首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Paget disease of bone (PDB) is a common disorder characterized by focal abnormalities of increased and disorganized bone turnover. Genetic factors are important in the pathogenesis of PDB, and previous studies have shown that the PDB-like bone dysplasia familial expansile osteolysis is caused by activating mutations in the TNFRSF11A gene that encodes receptor activator of nuclear factor kappa B (RANK); however, linkage studies, coupled with mutation screening, have excluded involvement of RANK in the vast majority of patients with PDB. To identify other candidate loci for PDB, we conducted a genomewide search in 319 individuals, from 62 kindreds with familial PDB, who were predominantly of British descent. The pattern of inheritance in the study group as a whole was consistent with autosomal dominant transmission of the disease. Parametric multipoint linkage analysis, under a model of heterogeneity, identified three chromosomal regions with LOD scores above the threshold for suggestive linkage. These were on chromosomes 2q36 (LOD score 2.7 at 218.24 cM), 5q35 (LOD score 3.0 at 189.63 cM), and 10p13 (LOD score 2.6 at 41.43 cM). For each of these loci, formal heterogeneity testing with HOMOG supported a model of linkage with heterogeneity, as opposed to no linkage or linkage with homogeneity. Two-point linkage analysis with a series of markers from the 5q35 region in another large kindred with autosomal dominant familial PDB also supported linkage to the candidate region with a maximum LOD score of 3.47 at D5S2034 (187.8 cM). These data indicate the presence of several susceptibility loci for PDB and identify a strong candidate locus for the disease, on chromosome 5q35.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease in which motor neurons in the brain and spinal cord degenerate by largely unknown mechanisms. ALS is familial (FALS) in 10% of cases, and the inheritance is usually dominant, with variable penetrance. Mutations in copper/zinc super oxide dismutase (SOD1) are found in 20% of familial and 3% of sporadic ALS cases. Five families with ALS and frontotemporal dementia (ALS-FTD) are linked to 9q21, whereas one family with pure ALS is linked to 18q21. We identified two large European families with ALS without SOD1 mutations or linkage to known FALS loci and conducted a genomewide linkage screen using 400 microsatellite markers. In both families, two-point LOD scores >1 and a haplotype segregating with disease were demonstrated only across regions of chromosome 16. Subsequent fine mapping in family 1 gave a maximum two-point LOD score of 3.62 at D16S3137 and a three-point LOD score of 3.85 for markers D16S415 and D16S3137. Haplotype analysis revealed no recombination > approximately 30 cM, (flanking markers at D16S3075 and D16S3112). The maximum two-point LOD score for family 2 was 1.84 at D16S415, and the three-point LOD score was 2.10 for markers D16S419 and D16S415. Definite recombination occurred in several individuals, which narrowed the shared haplotype in affected individuals to a 10.1-cM region (flanking markers: D16S3396 and D16S3112). The region shared by both families on chromosome 16q12 corresponds to approximately 4.5 Mb on the Marshfield map. Bioinformatic analysis of the region has identified 18 known genes and 70 predicted genes in this region, and sequencing of candidate genes has now begun.  相似文献   

3.
Although the predisposition to morbid obesity is heritable, the identities of the disease-causing genes are largely unknown. Therefore, we have conducted a genomewide search with 628 markers, using multigenerational Utah pedigrees to identify genes involved in predisposition to obesity. In the genomewide search, we identified a highly significant linkage to high body-mass index in female patients, at D4S2632, with a multipoint heterogeneity LOD (HLOD) score of 6.1 and a nonparametric linkage (NPL) score of 5.3. To further delineate the linkage, we increased both the marker density around D4S2632 and the size of our pedigree data set. As a result, the linkage evidence increased to a multipoint HLOD score of 9.2 (at D4S3350) and an NPL score of 11.3. Evidence from almost half of the families in this analysis support this linkage, and therefore the gene in this region might account for a significant percentage of the genetic predisposition to severe obesity in females. However, further studies are necessary to clarify the effect that this gene has in males and in the general population.  相似文献   

