首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A culture enriched by growth on 1-methylnaphthalene was used to study the aerobic biotransformations of benzothiophene and 3-methylbenzothiophene. Neither of the sulfur heterocyclic compounds would support growth, but they were transformed by the culture growing on 1-methylnaphthalene or glucose or peptone. Cometabolism of benzothiophene yielded benzothiophene-2,3-dione, whereas that of 3-methylbenzothiophene yielded 3-methylbenzothiophene sulfoxide and the corresponding sulfone. The identities of the dione and sulfone were verified by comparison with authentic standards. The identity of the sulfoxide was surmised from gas chromatography-mass spectrometry and gas chromatography- Fourier transform infrared spectroscopy results. Oxidation preferentially occurred at carbons 2 and 3 in benzothiophene, but when carbon 3 was substituted with a methyl group, as in 3-methylbenzothiophene, the sulfur atom was oxygenated. The predominant microorganism in the enrichment culture was a Pseudomonas strain, designated BT1, which mineralized aromatic but not aliphatic hydrocarbons. This isolate cometabolized benzothiophene and 3-methylbenzothiophene. There was no evidence that it could metabolize 3-methylbenzothiophene sulfone. When 3-methylbenzothiophene was added to Prudhoe Bay crude oil, the sulfur heterocycle was oxidized to its sulfoxide and sulfone by strain BT1 as it grew on the aromatic hydrocarbons in the crude oil. Benzothiophene-2,3-dione was found to be chemically unstable when incubated with Prudhoe Bay crude oil. Thus its formation from benzothiophene in the presence of crude oil could not be determined.  相似文献   

2.
Rhodococcus sp. strain JVH1 was previously reported to use a number of compounds with aliphatic sulfide bridges as sulfur sources for growth. We have shown that although JVH1 does not use the three-ring thiophenic sulfur compound dibenzothiophene, this strain can use the two-ring compound benzothiophene as its sole sulfur source, resulting in growth of the culture and loss of benzothiophene. Addition of inorganic sulfate to the medium reduced the conversion of benzothiophene, indicating that benzothiophene metabolism is repressed by sulfate and that benzothiophene is therefore used specifically as a sulfur source. JVH1 also used all six isomers of methylbenzothiophene and two dimethylbenzothiophene isomers as sulfur sources for growth. Metabolites identified from benzothiophene and some methylbenzothiophenes were consistent with published pathways for benzothiophene biodesulfurization. Products retaining the sulfur atom were sulfones and sultines, the sultines being formed from phenolic sulfinates under acidic extraction conditions. With 2-methylbenzothiophene, the final desulfurized product was 2-methylbenzofuran, formed by dehydration of 3-(o-hydroxyphenyl) propanone under acidic extraction conditions and indicating an oxygenative desulfination reaction. With 3-methylbenzothiophene, the final desulfurized product was 2-isopropenylphenol, indicating a hydrolytic desulfination reaction. JVH1 is the first microorganism reported to use all six isomers of methylbenzothiophene, as well as some dimethylbenzothiophene isomers, as sole sulfur sources. JVH1 therefore possesses broader sulfur extraction abilities than previously reported, including not only sulfidic compounds but also some thiophenic species.  相似文献   

3.
Naphtho[2,1-b]thiophene (NTH) is an asymmetric structural isomer of dibenzothiophene (DBT), and in addition to DBT derivatives, NTH derivatives can also be detected in diesel oil following hydrodesulfurization treatment. Rhodococcus sp. strain WU-K2R was newly isolated from soil for its ability to grow in a medium with NTH as the sole source of sulfur, and growing cells of WU-K2R degraded 0.27 mM NTH within 7 days. WU-K2R could also grow in the medium with NTH sulfone, benzothiophene (BTH), 3-methyl-BTH, or 5-methyl-BTH as the sole source of sulfur but could not utilize DBT, DBT sulfone, or 4,6-dimethyl-DBT. On the other hand, WU-K2R did not utilize NTH or BTH as the sole source of carbon. By gas chromatography-mass spectrometry analysis, desulfurized NTH metabolites were identified as NTH sulfone, 2'-hydroxynaphthylethene, and naphtho[2,1-b]furan. Moreover, since desulfurized BTH metabolites were identified as BTH sulfone, benzo[c][1,2]oxathiin S-oxide, benzo[c][1,2]oxathiin S,S-dioxide, o-hydroxystyrene, 2-(2'-hydroxyphenyl)ethan-1-al, and benzofuran, it was concluded that WU-K2R desulfurized NTH and BTH through the sulfur-specific degradation pathways with the selective cleavage of carbon-sulfur bonds. Therefore, Rhodococcus sp. strain WU-K2R, which could preferentially desulfurize asymmetric heterocyclic sulfur compounds such as NTH and BTH through the sulfur-specific degradation pathways, is a unique desulfurizing biocatalyst showing properties different from those of DBT-desulfurizing bacteria.  相似文献   

