首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Serological characterization of threeK-S interval recombinant strains, TBR2 (H-2 at2 ), TBR3 (H-2 at3 ) and AIR1 (H-2 a2 ) was performed using anti-H-2, Ia, Ss and Slp antisera. The data presented here reveal that the crossover events in both TBR2 and TBR3 occurred between theI-A andI-E subregions. In both cases, theH-2K andI-A subregions were derived from theH-2 t1 chromosome, while theI-E, S andH-2D regions were derived from theH-2 b chromosome (K s A k E b S b D b ). TheH-2 a2 chromosome resulted from a crossover event between theH-2 a1 andH-2 i9 chromosomes. Ia and Ss typing of AIR1 suggested that theK toI-E regions originated fromH-2 a1 and theS andD regions originated fromH-2 i9 (K k A k E k S b D d ).  相似文献   

2.
Four cases of intra-H-2 recombination were detected during serological screening of 1066 backcross animals produced fromH-2b/H-2t1 heterozygous mice. Three of the intra-H-2 recombinants received theK region fromH-2t1 and theD region from theH-2b parental chromosome. The remaining recombinant received theK region from theH-2b parental chromosome and theD region fromH-2t1. Three of the four recombinants have been developed into inbred lines TBR2, TBR3, and TBR4 and were assigned the haplotype designations at2, at3, and at4. Ss typing revealed that TBR2 and TBR3 originated fromK- S interval crossover events, while the remaining two recombinants resulted from crossing over in theS- D interval.  相似文献   

3.
The embryonic lethal mutation in the t w5 haplotype is known to map near the H-2K region of the mouse major histocompatibility complex. Additional data obtained by classical genetic methods demonstrate that the t w5 lethal gene is effectively inseparable from H-2K. No recombinants were found between H-2K and t w5 in a sample representing over 1200 mice. On a statistical basis t w5 must be less than 250 kb from the H-2K gene. In the course of these mapping studies we obtained a set of 11 intra-H-2 recombinants. We have analyzed these and three others derived from another experiment to define their breakpoints as precisely as possible. Southern blot analysis with molecular probes to the D, S, I, and K regions of the H-2 complex defines seven recombinations between the D and S regions, two between S and I, none within the I region, and five events between I and K. The last category was studied in finer detail by developing unique copy probes to the I-K boundary region. Two of the five events occurred within probably less than 6 kb of each other: these two recombinants define the centromeric limit of the location of the t w5 gene within the H-2K region. The other three I-K recombinants occurred in at least two other nearby locations. Altogether at least three, and probably all five I-K recombinants fall within a 45 kb recombinational hot spot recently identified in Mus musculus castaneus.  相似文献   

4.
5.
Evolutionary relationships between the t and H-2 haplotypes in the house mouse   总被引:10,自引:0,他引:10  
Thirty-three mouse strains carrying t haplotypes were typed with a large battery of monoclonal and polyclonal antibodies specific for class I and class II antigens controlled by the H-2 complex. Among these t haplotypes were representatives of the six complementation groups defined previously and of eight new groups defined by us recently. The typing resulted in the identification of the H-2 haplotypes of these strains and of their alleles at K, D, A, and E loci. Nineteen of the 33 strains proved to carry a mutation that prevents the expression of the E molecule on the cell surface. All H-2 haplotypes of the t strains are related in terms of sharing certain antigenic determinants, most of which have not, as yet, been found in inbred strains or in wild mice that do not carry t haplotypes. According to the degree of serological relatedness, the haplotypes can be arranged into a pedigree presumably reflecting the evolutionary history of the t chromosomes. The ancestral t chromosome from which the 33 chromosomes derive was presumably present in the mouse population before the divergence of the Mus musculus and Mus domesticus species. The E° mutation, too, is apparently ancient because it occurs in different branches of the evolutionary tree.  相似文献   

6.
The serology, immunochemistry, and genetics of the product(s) of a third H-2 locus, H-2L (previously designated D') have been studied by using an antiserum raised in BALB/c H-2db mutant mice against tissues from the wild type strain, BALB/c. Genetic mapping studies and sequential immunoprecipitation experiments both indicate that this antiserum reacts specifically with L molecules. These results imply that an H-2L product is antigenically undetectable in BALB/c-H-2db mice and that the lesion in this mutant is confined to the H-2L and not the H-2D locus. Two new specificities, H-2.64 and H-2.65, are defined by the reactivity of anti-L serum on allogeneic cells, and the strain distribution of these specificities suggests the existence of at least three H-2L alleles. This third H-2 locls is therefore polymorphic and in view of this and other similarities to the H-2K and H-2D loci, it must be considered in any evolutionary models dealing with the origin of multiple subloci of the major histocompatibility complex.  相似文献   

7.
8.
9.
10.
To examine genetic exchange between t haplotypes and their wild-type homologs, four previously identified mouse Chromosome (Chr) 17 variants termed mosaic haplotypes were analyzed in detail. Three of these haplotypes-one from a Mus musculus population in Bulgaria, one from a Mus domesticus population in Chile, and one from a M. domesticus population in Germany-display properties indicative of the t complex. All four haplotypes are exceptional because they are characterized by the presence of a few wild-type DNA markers in the distal inversion [In(17)4] of a t haplotype chromosome: thus, they are classified as mosaic t haplotypes. The mosaic pattern for each haplotype is distinct, however. We compared the mosaic haplotypes with each other, and with several well-characterized laboratory t haplotypes, by analyzing several DNA markers in the In(17)4 region of the t complex, where all of the mosaicism occurs. We used a combination of high-resolution restriction mapping, DNA sequencing, and analysis of new DNA markers to classify the haplotypes. This analysis shows that segmental exchange, either by gene conversion or double crossing-over, has occurred at molecular markers in the vicinity of a gene, Dnahc8, that is a candidate for the t complex distorter locus Tcd2. While it is unclear whether segmental exchanges have included the Tcd2 gene, it is apparent that several independent recombination events have occurred in In(17)4 during the recent evolution of t haplotypes.  相似文献   