4.
Attention-deficit/hyperactivity disorder (ADHD [MIM 143465]) is the most common behavioral disorder of childhood. Twin, adoption, segregation, association, and linkage studies have confirmed that genetics plays a major role in conferring susceptibility to ADHD. We applied model-based and model-free linkage analyses, as well as the pedigree disequilibrium test, to the results of a genomewide scan of extended and multigenerational families with ADHD from a genetic isolate. In these families, ADHD is highly comorbid with conduct and oppositional defiant disorders, as well as with alcohol and tobacco dependence. We found evidence of linkage to markers at chromosomes 4q13.2, 5q33.3, 8q11.23, 11q22, and 17p11 in individual families. Fine mapping applied to these regions resulted in significant linkage in the combined families at chromosomes 4q13.2 (two-point allele-sharing LOD score from LODPAL = 4.44 at D4S3248), 5q33.3 (two-point allele-sharing LOD score from LODPAL = 8.22 at D5S490), 11q22 (two-point allele-sharing LOD score from LODPAL = 5.77 at D11S1998; multipoint nonparametric linkage [NPL]-log[P value] = 5.49 at approximately 128 cM), and 17p11 (multipoint NPL-log [P value] >12 at approximately 12 cM; multipoint maximum location score 2.48 [alpha = 0.10] at approximately 12 cM; two-point allele-sharing LOD score from LODPAL = 3.73 at D17S1159). Additionally, suggestive linkage was found at chromosome 8q11.23 (combined two-point NPL-log [P value] >3.0 at D8S2332). Several of these regions are novel (4q13.2, 5q33.3, and 8q11.23), whereas others replicate already-published loci (11q22 and 17p11). The concordance between results from different analytical methods of linkage and the replication of data between two independent studies suggest that these loci truly harbor ADHD susceptibility genes.  相似文献   

5.
Basal Cell Nevus Syndrome (BCNS) is an autosomal dominant disease. PTCH1 gene mutations have been found responsible in many but not all pedigrees. Inflammatory Bowel Disease (IBD) is a complex genetic disorder, disproportionate in Ashkenazim, and characterized by chronic intestinal inflammation. We revisited a large Ashkenazim pedigree, first reported in 1968, with multiple diagnoses of BCNS and IBD, and with a common genetic cause for both disorders proposed. We expanded the pedigree to four generations and performed a genome-wide linkage study for BCNS and IBD traits. Twelve members with BCNS, seven with IBD, five with both diagnoses and eight unaffected were genotyped. Both non-parametric (GENEHUNTER 2.1) and parametric (FASTLINK) linkage analyses were performed and a validation through simulation was performed. BCNS linked to chromosome 9q22 (D9S1120) just proximal to the PTCH1 gene (NPL=3.26, P=0.003; parametric two-point LOD=2.4, parametric multipoint LOD=3.7). Novel IBD linkage evidence was observed at chromosome 1p13 (D1S420, NPL 3.92, P=0.0047; parametric two-point LOD=1.9). Linkage evidence was also observed to previously reported IBD loci on 4q, (D4S2623, NPL 3.02, P=0.012; parametric two-point LOD=2.15), 10q23 (D10S1225 near DLG5, NPL 3.33, P=0.0085; parametric two-point LOD=1.3), 12 overlapping the IBD2 locus (D12S313, NPL 2.6, P=0.018; parametric two-point LOD=1.52), and 7q (D7S510 and D7S3046, NPL 4.06, P=0.0035; parametric two-point LOD=2.18). In this pedigree affected by both BCNS and IBD, the two traits and their respective candidate genetic loci segregate independently; BCNS maps to the PTCH1 gene and IBD maps to several candidate regions, mostly overlapping previously observed IBD loci.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Carolien I. Panhuysen and Amir Karban contributed equally to this work  相似文献   

6.
Familial juvenile hyperuricemic nephropathy (FJHN), is an autosomal dominant renal disease characterized by juvenile onset of hyperuricemia, gouty arthritis, and progressive renal failure at an early age. Using a genomewide linkage analysis in three Czech affected families, we have identified, on chromosome 16p11.2, a locus for FJHN and have found evidence for genetic heterogeneity and reduced penetrance of the disease. The maximum two-point LOD score calculated with allowance for heterogeneity (HLOD) was 4.70, obtained at recombination fraction 0, with marker D16S3036; multipoint linkage analysis yielded a maximum HLOD score of 4.76 at the same location. Haplotype analysis defined a 10-cM candidate region between flanking markers D16S501 and D16S3113, exhibiting crossover events with the disease locus. The candidate interval contains several genes expressed in the kidney, two of which-uromodulin and NADP-regulated thyroid-hormone-binding protein-represent promising candidates for further analysis.  相似文献   

7.

Background

Reading disability (RD) is a common neurodevelopmental disorder with genetic basis established in families segregating “pure” dyslexia. RD commonly occurs in neurodevelopmental disorders including Rolandic Epilepsy (RE), a complex genetic disorder. We performed genomewide linkage analysis of RD in RE families, testing the hypotheses that RD in RE families is genetically heterogenenous to pure dyslexia, and shares genetic influences with other sub-phenotypes of RE.