4.
Dibenzothiophene is degraded to 3-hydroxy-2-formyl benzothiophene by various bacteria, including a strain of Pseudomonas putida that also forms dibenzothiophene sulfone via an alternate pathway. By using these end products as substrates, mixed enrichment cultures that could degrade 3-hydroxy-2-formyl benzothiophene and dibenzothiophene sulfone with the formation of CO2 were established.  相似文献   

5.
Dibenzothiophene is degraded to 3-hydroxy-2-formyl benzothiophene by various bacteria, including a strain of Pseudomonas putida that also forms dibenzothiophene sulfone via an alternate pathway. By using these end products as substrates, mixed enrichment cultures that could degrade 3-hydroxy-2-formyl benzothiophene and dibenzothiophene sulfone with the formation of CO2 were established.  相似文献   

6.
Naphtho[2,1-b]thiophene (NTH) is an asymmetric structural isomer of dibenzothiophene (DBT), and in addition to DBT derivatives, NTH derivatives can also be detected in diesel oil following hydrodesulfurization treatment. Rhodococcus sp. strain WU-K2R was newly isolated from soil for its ability to grow in a medium with NTH as the sole source of sulfur, and growing cells of WU-K2R degraded 0.27 mM NTH within 7 days. WU-K2R could also grow in the medium with NTH sulfone, benzothiophene (BTH), 3-methyl-BTH, or 5-methyl-BTH as the sole source of sulfur but could not utilize DBT, DBT sulfone, or 4,6-dimethyl-DBT. On the other hand, WU-K2R did not utilize NTH or BTH as the sole source of carbon. By gas chromatography-mass spectrometry analysis, desulfurized NTH metabolites were identified as NTH sulfone, 2′-hydroxynaphthylethene, and naphtho[2,1-b]furan. Moreover, since desulfurized BTH metabolites were identified as BTH sulfone, benzo[c][1,2]oxathiin S-oxide, benzo[c][1,2]oxathiin S,S-dioxide, o-hydroxystyrene, 2-(2′-hydroxyphenyl)ethan-1-al, and benzofuran, it was concluded that WU-K2R desulfurized NTH and BTH through the sulfur-specific degradation pathways with the selective cleavage of carbon-sulfur bonds. Therefore, Rhodococcus sp. strain WU-K2R, which could preferentially desulfurize asymmetric heterocyclic sulfur compounds such as NTH and BTH through the sulfur-specific degradation pathways, is a unique desulfurizing biocatalyst showing properties different from those of DBT-desulfurizing bacteria.  相似文献   

7.
Purified laccase from Coriolopsis gallica UAMH8260 oxidized carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene in the presence of 1-hydroxybenzotriazole and 2,2-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) as free radical mediators. Susceptibility to laccase oxidation appears related to the ionization potential (IP) of the substrate: compounds with an IP above 8.52, dibenzofuran (IP = 8.77) and benzothiophene (IP = 8.73) were not attacked. Carbazole (IP = 7.68) was the most sensitive to oxidation with >99% transformed with 10 milliunits of laccase after 1 h, though most reactions were carried out for 18 h. 9-Fluorenone was identified as the product of fluorene (IP = 8.52) oxidation, and dibenzothiophene sulfone from dibenzothiophene (IP = 8.44). Although carbazole and N-ethylcarbazole were both completely removed within 18 h, no oxidation or condensation metabolites were detected. This investigation is the first to report the oxidation of dibenzothiophene, carbazole, and N-ethylcarbazole by laccase.  相似文献   

