首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloride content and fluxes were measured in isolated resting human peripheral polymorphonuclear leukocytes. The intracellular Cl concentration of cells kept at 37 degrees C in 148 mM Cl media was approximately 80 meq/liter cell water, fourfold higher than expected for passive distribution at the cell's estimated membrane potential (approximately -53 mV). All intracellular Cl was rapidly exchangeable with external 36Cl. Cells lost Cl exponentially into Cl-free media, and reaccumulated it when Cl was restored to the bath; this reuptake was dependent on metabolism. One-way 36Cl fluxes in steady state cells were approximately 1.4 meq/liter X min. The bulk (approximately 70%) of these represented electrically silent Cl/Cl exchange mediated by a carrier insensitive to disulfonic stilbenes but blocked by the anion carrier inhibitor alpha-cyano-4-hydroxycinnamate (CHC). The remaining fluxes were characterized in some detail. About 20% of 36Cl influx behaved as active transport: it moved thermodynamically uphill and was absent in cells treated with 2-deoxy-D-glucose, displayed Michaelis-Menten kinetics with Km(Cl) congruent to 5 mM, Vmax congruent to 0.25 meq/liter X min, and was inhibited by CHC (Ki congruent to 1.7 mM), ethacrynate (Ki congruent to 50 microM), and furosemide (Ki congruent to 50 microM). About 30% of Cl efflux and approximately 8% of Cl influx behaved as electrodiffusion through a low-permeability pathway (PCl congruent to 4 X 10(-9) cm/s; gCl congruent to 1 microsecond/cm2; PK/PNa/PCl congruent to to 10:1:1); these fluxes were linear with concentration and strongly voltage sensitive. The putative Cl channel does not appear to be voltage gated, and gives evidence of single filing.  相似文献   

2.
Pretreatment of isolated human neutrophils (resting pHi congruent to 7.25 at pHo 7.40) with 30 mM NH4Cl for 30 min leads to an intracellular acidification (pHi congruen to 6.60) when the NH4Cl prepulse is removed. Thereafter, in 140 mM Na+ medium, pHi recovers exponentially with time (initial rate, approximately 0.12 pH/min) to reach the normal resting pHi by approximately 20 min, a process that is accomplished mainly, if not exclusively, though an exchange of internal H+ for external Na+. This Na+/H+ countertransport is stimulated by external Na+ (Km congruent to 21 mM) and by external Li+ (Km congruent to 14 mM), though the maximal transport rate for Na+ is about twice that for Li+. Both Na+ and Li+ compete as substrates for the same translocation sites on the exchange carrier. Other alkali metal cations, such as K+, Rb+, or Cs+, do not promote pHi recovery, owing to an apparent lack of affinity for the carrier. The exchange system is unaffected by ouabain or furosemide, but can be competitively inhibited by the diuretic amiloride (Ki congruent to 8 microM). The influx of Na+ or Li+ is accompanied by an equivalent counter-reflux of H+, indicating a 1:1 stoichiometry for the exchange reaction, a finding consistent with the lack of voltage sensitivity (i.e., electroneutrality) of pHi recovery. These studies indicate that the predominant mechanism in human neutrophils for pHi regulation after intracellular acidification is an amiloride-sensitive alkali metal cation/H+ exchange that shares a number of important features with similar recovery processes in a variety of other mammalian cell types.  相似文献   