Methods

We initially performed genome-wide linkage analysis using 1000 STR markers in 38 US families ascertained through a RE proband; most of these families were multiplex for RD. We analyzed the data by two-point and multipoint parametric LOD score methods. We then confirmed the linkage evidence in a second US dataset of 20 RE families. We also resequenced the SEMA3C gene at the 7q21 linkage locus in members of one multiplex RE/RD pedigree and the DISC1 gene in affected pedigrees at the 1q42 locus.

Results

In the discovery dataset there was suggestive evidence of linkage for RD to chromosome 7q21 (two-point LOD score 3.05, multipoint LOD 3.08) and at 1q42 (two-point LOD 2.87, multipoint LOD 3.03). Much of the linkage evidence at 7q21 derived from families of French-Canadian origin, whereas the linkage evidence at 1q42 was well distributed across all the families. There was little evidence for linkage at known dyslexia loci. Combining the discovery and confirmation datasets increased the evidence at 1q42 (two-point LOD = 3.49, multipoint HLOD = 4.70), but decreased evidence at 7q21 (two-point LOD = 2.28, multipoint HLOD  = 1.81), possibly because the replication sample did not have French Canadian representation.

Discussion

Reading disability in rolandic epilepsy has a genetic basis and may be influenced by loci at 1q42 and, in some populations, at 7q21; there is little evidence of a role for known DYX loci discovered in “pure” dyslexia pedigrees. 1q42 and 7q21 are candidate novel dyslexia loci.  相似文献   

8.
Avascular necrosis of the femoral head (ANFH) is a debilitating disease that commonly leads to destruction of the hip joint in adults. The etiology of ANFH is unknown, but previous studies have indicated that heritable thrombophilia (increased tendency to form thrombi) and hypofibrinolysis (reduced ability to lyse thrombi), alcohol intake, and steroid use are risk factors for ANFH. We recently identified two families with ANFH showing autosomal dominant inheritance. By applying linkage analysis to a four-generation pedigree, we excluded linkage between the family and three genes related to thrombophilia and hypofibrinolysis: protein C, protein S, and plasminogen activator inhibitor. Furthermore, by a genomewide scan, a significant two-point LOD score of 3.45 (recombination fraction [theta] = 0) was obtained between the family with ANFH and marker D12S85 on chromosome 12. High-resolution mapping was conducted in a second family with ANFH and replicated the linkage to D12S368 (pedigree I: LOD score 2.47, theta = 0.05; pedigree II: LOD score 2.81, theta = 0.10). When an age-dependent-penetrance model was applied, the combined multipoint LOD score was 6.43 between D12S1663 and D12S85. Thus, we mapped the candidate gene for autosomal dominant ANFH to a 15-cM region between D12S1663 and D12S1632 on chromosome 12q13.  相似文献   

9.
To identify genetic loci for autism-spectrum disorders, we have performed a two-stage genomewide scan in 38 Finnish families. The detailed clinical examination of all family members revealed infantile autism, but also Asperger syndrome (AS) and developmental dysphasia, in the same set of families. The most significant evidence for linkage was found on chromosome 3q25-27, with a maximum two-point LOD score of 4.31 (Z(max )(dom)) for D3S3037, using infantile autism and AS as an affection status. Six markers flanking over a 5-cM region on 3q gave Z(max dom) >3, and a maximum parametric multipoint LOD score (MLS) of 4.81 was obtained in the vicinity of D3S3715 and D3S3037. Association, linkage disequilibrium, and haplotype analyses provided some evidence for shared ancestor alleles on this chromosomal region among affected individuals, especially in the regional subisolate. Additional potential susceptibility loci with two-point LOD scores >2 were observed on chromosomes 1q21-22 and 7q. The region on 1q21-22 overlaps with the previously reported candidate region for infantile autism and schizophrenia, whereas the region on chromosome 7q provided evidence for linkage 58 cM distally from the previously described autism susceptibility locus (AUTS1).  相似文献   

