首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fruit fly Drosophila embryo is one of the most important model organisms in genetics and developmental biology research. To better understand the biomechanical properties involved in Drosophila embryo research, this work presents a mechanical characterization of living Drosophila embryos through the stages of embryogenesis. Measurements of the mechanical forces of Drosophila embryos are implemented using a novel, in situ, and minimally invasive force sensing tool with a resolution in the range of microN. The measurements offer an essential understanding of penetration force profiles during the microinjection of Drosophila embryos. Sequentially quantitative evaluation and analysis of the mechanical properties, such as Young's modulus, stiffness, and mechanical impedance of living Drosophila embryos are performed by extracting the force measurements throughout the stages of embryogenesis. Experimental results illustrate the changing mechanical properties of Drosophila embryos during development, and thus mathematical models are proposed. The evaluation provides a critical step toward better understanding of the biomechanical properties of Drosophila embryos during embryogenesis, and could contribute to more efficient and significant genetic and embryonic development research on Drosophila.  相似文献   

2.
Manev H  Dimitrijevic N 《Life sciences》2005,76(21):2403-2407
Recent work has indicated that fruit flies (Drosophila melanogaster) can be used in nociception research. Genetic screening identified a gene, painless, that is required for thermal and mechanical nociception in Drosophila larvae. On the other hand, pharmacological techniques and noxious heat were used to assay antinocieceptive behavior in intact adult Drosophila. In general, animal models for pain research are bound by ethical concerns. Since no serious ethical controversies have been raised regarding experiments in insects, Drosophila may be, for the time being an ethically acceptable animal model for combined genetic and pharmacological analgesia research.  相似文献   

3.
Species of the genus Drosophila, commonly known as "fruitflies," are good model systems for research in aging. Drosophila are extremely well-known genetically, developmentally, and otherwise. They are also genetically analogous to mammalian species in most important respects. Previous work with Drosophila has been hampered by inbreeding depression, but more recent work using selection has created Drosophila with postponed aging that is inherited normally. Genetic transformation has also increased Drosophila life spans in some cases. Several biologic approaches have been applied to the analysis of genetically postponed aging in Drosophila: quantitative genetics, organismal physiology, and protein electrophoresis. Ultimately, these different approaches will be integrated into an overall analysis of aging in Drosophila, one that could be valuable for research with other taxa as well.  相似文献   

4.
Lasko P 《Fly》2007,1(5):303-304
The Genetics Society of Canada (GSC) held its 50th Anniversary Celebration June 18-21, 2007 in the New Residence Hall of McGill University in Montreal in conjunction with the 9(th) Canadian Drosophila Research Conference (CanFly), which is held in odd-numbered years. The meeting was a huge success with nearly 200 participants, and outstanding research presentations from all parts of Canada and beyond. The Canadian Drosophila research community is very vibrant: there are approximately 50 research labs in the country that work entirely or mostly in the Drosophila system, and a search of FlyBase for Canadian addresses yields a total of 248.  相似文献   

5.
《Fly》2013,7(5):303-304
From 18-21 June 2007, the Genetics Society of Canada (GSC) held its 50th anniversary celebration in the New Residence Hall of McGill University in Montreal in conjunction with the 9th Canadian Drosophila Research Conference (CanFly), which is held in odd-numbered years. The meeting was a huge success with nearly 200 participants, and outstanding research presentations from all parts of Canada and beyond. The Canadian Drosophila research community is very vibrant: there are approximately 50 research labs in the country that work entirely or mostly in the Drosophila system, and a search of FlyBase for Canadian addresses yields a total of 248.  相似文献   

6.
7.
果蝇Drosophila melanogaster Meigen是进行行为遗传学研究的极好材料。果蝇的雄性求偶行为已经被作为行为遗传学研究的模式。文章简要介绍近年来在遗传和分子水平上对果蝇性信息素和求偶行为的研究进展,尤其是突变体在果蝇行为遗传学研究中的应用。通过对果蝇求偶行为的分析,分别介绍果蝇的性信息素及视觉、听觉、嗅觉和味觉相关基因在果蝇求偶和交配行为过程中的作用。  相似文献   

8.
果蝇在肿瘤学研究中的优势及应用前景   总被引:1,自引:0,他引:1  
霍桂桃  吕建军  屈哲  林志  张頔  杨艳伟  李波 《遗传》2014,36(1):30-40
果蝇作为研究人类疾病的模式生物, 与哺乳动物不仅在基本的生物学、生理学和神经系统机能等方面比较相似, 而且果蝇有其作为模式生物的独特优势。近年来的研究表明, 果蝇和人类在肿瘤发生信号通路等方面的保守性很高, 而且果蝇具有很强的遗传学可操作性, 是肿瘤学研究有效的模型之一, 可用于研究人类肿瘤发生、发展、转移等分子机制。文章综述了果蝇在肿瘤学研究中的优势、已建立的用于研究特定癌症的果蝇模型, 并对其在未来肿瘤学的研究方向进行展望, 以期为国内肿瘤学研究和抗肿瘤药物的研发提供参考。  相似文献   