3.
The pathway by which L-lactate (Lac) crosses the plasma membrane of isolated human neutrophils was investigated. The influx of [14C]Lac from a 2 mM Lac, 145 mM Cl-, 5.6 mM glucose medium was approximately 1.5 meq/liter of cell water.min and was sensitive to the organomercurial agent mersalyl (apparent Ki approximately 20 microM), to alpha-cyano-4-hydroxycinnamate (CHC), the classical inhibitor of monocarboxylate transport in mitochondria, and to UK-5099 (apparent Ki approximately 40 microM), a more potent analogue of CHC. Transport was also strongly blocked (greater than 80%) by 1 mM of either 3,5-diiodosalicylic acid, MK-473 (an indanyloxyacetate derivative), or diphenyl-amine-2-carboxylate, and by 0.4 mM pentachlorophenol, but not by 1 mM ethacrynic acid, furosemide, or the disulfonic stilbenes SITS or H2DIDS. One-way [14C]Lac efflux from steady-state cells amounted to approximately 6 meq/liter.min and was likewise affected by the agents listed above. Influx, which was membrane potential insensitive and Na+ independent, displayed a strong pH dependence: extracellular acidification enhanced uptake while alkalinization inhibited the process (pK' approximately 5.7 at 2 mM external Lac). The rate of [14C]Lac influx was a saturable function of external Lac, the Km being approximately 7 mM. Steady-state cells exhibited an intracellular Lac content of approximately 5 mM and secreted lactic acid into the bathing medium a a rate of approximately 4 meq/liter.min. Secretion was completely suppressed by 1 mM mersalyl which inactivates the carrier, leading to an internal accumulation of Lac. That the Lac carrier truly mediates an H+ + Lac- cotransport (or formally equivalent Lac-/OH- exchange) was documented by pH-stat techniques wherein an alkalinization of poorly buffered medium could be detected upon the addition of Lac; these pH changes were sensitive to mersalyl. Thus, the Lac carrier of neutrophils possesses several features in common with other monocarboxylate transport systems in erythrocytes and epithelia.  相似文献   

4.
The role of plasma membrane Cl(-)-HCO-3-exchange in regulating intracellular pH (pHi) was examined in Madin-Darby canine kidney cell monolayers. In cells bathed in 25 mM HCO-3, pH 7.4, steady state pHi was 7.10 +/- 0.03 (n = 14) measured with the fluorescent pH probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Following acute alkaline loading, pHi recovered exponentially in approximately 4 min. The recovery rate was significantly decreased by Cl- or HCO-3 removal and in the presence of 50 microM 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS). Na+ removal or 10(-3) M amiloride did not inhibit the pHi recovery rate after an acute alkaline load. Following acute intracellular acidification, the pHi recovery rate was significantly inhibited by 10(-3) M amiloride but was not altered by Cl- removal or 50 microM DIDS. At an extracellular pH (pHo) of 7.4, pHi remained unchanged when the cells were bathed in either Cl- free media, HCO-3 free media, or in the presence of 50 microM DIDS. As pHo was increased to 8.0, steady state pHi was significantly greater than control in Cl(-)-free media and in the presence of 50 microM DIDS. It is concluded that Madin-Darby canine kidney cells possess a Na+-independent Cl(-)-HCO-3 exchanger with a Km for external Cl- of approximately 6 mM. The exchanger plays an important role in pHi regulation following an elevation of pHi above approximately 7.1. Recovery of pHi following intracellular acidification is mediated by the Na+/H+ antiporter and not the anion exchanger.  相似文献   