10.
Familial hemophagocytic lymphohistiocytosis (FHL) is an autosomal recessive disorder characterized by the early onset of overwhelming activation of T lymphocytes and macrophages, invariably leading to death, in the absence of allogeneic bone marrow transplantation. Using genomewide genetic linkage analysis, we analyzed a group of 17 families with FHL and mapped a locus for FHL to the proximal region of the long arm of chromosome 10. Ten families showed no recombination with three tightly linked markers, D10S1650 (LOD score [Z]=6.99), D10S556 (Z=5.40), and D10S206 (Z=3.24), with a maximum multipoint LOD score of 11.22 at the D10S1650 locus. Haplotype analysis of these 10 families allowed us to establish D10S206 and D10S1665 as the telomeric and the centromeric flanking markers, respectively. Heterogeneity analysis and haplotype inspection of the remaining families confirmed that in seven families FHL was not linked to the 10q21-22 region, thus providing evidence for genetic heterogeneity of this condition.  相似文献   

11.
The familial form of nonmedullary thyroid carcinoma (NMTC) is a complex genetic disorder characterized by multifocal neoplasia and a higher degree of aggressiveness than its sporadic counterpart. In a large Tasmanian pedigree (Tas1) with recurrence of papillary thyroid carcinoma (PTC), the most common form of NMTC, an extensive genomewide scan revealed a common haplotype on chromosome 2q21 in seven of the eight patients with PTC. To verify the significance of the 2q21 locus, we performed linkage analysis in an independent sample set of 80 pedigrees, yielding a multipoint heterogeneity LOD score (HLOD) of 3.07 (α=0.42), nonparametric linkage (NPL) 3.19, (P=.001) at marker D2S2271. Stratification based on the presence of at least one case of the follicular variant of PTC, the phenotype observed in the Tas1 family, identified 17 such pedigrees, yielding a maximal HLOD score of 4.17 (α=0.80) and NPL=4.99 (P=.00002) at markers AFMa272zg9 and D2S2271, respectively. These results indicate the existence of a susceptibility locus for familial NMTC on chromosome 2q21.  相似文献   

12.
Recent studies suggest that hereditary prostate cancer is a complex disease involving multiple susceptibility genes and variable phenotypic expression. While conducting a genomewide search on 162 North American families with > or =3 members affected with prostate cancer (PRCA), we found evidence for linkage to chromosome 20q13 with two-point parametric LOD scores >1 at multiple sites, with the highest two-point LOD score of 2.69 for marker D20S196. The maximum multipoint NPL score for the entire data set was 3.02 (P=.002) at D20S887. On the basis of findings from previous reports, families were stratified by the presence (n=116) or absence (n=46) of male-to-male transmission, average age of diagnosis (<66 years, n=73; > or =66 years, n=89), and number of affected individuals (<5, n=101; > or =5, n=61) for further analysis. The strongest evidence of linkage was evident with the pedigrees having <5 family members affected with prostate cancer (multipoint NPL 3.22, P=.00079), a later average age of diagnosis (multipoint NPL 3.40, P=.0006), and no male-to-male transmission (multipoint NPL 3.94, P=.00007). The group of patients having all three of these characteristics (n=19) had a multipoint NPL score of 3.69 (P=.0001). These results demonstrate evidence for a PRCA susceptibility locus in a subset of families that is distinct from the groups more likely to be linked to previously identified loci.  相似文献   

13.
The prevalence of type 2 diabetes among Australian residents is 7.5%; however, prevalence rates up to six times higher have been reported for indigenous Australian communities. Epidemiological evidence implicates genetic factors in the susceptibility of indigenous Australians to type 2 diabetes and supports the hypothesis of the "thrifty genotype," but, to date, the nature of the genetic predisposition is unknown. We have ascertained clinical details from a community of indigenous Australian descent in North Stradbroke Island, Queensland. In this population, the phenotype is characterized by severe insulin resistance. We have conducted a genomewide scan, at an average resolution of 10 cM, for type 2 diabetes-susceptibility genes in a large multigeneration pedigree from this community. Parametric linkage analysis undertaken using FASTLINK version 4.1p yielded a maximum two-point LOD score of +2.97 at marker D2S2345. Multipoint analysis yielded a peak LOD score of +3.9 <1 cM from marker D2S2345, with an 18-cM 3-LOD support interval. Secondary peak LOD scores were noted on chromosome 3 (+1.8 at recombination fraction [theta] 0.05, at marker D3S1311) and chromosome 8 (+1.77 at theta=0.0, at marker D8S549). These chromosomal regions are likely to harbor novel susceptibility genes for type 2 diabetes in the indigenous Australian population.  相似文献   