9.
10.
11.
The 47th Annual Drosophila Research Conference or "Fly Meeting" took place at Houston, Texas, USA from March 29th- April 2nd, 2006, under the aegis of the Genetics Society of America. The Fly Meeting provides an excellent opportunity for fly researchers to present their work and to get a snapshot of recent developments and upcoming trends in their research field. The fruit fly, Drosophila melanogaster is a very versatile model to study growth, patterning, neural development, evolution, systemetics and various other facets of biomedical science. The topics presented in the meeting covered a very broad spectrum of fly research. In this commentary, I have focused mainly on the presentations related to two fields: 1) research in various fields that use the Drosophila eye as a model system, and 2) the community resources available to all fly researchers.  相似文献   

12.
In recent years, the innate immune system has emerged from the shadow of adaptive immune responses as a major area of research in its own right. One of the most significant model systems that has been used to investigate this phenomenon has been the fruit fly, Drosophila melanogaster. Exploration of the differential immune response presented by Drosophila led to the discovery of important signalling events and transduction pathways, which were thereafter shown to be specific for the type of infecting pathogen. These factors and pathways were subsequently found to have homologues in many other organisms, including those with adaptive immune responses. In light of the present status of studies in innate immunity, this review describes the current state of understanding of the Drosophila immune response.  相似文献   

13.
核小体是染色体折叠的整体结构,它们的空间分布与基因组活动的调节密切相关,是基因工程和表观遗传的重要研究领域。为进一步研究核小体定位特征的物种间差异性,将希尔伯特-黄变换(HHT)引入到酵母和果蝇两个不同物种的定位信号中,从多个角度客观分析核小体定位信号特征在两个物种间的差异性。在此基础上,对酵母和果蝇核小体分布的周期特征和进化印记进行尺度和频域分析,结果表明酵母和果蝇染色体在组织结构上存在显著差异。本文研究思路为准确提取信号瞬时频率提供了前提条件。  相似文献   

14.
Eleftherianos I  Schneider D 《Fly》2011,5(3):247-254
Drosophila has been established as useful model for infectious diseases because it allows large numbers of whole animals to be studied and provides powerful genetic tools and conservation with signaling and pathogenesis mechanisms in vertebrates. During the past twenty years, significant progress has been made on the characterization of innate immune responses against various pathogenic organisms in flies (Fig. 1). In this year's Drosophila Research Conference, which was held in San Diego (March 30-April 3) and sponsored by the Genetics Society of America, the immunity and pathogenesis session comprised seven platform presentations and 34 posters that highlighted the latest advances in Drosophila infection and immunity field. The presented work covered a wide range of studies from immune signaling pathways and the molecular basis of humoral and cellular immune mechanisms to the role of endosymbionts in fly immune function and effects of immune priming. Here, we give an overview of the presented work and we explain how these findings will open new avenues in Drosophila immunity research.  相似文献   

15.
果蝇嗅觉分子机理研究进展   总被引:2,自引:0,他引:2  
黑腹果蝇Drosophila melanogaster是生物学研究的重要模式生物,也是探索研究生物体嗅觉奥秘的理想材料。近年来,由于分子生物学技术在神经科学领域的广泛应用,黑腹果蝇嗅觉机理研究取得了许多重大突破, 对气味分子受体及其识别机理、 嗅觉神经电信号的产生和传递、嗅觉信息的加工、编码以及记忆等方面都有了深入的了解。研究表明, 果蝇约1 300个嗅神经元(olfactory receptor neurons, ORNs)共表达62种不同的气味受体蛋白(olfactory receptor proteins, ORs), 用以检测和识别其所感受的所有化学气味分子。许多OR所识别的气味分子配体已鉴定出来,普通的气味(如水果的气味)由数种不同的OR组合来识别,而信息素(pheromone)分子则由单种特定的OR来检测。气味信息在嗅神经元内转换成神经电信号,嗅觉电信号沿嗅神经元的轴突传递到触角叶, 再经投射神经元(projection neurons, PNs)将信息送至高级中枢如蘑菇体(mushroom body, MB)和侧角(lateral horn, LH),最终引发行为反应。在黑腹果蝇嗅觉信息传递通路中,某些蛋白如Dock,N-cadherin,Fruitless等起着重要作用,缺失这些蛋白会导致嗅觉异常。本文对这些研究进展作一综述。  相似文献   