5.
Regulation of intracellular pH in human neutrophils   总被引:16,自引:4,他引:12       下载免费PDF全文
The intracellular pH (pHi) of isolated human peripheral blood neutrophils was measured from the fluorescence of 6-carboxyfluorescein (6-CF) and from the equilibrium distribution of [14C]5,5-dimethyloxazolidine -2,4-dione (DMO). At an extracellular pH (pHo) of 7.40 in nominally CO2-free medium, the steady state pHi using either indicator was approximately 7.25. When pHo was suddenly raised from 7.40 to 8.40 in the nominal absence of CO2, pHi slowly rose by approximately 0.35 during the subsequent hour. A change of similar magnitude in the opposite direction occurred when pHo was reduced to 6.40. Both changes were reversible. Intrinsic intracellular buffering power, determined by using graded pulses of CO2 or NH4Cl, was approximately 50 mM/pH over the pHi range of 6.8-7.9. The course of pHi obtained from the distribution of DMO was followed during and after imposition of intracellular acid and alkaline loads. Intracellular acidification was brought about either by exposing cells to 18% CO2 or by prepulsing with 30 mM NH4Cl, while pHo was maintained at 7.40. In both instances, pHi (6.80 and 6.45, respectively) recovered toward the control value at rates of 0.029 and 0.134 pH/min. These rates were reduced by approximately 90% either by 1 mM amiloride or by replacement of extracellular Na with N-methyl-D-glucamine. Recovery was not affected by 1 mM SITS or by 40 mM alpha-cyano-4-hydroxycinnamate (CHC), which inhibits anion exchange in neutrophils. Therefore, recovery from acid loading is probably due to an exchange of internal H for external Na. Intracellular alkalinization was achieved by exposing the cells to 30 mM NH4Cl or by prepulsing with 18% CO2, both at a constant pHo 7.40. In both instances, pHi, which was 7.65 and 7.76, respectively, recovered to the control value. The recovery rates (0.033 and 0.077 pH/min, respectively) were reduced by 80-90% either by 40 mM CHC or by replacement of extracellular Cl with p-aminohippurate (PAH). SITS, amiloride, and ouabain (0.1 mM) were ineffective.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Isolated human neutrophils possess three distinct pathways by which Cl- crosses the plasma membrane of steady state cells: anion exchange, active transport, and electrodiffusion. The purpose of the present work was to investigate the selectivity of each of these separate processes with respect to other external halide ions. (a) The bulk of total anion movements represents transport through an electrically silent anion-exchange mechanism that is insensitive to disulfonic stilbenes, but which can be competitively inhibited by alpha-cyano-4-hydroxycinnamate (CHC; Ki approximately 0.3 mM). The affinity of the external translocation site of the carrier for each of the different anions was determined (i) from substrate competition between Cl- and either Br-, F-, or I-, (ii) from trans stimulation of 36Cl- efflux as a function of the external concentrations of these anions, (iii) from changes in the apparent Ki for CHC depending on the nature of the replacement anion in the bathing medium, and (iv) from activation of 82Br- and 125I- influxes by their respective ions. Each was bound and transported at roughly similar rates (Vmax values all 1.0-1.4 meq/liter cell water.min); the order of decreasing affinities is Cl- greater than Br- greater than F- greater than I- (true Km values of 5, 9, 23, and 44 mM, respectively). These anions undergo 1:1 countertransport for internal Cl-. (b) There is a minor component of total Cl- influx that constitutes an active inward transport system for the intracellular accumulation of Cl- [( Cl-]i approximately 80 meq/liter cell water), fourfold higher than expected for passive distribution. This uptake is sensitive to intracellular ATP depletion by 2-deoxy-D-glucose and can be inhibited by furosemide, ethacrynic acid, and CHC, which also blocks anion exchange. This active Cl- uptake process binds and transports other members of the halide series in the sequence Cl- greater than Br- greater than I- greater than F- (Km values of 5, 8, 15, and 41 mM, respectively). (c) Electrodiffusive fluxes are small. CHC-resistant 82Br- and 125I- influxes behave as passive leak fluxes through low-conductance ion channels: they are nonsaturable and strongly voltage dependent. These anions permeate the putative Cl- channel in the sequence I- greater than Br- greater than Cl- with relative permeability ratios of 2.2:1.4:1, respectively, where PCl approximately 5 X 10(-9) cm/s.  相似文献   

7.
When intracellular chloride activity (aiCl) was monitored with chloride-sensitive liquid ion exchanges (CLIX) microelectrodes in Balanus photoreceptors, replacement of extracellular chloride (Cl0) by methanesulfonate or glutamate was followed by a rapid but incomplete loss of aiCl. When propionate was used as the extracellular anion substitute, CLIX electrodes detected an apparent gain in aiCl, while a newly designed Ag-AgCl wire-in glass microelectrode showed a loss of aiCl under the same conditions. This discrepancy in Cl- washout when propionate replaced Cl0 is explained by the differences in selectivity of CLIX and Ag-AgCl electrodes for native intracellular anions and for the extracellular anion substitute which also replaces Cli and interferes in the determination of aiCl. Both electrodes indicate that ECl approximately Em when the cells are bathed in normal barnacle saline, and both electrodes showed the rate of Cl washout (tau approximately 5 min) to be independent of Cli when Cl0 was replaced by glutamate. Details of Ag-AgCl microelectrode construction are presented. These electrodes were tested and found to be insensitive to the organic anion substitutes used in this study. Selectivity data of CLIX electrodes for several anions of biological interest are described.  相似文献   