14.
Palauans are an isolated population in Micronesia with lifetime prevalence of schizophrenia (SCZD) of 2%, compared to the world rate of approximately 1%. The possible enrichment for SCZD genes, in conjunction with the potential for reduced etiological heterogeneity and the opportunity to ascertain statistically powerful extended pedigrees, makes Palauans a population of choice for the mapping of SCZD genes. We have used a Markov-chain Monte Carlo method to perform a genomewide multipoint analysis in seven extended pedigrees from Palau. Robust multipoint parametric and nonparametric linkage (NPL) analyses were performed under three nested diagnostic classifications-core, spectrum, and broad. We observed four regions of interest across the genome. Two of these regions-on chromosomes 2p13-14 (for which, under core diagnostic classification, NPL=6.5 and parametric LOD=4.8) and 13q12-22 (for which, under broad diagnostic classification, parametric LOD=3.6, and, under spectrum diagnostic classification, parametric LOD=3.5)-had evidence for linkage with genomewide significance, after correction for multiple testing; with the current pedigree resource and genotyping, these regions are estimated to be 4.3 cM and 19.75 cM in size, respectively. A third region, with intermediate evidence for linkage, was identified on chromosome 5q22-qter (for which, under broad diagnostic classification, parametric LOD=2.5). The fourth region of interest had only borderline suggestive evidence for linkage (on 3q24-28; for this region, under broad diagnostic classification, parametric LOD=2.0). All regions exhibited evidence for genetic heterogeneity. Our findings provide significant evidence for susceptibility loci on chromosomes 2p13-14 and 13q12-22 and support both a model of genetic heterogeneity and the utility of a broader set of diagnostic classifications in the population from Palau.  相似文献   

15.
Polymicrogyria is a cerebral cortical malformation that is grossly characterized by excessive cortical folding and microscopically characterized by abnormal cortical layering. Although polymicrogyria appears to have one or more genetic causes, no polymicrogyria loci have been identified. Here we describe the clinical and radiographic features of a new genetic form of polymicrogyria and localize the responsible gene. We studied two consanguineous Palestinian pedigrees with an autosomal recessive form of bilateral frontoparietal polymicrogyria (BFPP), using linkage analysis. Five affected children had moderate-to-severe mental retardation, developmental delay, and esotropia, and four of the five affected children developed seizures. Brain magnetic-resonance imaging revealed polymicrogyria that was most prominent in the frontal and parietal lobes but involved other cortical areas as well. A genomewide linkage screen revealed a single locus that was identical by descent in affected children in both families and showed a single disease-associated haplotype, suggesting a common founder mutation. The locus for BFPP maps to chromosome 16q12.2-21, with a minimal interval of 17 cM. For D16S514, the maximal pooled two-point LOD score was 3.98, and the maximal multipoint LOD score was 4.57. This study provides the first genetic evidence that BFPP is an autosomal recessive disorder and serves as a starting point for the identification of the responsible gene.  相似文献   

16.
Restless legs syndrome (RLS) is a neurological disorder characterized by leg paresthesia associated with an irresistible urge to move that often interferes with nocturnal sleep, leading to chronic sleep deprivation. To map genes that may play a role in the vulnerability to RLS, a genomewide scan was conducted in a large French-Canadian family. Significant linkage was established on chromosome 12q, for a series of adjacent microsatellite markers with a maximum two-point LOD score of 3.42 (recombination fraction.05; P=6x10(-4); autosomal recessive mode of inheritance), whereas multipoint linkage calculations yielded a LOD score of 3.59. Haplotype analysis refined the genetic interval, positioning the RLS-predisposing gene in a 14.71-cM region between D12S1044 and D12S78. These findings represent the first mapping of a locus conferring susceptibility to RLS.  相似文献   

17.
Renal stone formation is a common multifactorial disorder, of unknown etiology, with an established genetic contribution. Lifetime risk for nephrolithiasis is approximately 10% in Western populations, and uric acid stones account for 5%-10% of all stones, depending on climatic, dietary, and ethnic differences. We studied a small, isolated founder population in Sardinia, characterized by an increased prevalence of uric acid stones, and performed a genomewide search in a deep-rooted pedigree comprising many members who formed uric acid renal stones. The pedigree was created by tracing common ancestors of affected individuals through a genealogical database based on archival records kept by the parish church since 1640. This genealogical information was used as the basis for the study strategy, involving screening for alleles shared among affected individuals, originating from common ancestors, and utilization of large pedigrees to obtain greater power for linkage detection. We performed multistep linkage and allele-sharing analyses. In the initial stage, 382 markers were typed in 14 closely related affected subjects; interesting regions were subsequently investigated in the whole sample. We identified two chromosomal regions that may harbor loci with susceptibility genes for uric acid stones. The strongest evidence was observed on 10q21-q22, where a LOD score of 3.07 was obtained for D10S1652 under an affected-only dominant model, and a LOD score of 3.90 was obtained using a dominant pseudomarker assignment. The localization was supported also by multipoint allele-sharing statistics and by haplotype analysis of familial cases and of unrelated affected subjects collected from the isolate. In the second region on 20q13.1-13.3, multipoint nonparametric scores yielded suggestive evidence in a approximately 20-cM region, and further analysis is needed to confirm and fine-map this putative locus. Replication studies are required to investigate the involvement of these regions in the genetic contribution to uric acid stone formation.  相似文献   