16.
Caspases are a family of evolutionarily conserved cysteine proteases that constitute the effector arm of the apoptotic machinery. Studies in Caenorhabditis elegans, Drosophila melanogaster, and mouse point to evolutionarily conserved caspase function in developmentally programmed cell death in metazoans. Whereas in the nematode all developmental cell death is mediated by a single caspase, in Drosophila and the mouse some caspases appear to regulate cell death in a spatio-temporally restricted manner. This article reviews what we currently know about the roles of various caspases in the execution of developmentally programmed cell death and what may be expected from future research in this field.  相似文献   

17.
Clark ME  Anderson CL  Cande J  Karr TL 《Genetics》2005,170(4):1667-1675
Wolbachia is an intracellular microbe harbored by a wide variety of arthropods (including Drosophila) and filarial nematodes. Employing several different strategies including male killing, induced parthenogenesis, cytoplasmic incompatibility, and feminization, and acting by as-yet-unknown mechanisms, Wolbachia alters host reproduction to increase its representation within a population. Wolbachia is closely associated with gametic incompatibility but also interacts with Drosophila in other, little understood ways. We report here significant and widespread infection of Wolbachia within laboratory stocks and its real and potential impact on Drosophila research. We describe the results of a survey indicating that approximately 30% of stocks currently housed at the Bloomington Drosophila Stock Center are infected with Wolbachia. Cells of both reproductive tissues and numerous somatic organs harbor Wolbachia and display considerable variation in infection levels within and between both tissue types. These results are discussed from the perspective of Wolbachia's potential confounding effects on both host fitness and phenotypic analyses. In addition to this cautionary message, the infection status of stock centers may provide further opportunities to study the genetic basis of host/symbiosis.  相似文献   

18.
《Fly》2013,7(1):10-14
The genus Drosophila is one of the best-studied model systems in modern biology, with twelve fully sequenced genomes available. In spite of the large number of genetic and genomic resources, little is known concerning the phylogenetic relationships, ecology, and evolutionary history of all but a few species. Recent molecular systematic studies have shown that this genus is comprised of at least three independent lineages and that several other genera are actually embedded within Drosophila. This genus accounts for over 2000 described, and many more undescribed, species. While some Drosophila researchers are advocating dividing this genus into three or more separate genera, others favor maintaining Drosophila as a single large genus. With the recent sequencing of the genomes of multiple Drosophila species and their expanding use in comparative biology, it is critical that the Drosophila research community understands the taxonomic framework underlying the naming and relationships of these species. The subdivision of this genus has significant biological implications, ranging from the accurate annotation of single genes to understanding how ecological adaptations have occurred over the history of the group.  相似文献   

19.
Here we incorporate recent advances in Drosophila neurogenetics and "optogenetics" into neuroscience laboratory exercises. We used the light-activated ion channel channelrhodopsin-2 (ChR2) and tissue-specific genetic expression techniques to study the neural basis of behavior in Drosophila larvae. We designed and implemented exercises using inexpensive, easy-to-use systems for delivering blue light pulses with fine temporal control. Students first examined the behavioral effects of activating glutamatergic neurons in Drosophila larvae and then recorded excitatory junctional potentials (EJPs) mediated by ChR2 activation at the larval neuromuscular junction (NMJ). Comparison of electrically and light-evoked EJPs demonstrates that the amplitudes and time courses of light-evoked EJPs are not significantly different from those generated by electrical nerve stimulation. These exercises introduce students to new genetic technology for remotely manipulating neural activity, and they simplify the process of recording EJPs at the Drosophila larval NMJ. Relatively little research work has been done using ChR2 in Drosophila, so students have opportunities to test novel hypotheses and make tangible contributions to the scientific record. Qualitative and quantitative assessment of student experiences suggest that these exercises help convey principles of synaptic transmission while also promoting integrative and inquiry-based studies of genetics, cellular physiology, and animal behavior.  相似文献   

20.
生命科学与人类疾病研究的重要模型——果蝇   总被引:18,自引:0,他引:18  
万永奇  谢维 《生命科学》2006,18(5):425-429
黑腹果蝇(Drosophilamelanogaster)是生物学研究中最重要的模式生物之一,它在遗传的染色体理论建立中起到非常重要的作用。由于果蝇自身独特的优势,20世纪70年代以来,它又在发育生物学、神经科学、人类疾病研究等领域得到广泛应用,作出许多新的重要贡献。果蝇在神经退行性疾病研究中是非常有用的模型。可以预期,随着研究手段的丰富及科学的发展,果蝇将作为一种理想的模式生物在生物医学中发挥更大的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号