8.
Na-Ca exchange current was measured at various concentrations of internal Na [( Na]i) and Ca [( Ca]i) using intracellular perfusion technique and whole-cell voltage clamp in single cardiac ventricular cells of guinea pig. Internal Ca has an activating effect on Nai-Cao exchange beginning at approximately 10 nM and saturating at approximately 50 nM with a half maximum [Ca]i (Km[Ca]i) of 22 nM (Hill coefficient, 3.7). Measurement of Nai-Cao exchange current at various concentration of [Na]i revealed an apparent Km[Na]i of 20.7 +/- 6.9 mM (n = 14) with imax of 3.5 +/- 1.2 microA/microF. For [Ca]i transported by the exchange, a Km[Ca]i of 0.60 +/- 0.24 microM (n = 8) with an imax of 3.0 +/- 0.54 microA/microF was obtained by measuring Nao-Cai exchange current. These values are apparently different from the values for the external binding site which have been reported previously. Whether Na and Ca compete for the external binding site, and if so, how it affects the binding constants was then investigated. Outward Nai-Cao exchange current became larger by reducing [Na]o. The double reciprocal plot of the current magnitude and [Ca]o at different [Na]o revealed a competitive interaction between Na and Ca. In the absence of competitor [Na]o, an apparent Km[Ca]o of 0.14 mM was obtained. When comparing internal and external Km values, the external value is markedly larger than the internal one and thus we conclude that binding sites of the Na-Ca exchange molecule are at least apparently asymmetrical between the inside and outside of the membrane.  相似文献   

9.
The mechanism by which SO4(2-) is transported across the plasma membrane of isolated human neutrophils was investigated. Unlike the situation in erythrocytes, SO4(2-) and other divalent anions are not substrates for the principal Cl-/HCO3- exchange system in these cells. At an extracellular concentration of 2 mM, total one-way 35SO4(2-) influx and efflux in steady-state cells amounted to approximately 17 mumol/liter of cell water per min. The intracellular SO4(2-) content was approximately 1 mM, approximately 25-fold higher than the passive distribution level. Internal Cl- trans stimulated 35SO4(2-) influx. Conversely, 35SO4(2-) efflux was trans stimulated by external Cl- (Km approximately 25 mM) and by external SO4(2-) (Km approximately 14 mM), implying the presence of a SO4(2-)/Cl- countertransport mechanism. The exchange is noncompetitively inhibited by 4-acetamido-4'-isothiocyanostilbene-2,2' -disulfonate (SITS) (Ki approximately 50 microM) and competitively blocked by alpha-cyano-4-hydroxycinnamate (Ki approximately 230 microM) and by ethacrynate (Ki approximately 7 microM); furosemide and probenecid also suppressed activity. The carrier exhibits broad specificity for a variety of monovalent (NO3- approximately Cl- greater than Br- greater than formate- greater than I- approximately p-aminohippurate-) and divalent WO4(2-) greater than oxalate2- greater than SO4(2-) greater than MoO4(2-) greater than SeO4(2-) greater than AsO4(2-) anions. There was little, if any, affinity for HCO3-, phosphate, or glucuronate. The influx of SO4(2-) is accompanied by an equivalent cotransport of H+, the ion pair H+ + SO4(2-) being transported together in exchange for Cl-, thereby preserving electroneutrality. These findings indicate the existence of a separate SO4(2-)/Cl- exchange carrier that is distinct from the neutrophil's Cl-/HCO3- exchanger. The SO4(2-) carrier shares several properties in common with the classical inorganic anion exchange mechanism of erythrocytes and with other SO4(2-) transport systems in renal and intestinal epithelia, Ehrlich ascites tumor cells, and astroglia.  相似文献   

