). The alternate strategies result in the overall task demand being split between the lead limb (weight acceptance) and trail limb (controlled lowering). Differential demand distribution patterns exist between strategies that imply targeted interventions and/or advice could be provided to older individuals in order to promote safe descent of stairs, particularly for those with specific muscle weaknesses or at high risk of falls.  相似文献   

18.
Falls are a serious problem faced by the elderly. Older adults report mostly to fall while performing locomotor activities, especially the ones requiring stair negotiation. During these tasks, older adults, when compared with young adults, seem to redistribute their lower limb joint moments. This may indicate that older adults use a different strategy to accelerate the body upward during these tasks. The purposes of this study were to quantify the contributions of each lower limb joint moment to vertically accelerate the center of mass during stair ascent and descent, in a sample of community-dwelling older adults, and to verify if those contributions were correlated with age and functional fitness level. A joint moment induced acceleration analysis was performed in 29 older adults while ascending and descending stairs at their preferred speed. Agreeing with previous studies, during both tasks, the ankle plantarflexor and the knee extensor joint moments were the main contributors to support the body. Although having a smaller contribution to vertically accelerate the body, during stair descent, the hip joint moment contribution was related with the balance score. Further, older adults, when compared with the results reported previously for young adults, seem to use more their knee extensor moment than the ankle plantarflexor moment to support the body when the COM downward velocity is increasing. By contributing for a better understanding of stair negotiation in community dwelling older adults, this study may help to support the design of interventions aiming at fall prevention and/or mobility enhancement within this population.  相似文献   

19.
The purposes of this study were to examine age and gender differences in knee extensor strength, power, and fatigue using open- and closed-chain testing procedures. We tested the hypothesis that specific strength (strength/unit muscle mass) would not differ by age, whereas age differences in specific power and fatigue would remain consequent to blunted maximal contractile velocity. Skeletal muscle performance was examined in 28 young (26.9 +/- 0.7 yr) and 24 older (63.6 +/- 0.8 yr) men and women. Assessments included one-repetition maximum strength for knee extension, leg press, and squat; concentric knee extensor peak power, velocity, and fatigability; and sit-to-stand power, fatigability, and relative neural activation (electromyograph activity during sit-to-stand movement normalized to electromyograph activity during isometric maximum voluntary contraction). Thigh lean mass (TLM; kg) was assessed by dual-energy X-ray absorptiometry. Specific strength (N/kg TLM) and specific power (W/kg TLM) were estimated by dividing absolute values by TLM. Age differences in specific strength were observed for knee extension only (young, 41.2 +/- 1.0 N/kg TLM; older, 32.4 +/- 1.0 N/kg TLM; P < 0.05). Adjustment for TLM did not negate age differences in knee extension specific power (25-41% lower in older; P < 0.05) across loads tested. Older adults experienced fatigue across 10 repetitions of knee extension as peak velocity fell by 24% (P < 0.05). Deficits in concentric power persist after adjustment for TLM as maximum contractile velocity falls markedly with aging. Older adults are less capable of sustaining maximum concentric velocity during repetitive contractions. These findings suggest that velocity impairments are a possible contributor to mobility loss and falls risk among older adults. Interventions for improving contractile velocity should be pursued.  相似文献   

20.
Experiments designed to assess balance recovery in older adults often involve exposing participants to repeated loss of balance. The purpose of this study was to investigate the adaptive balance recovery response exhibited by older adults following repeated exposure to forward loss of balance induced by releasing participants from a static forward lean angle. Fifty-eight healthy, community-dwelling older adults, aged 65-80 years, participated in the study. Participants were instructed to attempt to recover with a single step and performed four trials at each of three lean angles. Adaptive recovery responses at four events (cable release, toe-off of the stepping foot, foot contact and maximum knee flexion angle following landing in the stepping leg) were quantified for trials performed at the intermediate lean angle using the concept of margin of stability. The antero-posterior and medio-lateral margin of stability were computed as the difference between the velocity-adjusted position of the whole body centre of mass and the corresponding anterior or lateral boundary of the base of support. Across repeated trials adaptations in reactive stepping responses were detected that resulted in improved antero-posterior stability at foot contact and maximum knee flexion angle. Improved antero-posterior stability following repeated trials was explained by more effective control of the whole body centre of mass during the reactive stepping response and not by adjustments in step timing or base of support. The observed adaptations occurred within a single testing session and need to be considered in the design of balance recovery experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号