8.
Chemostat enrichment is a classical microbiological method that is well suited for use in directed-evolution strategies. We used a two-phase sulfur-limited chemostat to select for gain-of-function mutants with mutations in the biodesulfurization (Dsz) system of Rhodococcus erythropolis IGTS8, enriching for growth in the presence of organosulfur compounds that could not support growth of the wild-type strain. Mutations arose that allowed growth with octyl sulfide and 5-methylbenzothiophene as sole sulfur sources. An isolate from the evolved chemostat population was genetically characterized and found to contain mutations in two genes, dszA and dszC. A transversion (G to T) in dszC codon 261 resulted in a V261F mutation that was determined to be responsible for the 5-methylbenzothiophene gain-of-function phenotype. By using a modified RACHITT (random chimeragenesis on transient templates) method, mutant DszC proteins containing all possible amino acids at that position were generated, and this mutant set was assayed for the ability to metabolize 5-methylbenzothiophene, alkyl thiophenes, and dibenzothiophene. No mutant with further improvements in these catalytic activities was identified, but several clones lost all activity, confirming the importance of codon 261 for enzyme activity.  相似文献   

9.
We have previously isolated mutants of Escherichia coli which show increased oxidation of heterocyclic furan and thiophene substrates. We have now found that strains carrying the thdA mutation express a novel enzyme activity which oxidizes a variety of substrates containing a sulfone (SO2) moiety. Both heterocyclic sulfones (e.g., tetramethylene sulfone) and simple aliphatic sulfones (e.g., ethyl sulfone) were oxidized. The thdA mutants were more resistant than wild-type strains to aromatic sulfone antibiotics such as dapsone. In contrast they showed increased susceptibility to thiolutin, a cyclic antibiotic containing sulfur at the sulfide level of oxidation. Several new thdA mutant alleles were isolated by selecting for increased oxidation of various aliphatic sulfur compounds. These new thdA mutants showed similar sulfone oxidase activity and the same map location (at 10.7 min) as the original thdA1 mutation. The constitutive fadR mutation was required for the phenotypic expression of thdA-mediated oxidation of sulfur compounds. However, the thdA-directed expression of sulfone oxidase activity was not fadR dependent. The thdC and thdD mutations probably protect against the toxicity of thiophene derivatives rather than conferring improved metabolic capability.  相似文献   

10.
Thirty-five bacterial strains capable of converting dibenzothiophene into 2-hydroxybiphenyl were isolated. Among them Rhodococcus erythropolis KA2-5-1 was chosen for further characterization because of its ability to retain high desulfurization activity stably. PCR cloning and DNA sequencing of a KA2-5-1 genomic DNA fragment showed that it was practically identical with dszABC genes from Rhodococcus sp. IGTS8, a representative carbon-sulfur-bond-targeted dibenzothiophene-degrading bacterium. KA2-5-1 desulfurized a variety of alkyl dibenzothiophenes through the specific cleavage of their C-S bonds. In addition, unexpectedly, KA2-5-1 also attacked alkyl benzothiophenes in a C-S-bond-targeted fashion. The purified monooxygenase, encoded by dszC of KA2-5-1, converted benzothiophene and dibenzothiophene into benzothiophene sulfone and dibenzothiophene sulfone, respectively, with the aid of an NADH-dependent oxidoreductase. This result raises the possibility that the same enzymatic step may be involved in desulfurization of alkylated forms of both dibenzothiophene and benzothiophene in KA2-5-1 cells.  相似文献   

11.
Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS2, FeS2, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Resting cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed.  相似文献   

12.
We have previously isolated mutants of Escherichia coli which show increased oxidation of heterocyclic furan and thiophene substrates. We have now found that strains carrying the thdA mutation express a novel enzyme activity which oxidizes a variety of substrates containing a sulfone (SO2) moiety. Both heterocyclic sulfones (e.g., tetramethylene sulfone) and simple aliphatic sulfones (e.g., ethyl sulfone) were oxidized. The thdA mutants were more resistant than wild-type strains to aromatic sulfone antibiotics such as dapsone. In contrast they showed increased susceptibility to thiolutin, a cyclic antibiotic containing sulfur at the sulfide level of oxidation. Several new thdA mutant alleles were isolated by selecting for increased oxidation of various aliphatic sulfur compounds. These new thdA mutants showed similar sulfone oxidase activity and the same map location (at 10.7 min) as the original thdA1 mutation. The constitutive fadR mutation was required for the phenotypic expression of thdA-mediated oxidation of sulfur compounds. However, the thdA-directed expression of sulfone oxidase activity was not fadR dependent. The thdC and thdD mutations probably protect against the toxicity of thiophene derivatives rather than conferring improved metabolic capability.  相似文献   