10.
In thoroughbred horses, red blood cell amino acid transport activity is Na(+)-independent and controlled by three codominant genetic alleles (h, l, s), coding for high-affinity system asc1 (L-alanine apparent Km for influx at 37 degrees C congruent to 0.35 mM), low-affinity system asc2 (L-alanine Km congruent to 14 mM), and transport deficiency, respectively. The present study investigated amino acid transport mechanisms in red cells from four wild species: Przewalski's horse (Equus przewalskii), Hartmann's zebra (Zebra hartmannae), Grevy's zebra (Zebra grevyi), and onager (Equus hemonius). Red blood cell samples from different Przewalski's horses exhibited uniformly high rates of L-alanine uptake, mediated by a high-affinity asc1-type transport system. Mean apparent Km and Vmax values (+/- SE) for L-alanine influx at 37 degrees C in red cells from 10 individual animals were 0.373 +/- 0.068 mM and 2.27 +/- 0.11 mmol (L cells.h), respectively. As in thoroughbreds, the Przewalski's horse transporter interacted with dibasic as well as neutral amino acids. However, the Przewalski asc1 isoform transported L-lysine with a substantially (6.4-fold) higher apparent affinity than its thoroughbred counterpart (Km for influx 1.4 mM at 37 degrees C) and was also less prone to trans-stimulation effects. The novel high apparent affinity of the Przewalski's horse transporter for L-lysine provides additional key evidence of functional and possible structural similarities between asc and the classical Na(+)-dependent system ASC and between these systems and the Na(+)-independent dibasic amino acid transport system y+. Unlike Przewalski's horse, zebra red cells were polymorphic with respect to L-alanine transport activity, showing high-affinity or low-affinity saturable mechanisms of L-alanine uptake. Onager red cells transported this amino acid with intermediate affinity (apparent Km for influx 3.0 mM at 37 degrees C). Radiation inactivation analysis was used to estimate the target size of system asc in red cells from Przewalski's horse. The transporter's in situ apparent molecular weight was 158,000 +/- 2500 (SE).  相似文献   

11.
The behavior of individual Na channels in the apical membrane of the rat cortical collecting tubule (CCT) was studied at different concentrations of the permeant ions Na and Li. Tubules were opened to expose their luminal surfaces and bathed in K-gluconate medium to minimize tubule-to-tubule variation in cell membrane potential and intracellular Na concentration. The patch-clamp technique was used to resolve currents through individual channels. The patch-clamp pipette was filled with solutions containing variable concentrations of either NaCl or LiCl. In one series of experiments, the concentrations were changed without substitutions. In another series, the ionic strength and Cl concentration were maintained constant by partial substitution of Li with N-methyl-D-glucamine (NMDG). In cell-attached patches, both the single-channel conductance (g) and the single-channel current (i) saturated as functions of the Na or Li activity in the pipette. Without NMDG, the saturation of i was well described by Michaelis-Menten kinetics with an apparent Km of approximately 20 mM activity for Na and approximately 50 mM activity for Li. Km was independent of voltage for both ions. With substitution for Li by NMDG, the apparent Km value for Li transport through the channels increased. The values of the probability of a channel's being open (Po) varied from patch to patch, but no effect of pipette ion activity on Po could be demonstrated. A weak dependence of Po on membrane voltage was observed, with hyperpolarization increasing Po by an average of 2.3%/mV.  相似文献   

12.
The biochemical and physiological aspects of hexuronate transport in Erwinia carotovora were studied to approach the genetic regulation of the hexuronate degradative pathway in this bacterial species. An active transport system for glucuronate and galacturonate uptake exists in E. carotovora. The glucuronate entry reaction displayed saturation kinetics with an apparent Km of 0.05 mM (at 25 degrees C; pH 7). Galacturonate appeared to be a competitive inhibitor of glucuronate uptake with a Ki of 0.1 mM. Glucuronate permeation was not induced by glucuronate itself in wild-type strains. Galacturonate induced the uptake of glucuronate (about fivefold). The induced synthesis of the transport system was sensitive to catabolite repression by glucose. Mutants able to grow on glucuronate as the sole carbon source showed constitutive synthesis of the hexuronate transport system.  相似文献   