18.
Linkage of familial Hibernian fever to chromosome 12p13.   总被引:2,自引:0,他引:2  
Autosomal dominant periodic fevers are characterized by intermittent febrile attacks of unknown etiology and by recurrent abdominal pains. The biochemical and molecular bases of all autosomal dominant periodic fevers are unknown, and only familial Hibernian fever (FHF) has been described as a distinct clinical entity. FHF has been reported in three families-the original Irish-Scottish family and two Irish families with similar clinical features. We have undertaken a genomewide search in these families and report significant multipoint LOD scores between the disease and markers on chromosome 12p13. Cumulative multipoint linkage analyses indicate that an FHF gene is likely to be located in an 8-cM interval between D12S77 and D12S356, with a maximum LOD score (Z max) of 3.79. The two-point Z max was 3.11, for D12S77. There was no evidence of genetic heterogeneity in these three families; it is proposed that these markers should be tested in other families, of different background, that have autosomal dominant periodic fever, as a prelude to identification of the FHF-susceptibility gene.  相似文献   

19.

Background

Frontotemporal lobar degeneration (FTLD) represents a clinically, pathologically and genetically heterogenous neurodegenerative disorder, often complicated by neurological signs such as motor neuron-related limb weakness, spasticity and paralysis, parkinsonism and gait disturbances. Linkage to chromosome 9p had been reported for pedigrees with the neurodegenerative disorder, frontotemporal lobar degeneration (FTLD) and motor neuron disease (MND). The objective in this study is to identify the genetic locus in a multi-generational Australian family with FTLD-MND.

Methods

Clinical review and standard neuropathological analysis of brain sections from affected pedigree members. Genome-wide scan using microsatellite markers and single nucleotide polymorphism fine mapping. Examination of candidate genes by direct DNA sequencing.

Results

Neuropathological examination revealed cytoplasmic deposition of the TDP-43 protein in three affected individuals. Moreover, we identify a family member with clinical Alzheimer's disease, and FTLD-Ubiquitin neuropathology. Genetic linkage and haplotype analyses, defined a critical region between markers D9S169 and D9S1845 on chromosome 9p21. Screening of all candidate genes within this region did not reveal any novel genetic alterations that co-segregate with disease haplotype, suggesting that one individual carrying a meiotic recombination may represent a phenocopy. Re-analysis of linkage data using the new affection status revealed a maximal two-point LOD score of 3.24 and a multipoint LOD score of 3.41 at marker D9S1817. This provides the highest reported LOD scores from a single FTLD-MND pedigree.

Conclusion

Our reported increase in the minimal disease region should inform other researchers that the chromosome 9 locus may be more telomeric than predicted by published recombination boundaries. Moreover, the existence of a family member with clinical Alzheimer's disease, and who shares the disease haplotype, highlights the possibility that late-onset AD patients in the other linked pedigrees may be mis-classified as sporadic dementia cases.  相似文献   

20.
Hereditary geniospasm is an unusual movement disorder causing episodes of involuntary tremor of the chin and the lower lip. Episodes typically start in early childhood and may be precipitated by stress, concentration, and emotion. Hereditary geniospasm is inherited as an autosomal dominant trait, and its cause is not known. We report the results of a genomewide genetic linkage study in a four-generation British family with hereditary geniospasm. Positive two-point LOD scores were obtained for 15 microsatellite markers on the peri-centromeric region of chromosome 9. A maximum two-point LOD score of 5.24 at theta = .00 was obtained for the marker D9S1837. Construction of haplotypes defined an interval of 2.1 cM between the flanking markers D9S1806 and D9S175, thus assigning one locus for hereditary geniospasm to the proximal long arm of chromosome 9q13-q21. Hereditary geniospasm in a second British family is not linked to this region, indicating genetic heterogeneity. These findings may have implications for other inherited focal movement disorders that as yet remain unmapped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号