13.
T Omori  L Monna  Y Saiki    T Kodama 《Applied microbiology》1992,58(3):911-915
Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS2, FeS2, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Resting cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed.  相似文献   

14.
AIMS: To isolate bacteria capable of cleaving aliphatic carbon-sulfur bonds as potential biological upgrading catalysts for the reduction of molecular weight and viscosity in heavy crude oil. METHODS AND RESULTS: Thirty-one bacterial strains isolated from enrichment cultures were able to biotransform model compounds representing the aliphatic sulfide bridges found in asphaltenes. Using gas chromatography and mass spectrometry, three types of attack were identified: alkyl chain degradation, allowing use as a carbon source; nonspecific sulfur oxidation; and sulfur-specific oxidation and carbon-sulfur bond cleavage, allowing use as a sulfur source. Di-n-octyl sulfide degradation produced octylthio- and octylsulfonyl-alkanoic acids, consistent with terminal oxidation followed by beta-oxidation reactions. Utilization of dibenzyl sulfide or 1,4-dithiane as a sulfur source was regulated by sulfate, indicating a sulfur-specific activity rather than nonspecific oxidation. Finally, several isolates were also able to use dibenzothiophene as a sulfur source, and this was the preferred organic sulfur substrate for one isolate. CONCLUSIONS: The use of commercially available alkyl sulfides in enrichment cultures gave isolates that followed a range of metabolic pathways, not just sulfur-specific attack. SIGNIFICANCE AND IMPACT OF THE STUDY: These results give new insight into biodegradation of organosulfur compounds from petroleum and for biotreatment of such compounds in chemical munitions.  相似文献   

15.
Sinorhizobium sp. KT55 was the first Gram-negative isolate to be capable of utilizing benzothiophene as the sole source of sulfur. By GC-MS analysis of metabolites of benzothiophene by this strain, benzothiophene sulfone, benzo[e][1,2]oxathiin S-oxide and o-hydroxystyrene were detected, suggesting that the benzothiophene desulfurization pathway of this strain is benzothiophene → benzothiophene sulfoxide → benzothiophene sulfone → benzo[e][1,2]oxathiin S-oxide →o-hydroxystyrene. Desulfurization activity of this strain was significantly repressed by methionine, cysteine, sulfate, dimethyl sulfoxide, and Casamino acids. Received: 5 January 2001/Accepted: 6 February 2001  相似文献   

16.
The selectivity of Rhodococcus sp. strain JVH1 among selected sulfidic and thiophenic compounds was investigated in both single-liquid-phase (aqueous) cultures and in two-liquid-phase cultures, where the sulfur compounds were dissolved in 2,2,4,4,6,8,8-heptamethylnonane as the immiscible organic carrier phase. In the single-liquid-phase cultures, Rhodococcus sp. strain JVH1 showed a preference for benzyl sulfide over both 1,4-dithiane and benzothiophene. An increased lag was observed in the degradation of benzyl sulfone and benzothiophene sulfone when both compounds were present. These results were consistent with a competitive inhibition mechanism, affecting both sulfur oxidation and carbon–sulfur bond cleavage. In the two-liquid-phase cultures, the effect of partitioning between the two liquid phases dominated the desulfurization activity of the culture. This partitioning resulted in an apparent absence of selectivity, as well as decreases in lag time, extent of degradation, and time to completion of degradation. Desulfurization activity also depended on the growth phase of the cultures. Mass transfer rate limitations were not observed at the low degradation rates of 0.02 mmol day-1 l−1. Owing to the importance of partitioning, Rhodococcus sp. strain JVH1 is predicted to show nonselective activity towards the sulfur species in a whole crude oil.  相似文献   