13.
Continuous intracellular pH (pHi) measurements were performed in SIRC rabbit corneal epithelial cells using the pH-sensitive absorbance of intracellularly trapped 5(and 6)-carboxy-4',5'-dimethylfluorescein. Steady-state pHi in nominally bicarbonate free Ringer's solution averaged 6.87 +/- 0.02 (mean +/- S.E., n = 53). After intracellular acidification induced by the NH4Cl-prepulse technique, there was a sodium-dependent pHi recovery towards the normal steady-state pHi. The initial pHi recovery rate was a saturable function of extracellular sodium concentration with an apparent Km for external sodium of about 25 mM and a Vmax of about 0.28 pH units/min. Virtually no pHi recovery was observed in the absence of extracellular sodium. Sodium removal during steady state acidified the cells by 0.36 +/- 0.05 pH units (mean +/- S.E., n = 13) within 5 min. There was a dose-dependent inhibition of pHi recovery after NH4Cl prepulse by amiloride with an IC50 of about 15 microM. Amiloride in a concentration of 1 mM almost completely abolished pHi recovery. Amiloride (1 mM) applied during steady state induced an intracellular acidification of 0.2 +/- 0.03 pH units (mean +/- S.E., n = 7) within 5 min. These findings suggest that a Na+/H+ exchange is present in SIRC rabbit corneal epithelial cells. Na+/H+ exchange seems to be the major process involved in pHi recovery in SIRC cells after an intracellular acid load. Na+/H+ exchange also plays a role in the maintenance of steady-state pHi.  相似文献   

14.
Intracellular microelectrode techniques and extracellular pH measurements were used to study the dependence of apical Na+/H+ exchange on mucosal and intracellular pH and on mucosal solution Na+ concentration ([Na+]o). When mucosal solution pH (pHo) was decreased in gallbladders bathed in Na(+)-containing solutions, aNai fell. The effect of pHo is consistent with titration of a single site with an apparent pK of 6.29. In Na(+)-depleted tissues, increasing [Na+]o from 0 to values ranging from 2.5 to 110 mM increased aNai; the relationship was well described by Michaelis-Menten kinetics. The apparent Km was 15 mM at pHo 7.5 and increased to 134 mM at pHo 6.5, without change in Vmax. In Na(+)-depleted gallbladders, elevating [Na+]o from 0 to 25 mM increased aNai and pHi and caused acidification of a poorly buffered mucosal solution upon stopping the superfusion; lowering pHo inhibited both apical Na+ entry and mucosal solution acidification. Both effects can be ascribed to titration of a single site; the apparent pK's were 7.2 and 7.4, respectively. Diethylpyrocarbonate (DEPC), a histidine-specific reagent, reduced mucosal acidification by 58 +/- 4 or 39 +/- 6% when exposure to the drug was at pHo 7.5 or 6.5, respectively. Amiloride (1 mM) did not protect against the DEPC inhibition, but reduced both apical Na+ entry and mucosal acidification by 63 +/- 5 and 65 +/- 9%, respectively. In the Na(+)-depleted tissues mean pHi was 6.7. Cells were alkalinized by exposure to mucosal solutions containing high concentrations of nicotine or methylamine. Estimates of apical Na+ entry at varying pHi, upon increasing [Na+]o from 0 to 25 mM, indicate that Na+/H+ exchange is active at pHi 7.4. Intracellular H+ stimulated apical Na+ entry by titration of more than one site (apparent pK 7.1, Hill coefficient 1.7). The results suggest that external Na+ and H+ interact with one site of the Na+/H+ exchanger and that cytoplasmic H+ acts on at least two sites. The external titratable group seems to be an imidazolium, which is apparently different from the amiloride-binding site. The dependence of Na+ entry on pHi supports the notion that the Na+/H+ exchanger is operational under normal transport conditions.  相似文献   

15.
The regulation of intracellular pH (pHi) in a renal epithelial cell line, LLC-PK1/Cl4, during re-acidification from an alkaline load was studied by 31P-NMR. Intracellular alkalinization was induced by 10 mM ammonium glucuronate or by preloading with and subsequent removal of 20% CO2; the rate of re-acidification was found to be 0.047 pH units/min and 0.053 pH units/min, respectively. This rate of re-acidification was inhibited by 83% if Cl- was removed from the extracellular medium. A similar inhibition was found in the presence of 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS) (76% inhibition) and 1 mM bumetanide (81% inhibition). No change in recovery was found after removing sodium from the extracellular medium, indicating that LLC-PK1/Cl4 cells recover from an intracellular alkaline load by a Cl-/HCO3- exchanger, which is SITS- and bumetanide-sensitive and has no requirement for sodium. In addition, the steady-state pHi in Cl4 cells was monitored by 31P-NMR. Removal of Cl- from the extracellular medium introduced an increase in pHi by 0.33 pH units, whereas 1 mM SITS and 1 mM bumetanide caused an increase in pHi by 0.14 or 0.13 pH units. In the presence of 1 mM amiloride, an inhibitor of the Na+/H+ exchanger, the steady-state pHi did not change significantly. These results indicate that at pHo 7.4 the steady-state intracellular pH of LLC-PK1/Cl4 cells strongly depends on the activity of the Cl-/HCO3- exchanger. Under the same conditions the activity of the Na+/H+ exchanger seems to be negligible.  相似文献   

16.
Kinetics and Block of Dopamine Uptake in Synaptosomes from Rat Caudate Nucleus   总被引:14,自引:10,他引:4  
The dopamine (DA) uptake system in mammalian nerve terminals was studied by measuring the unidirectional influx of tritiated DA into synaptosomes prepared from rat caudate nucleus. Two distinct time-dependent components of DA uptake were observed. The principal component was saturable with respect to DA concentration, required both external Na and Cl, and was competitively blocked by micromolar concentrations of the psychotropic agents cocaine, benztropine, nomifensine, amphetamine, and methamphetamine. This principal component of uptake has the properties expected for a carrier-mediated transport system. The second component, which accounted for about 10-30% of the DA uptake at 2 microM DA, was not saturable, and was independent of external Na, Cl, and blockers of the carrier-mediated system. The saturable, Na-dependent component had an apparent Km(DA) of about 0.5 microM. The dependence of DA uptake on external Na was sigmoid [Hill coefficient = 2; Ka(Na) = 45 mM] whereas the dependence on Cl was best described by a rectangular hyperbola [Ka(Cl) = 15 mM]. Depolarizing conditions (elevated external K) reduced the rate of DA influx. The data are consistent with a carrier-mediated DA transport mechanism in which each DA molecule entering the nerve terminal via the carrier is accompanied by two or more Na ions and one Cl ion in a rheogenic process carrying one or more net positive charges into the cell. Net, concentrative accumulation of DA inside nerve terminals may be accomplished by utilizing the Na electrochemical gradient to drive DA against its electrochemical gradient via this carrier system.  相似文献   

17.
We previously reported that, in a HCO3(-)-free medium, cytoplasmic pH (pHi) of hamster fibroblasts (CCL39) is primarily regulated by an amiloride-sensitive Na+/H+ antiport (L'Allemain, G., Paris, S., and Pouysségur, J. (1984) J. Biol. Chem. 259, 5809-5815). Here we demonstrate the existence of an additional pHi-regulating mechanism in CCL39 cells, namely a Na+-dependent HCO3-/Cl- exchange. Evidence for this system is based on 36Cl- influx studies and on pHi measurements in PS120, a CCL39-derived mutant lacking the Na+/H+ antiport activity. 36Cl- influx rate is a saturable function of external [Cl-] (apparent Km approximately equal to 7 mM), is competitively inhibited by external HCO3- (KI approximately equal to 3 mM), and by stilbene derivatives (KI approximately equal to 20 microM for 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid). Measurements of pHi recovery after an acute acid load indicate that PS120 cells possess an acid-extruding mechanism dependent on external HCO3-, which is inhibited by stilbene derivatives and requires external Na+. Since 22Na+ influx is stimulated upon addition of HCO3- to acid-loaded cells and this effect is completely abolished by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, we conclude that Na+ is co-transported with HCO3-, in exchange for intracellular Cl-. In a HCO3(-)-containing medium, this pHi-regulating mechanism appears to have two essential physiological functions for the Na+/H+ antiport-deficient mutant: protection of the cells against excessive cytoplasmic acidification and establishment of a steady-state pHi permissive for growth, at neutral or slightly acidic pHo values (6.6-7.2).  相似文献   