17.
Biodesulfurization of organic-sulfur compounds   总被引:2,自引:0,他引:2  
A screening assay in which dibenzothiophene (DBT) or DBT-sulfone served as the only bioavailable source of sulfur was used to obtain two new bacterial isolates, strains UM9 and UM3, that desulfurized either substrate. Strain UM9 produced the desulfurized product, 2-hydroxybiphenyl (HBP); no other identifiable desulfurized products or released sulfate or sulfite were detected. Biodesulfurization activity occurred only for growing cultures and was depressed by free sulfate. Neither isolate grew on DBT, DBT-sulfone, or HBP as sole carbon sources. Under optimized conditions of pH and temperature, strain UM9 exhibited up to 35% greater biodesulfurization of DBT-sulfone than did UM3, and both isolates also desulfurized several other organic-sulfur compounds. The kinetics and characteristics of biodesulfurization by either UM3 or UM9, tentatively identified as species ofRhodococcus, indicated mechanisms different from those reported in the literature for other bacteria.  相似文献   

18.
Strains DBVPG 6662 and DBVPG 6739 of Rhodosporidium toruloides, a basidiomycete yeast, grew on thiosulfate as a sulfur source and glucose (2 g liter(-1) or 10.75 mM) as a carbon source. DBVPG 6662 has a defective sulfate transport system, whereas DBVPG 6739 barely grew on sulfate. They were compared for the ability to use dibenzothiophene (DBT) and related organic sulfur compounds as sulfur sources. In the presence of glucose as a carbon source and DBT as a sulfur source, strain DBVPG 6662 grew better than DBVPG 6739. In the presence of thiosulfate as a sulfur source, the two yeast strains did not use DBT, DBT-sulfone, benzenesulfonic acid, biphenyl, and fluorene. When the two strains were grown in the presence of glucose, strain DBVPG 6662 transformed 27% of the DBT present (10 micro M) at a rate of 0.023 micro mol liter(-1) h(-1) in 36 h. Traces of 2,2'-dihydroxylated biphenyl were transiently accumulated under these conditions. When the same strain was grown on glucose in the presence of a higher concentration of DBT (0.5 g liter(-1)), mainly in an insoluble form, the whole surface of the DBT crystals was colonized by a thick mycelium. This adherent structure was imaged by confocal microscopy with fluorescent concanavalin A, a lectin that specifically binds glucose and mannose residues. When DBVPG 6662 was grown on glucose in the presence of a commercial emulsion of bitumen, i.e., orimulsion, 68% of the benzo- and dibenzothiophenes and DBTs was removed after 15 days of incubation. The fungus adhered by hyphae to orimulsion droplets. When cultivated in the presence of commercial emulsifier-free fuel oil containing alkylated benzothiophenes and DBTs and having a composition similar to that of orimulsion, strain DBVPG 6662 removed only 11% of the total organic sulfur that occurs in the medium and did not adhere to the oil droplets. These results indicate that strain DBVPG 6662 is able to utilize the organic sulfur of DBT and a large variety of thiophenic compounds that occur extensively in commercial fuel oils by physically adhering to the organic sulfur source.  相似文献   

19.
Anaerobic enrichment cultures obtained from oil fields degraded various thiophenic compounds i.e. thiophene, benzothiophene and dibenzothiophene, with the concomitant formation of sulphide using hydrogen, lactate and ethanol as possible electron donors. It was demonstrated that dibenzothiophene was converted to biphenyl. However, hydrocarbon products from benzothiophene and thiophene desulphurisation could not be detected. After further enrichment on thiophenic compounds as the sole electron acceptor, the conversion activity disappeared while homo-acetogenic bacteria became abundantly present. In order to gain stable conversions of thiophenic compounds, attempts were made to isolate the sulphide-producing bacteria. Two highly enriched cultures were obtained, which degraded thiophenic compounds, but the activity remained low and homo-acetogenesis remained dominant.  相似文献   

20.
Summary n-Alkanes affect the degradation of aromatic sulfur compounds both in aerobic and in anaerobic conditions. Some authors have reported anaerobic desulfurization by sutfate-reducing bacteria. These catalytic reactions are biphydrodesulfurizations (BHDS). n-Dodecane has a barrier or carrier effect on benzothiophene degradation in the absence (growing cell condition) or presence (resting cell condition) of hydrogen in the head space of the batch. In addition, thermodynamic factors are very important in benzothiophene and dibenzothiophene degradation by the microorganism Desulfovibrio desulfuricans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号