18.
The single-channel kinetics of extracellular Mg(2+) block was used to probe K(+) binding sites in the permeation pathway of rat recombinant NR1/NR2B NMDA receptor channels. K(+) binds to three sites: two that are external and one that is internal to the site of Mg(2+) block. The internal site is approximately 0.84 through the electric field from the extracellular surface. The equilibrium dissociation constant for this site for K(+) is 304 mM at 0 mV and with Mg(2+) in the pore. The occupancy of any one of the three sites by K(+) effectively prevents the association of extracellular Mg(2+). Occupancy of the internal site also prevents Mg(2+) permeation and increases (by approximately sevenfold) the rate constant for Mg(2+) dissociation back to the extracellular solution. Under physiological intracellular ionic conditions and at -60 mV, there is approximately 1,400-fold apparent decrease in the affinity of the channel for extracellular Mg(2+) and approximately 2-fold enhancement of the apparent voltage dependence of Mg(2+) block caused by the voltage dependence of K(+) occupancy of the external and internal sites.  相似文献   

19.
The intracellular pH-regulating mechanism of the squid axon was examined for its dependence on the concentrations of external Na+ and HCO3-, always at an external pH (pHo) of 8.0. Axons having an initial intracellular pH (pHi) of approximately 7.4 were internally dialyzed with a solution of pH 6.5 that contained 400 mM Cl- and no Na+. After pHi had fallen to approximately 6.6, dialysis was halted, thereby returning control of pHi to the axon. With external Na+ and HCO-3 present, intracellular pH (pHi) increased because of the activity of the pHi-regulating system. The acid extrusion rate (i.e., equivalent efflux of H+, JH) is the product of the pHi recovery rate, intracellular buffering power, and the volume-to-surface ratio. The [HCO3-]o dependence of JH was examined at three fixed levels of [Na+]o: 425, 212, and 106 mM. In all three cases, the apparent Jmax was approximately 19 pmol X cm-2 X s-1. However, the apparent Km (HCO3-) was approximately inversely proportional to [Na+]o, rising from 2.6 to 5.4 to 9.7 mM as [Na+]o was lowered from 425 to 212 to 106 mM, respectively. The [Na+]o dependence of JH was similarly examined at three fixed levels of [HCO3-]o: 12, 6, and 3 mM. The Jmax values did not vary significantly from those in the first series of experiments. The apparent Km (Na+), however, was approximately inversely related to [HCO3-]o, rising from 71 to 174 to 261 mM as [HCO3-]o was lowered from 12 to 6 to 3 mM, respectively. These results agree with the predictions of the ion-pair model of acid extrusion, which has external Na+ and CO3= combining to form the ion pair NaCO3-, which then exchanges for internal Cl-. When the JH data are replotted as a function of [NaCO3-]o, data from all six groups of experiments fall along the same Michaelis-Menten curve, with an apparent Km (NaCO3-) of 80 microM. The ordered and random binding of Na+ and CO3= cannot be ruled out as possible models, but are restricted in allowable combinations of rate constants.  相似文献   

20.
The kinetics of a type IIb Na(+)-coupled inorganic phosphate (Pi) cotransporter (NaPi-IIb) cloned from mouse small intestine were studied using the two-electrode voltage clamp applied to Xenopus oocytes. In the steady state, mouse NaPi-IIb showed a curvilinear I-V relationship, with rate-limiting behavior only for depolarizing potentials. The Pi dose dependence was Michaelian, with an apparent affinity constant for Pi (Km(pi)) of 10 +/- 1 microM: at -60 mV. Unlike for rat NaPi-IIa, (Km(pi)) increased with membrane hyperpolarization, as reported for human NaPi-IIa, flounder NaPi-IIb and zebrafish NaPi-IIb2. The apparent affinity constant for Na(+) (Km(na)) was 23 +/- 1 mM: at -60 mV, and the Na(+) activation was cooperative with a Hill coefficient of approximately 2. Pre-steady-state currents were documented in the absence of Pi and showed a strong dependence on external Na(+). The hyperpolarizing shift of the charge distribution midpoint potential was 65 mV/log[Na]. Approximately half the moveable charge was attributable to the empty carrier. A comparison of the voltage dependence of steady-state Pi-induced current and pre-steady-state charge movement indicated that for -120 mV 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号