11.
Mouse t haplotypes contain at least one inversion, which encompasses the major histocompatibility complex, relative to their wild-type counterparts. A DNA probe for a single copy sequence which flanks the H-2K region in inbred strains was found to have undergone further rearrangements in the t haplotypes. In most t haplotypes, this sequence is duplicated at a distant site, and the two regions show 1 % recombination. The length of homology shared by the two sites is likely to be at least 10–15 kb. Three different alleles, as defined by restriction fragment length polymorphisms, were found for each of the two sites among different t haplotypes. These may reveal evolutionary relationships among these chromosomes.  相似文献   

12.
13.
14.
Naturally occurring t haplotypes are chromosome 17 polymorphisms that suppress genetic recombination in t/+ heterozygotes over a long distance that includes the H-2 complex. There is strong linkage disequilibrium between t haplotypes and H-2 haplotypes; over 20 independently isolated t chromosomes representing eight different complementation groups share only four H-2 haplotypes. Thus t haplotypes and their associated H-2 loci are inherited en bloc as a “supergene” complex, whose frequency is driven in wild mouse populations by their high transmission from male t heterozygotes. This phenomenon must therefore serve as an important regulator of H-2 polymorphisms. Genes within the region of recombination suppression in t haplotypes have been mapped by crossing-over that occurs readily between two different t haplo-types situated in trans, and by this means we show here that the H-2 complex occupies an anomalous position in t haplotypes, mapping proximal to the locus of tf closely flanked by t-lethal mutations.  相似文献   

15.
Comparison of the rate of synonymous and nonsynonymous nucleotide substitutions suggests that certain regions of the functional H-2 genes, which are part of the mouse major histocompatibility complex (Mhc), are under strong positive selection pressure. Thus far, however, little evidence has been provided for the existence of such pressure in natural mouse populations. We have, therefore, initiated experiments designed to test the hypothesis of positive selection acting on H-2 loci. The experiments are being carried out on two natural mouse populations in Jerusalem, Israel. One population occupies a space of about 100 m2 in a chicken coop, the other lives in a nearby field in which mouse stations providing food and shelter have been set up. Extensive typing of these two populations revealed the presence of only four H-2 haplotypes. Mice in the two populations breed continually all year around, yet population size varies seasonally, with population maxima in winter and minima in summer. The population in the chicken coop contains a relatively stable nucleus which may be organized in demes with an excess of females over males and limited territorial mobility. The rest of the mice stay in the population for a short time only and then either die or emigrate. The field population is smaller and more loosely organized than the chicken-coop population, with demes probably forming only during population maxima. For the rest of the time breeding in this population is probably panmictic. At a population minimum in the summer of 1984, H-2 homozygotes happened to predominate over heterozygotes. This situation, however, lasted for a short time only and thereafter there was a continuous, statistically highly significant increase in the proportion of H-2 heterozygotes of one or two types. The increase occurred in both populations but was more apparent in the chicken-coop population. This observation provides the first experimental evidence that heterozygous advantage might be one of the mechanisms maintaining high H-2 polymorphism in natural populations of the house mouse.  相似文献   

16.
Distinct functions of MLH3 at recombination hot spots in the mouse   总被引:2,自引:0,他引:2       下载免费PDF全文
Svetlanov A  Baudat F  Cohen PE  de Massy B 《Genetics》2008,178(4):1937-1945
The four mammalian MutL homologs (MLH1, MLH3, PMS1, and PMS2) participate in a variety of events, including postreplicative DNA repair, prevention of homeologous recombination, and crossover formation during meiosis. In this latter role, MLH1-MLH3 heterodimers predominate and are essential for prophase I progression. Previous studies demonstrated that mice lacking Mlh1 exhibit a 90% reduction in crossing over at the Psmb9 hot spot while noncrossovers, which do not result in exchange of flanking markers but arise from the same double-strand break event, are unaffected. Using a PCR-based strategy that allows for detailed analysis of crossovers and noncrossovers, we show here that Mlh3(-/-) exhibit a 85-94% reduction in the number of crossovers at the Psmb9 hot spot. Most of the remaining crossovers in Mlh3(-/-) meiocytes represent simple exchanges similar to those seen in wild-type mice, with a small fraction (6%) representing complex events that can extend far from the initiation zone. Interestingly, we detect an increase of noncrossovers in Mlh3(-/-) spermatocytes. These results suggest that MLH3 functions predominantly with MLH1 to promote crossovers, while noncrossover events do not require these activities. Furthermore, these results indicate that approximately 10% of crossovers in the mouse are independent of MLH3, suggesting the existence of alternative crossover pathways in mammals.  相似文献   

17.
Two new recombinant H-2 haplotypes have been detected and established as congenic resistant lines on the C57BL/10 background. On the basis of serologic testing and immunoprecipitation analyses, the sublocus composition of the first recombinant haplotype, H-2bq1 (B10.MBR) has been shown to be KbIkDq, and that of the second recombinant, H-2sq3 (B10.SQR) to be KsIsSsDq. The occurrence of the Kb I-Ak juxtaposition after a recombination between H-2b and H-2m contrasts with the almost uniform failure to observe H-2b/H-2k recombinants in previous studies. This finding and the occurrence of a second recombination event involving the same chromosome soon after the first in our studies may imply that recombination within H-2 is not generally a random event. The B10.MBR line has proved useful in the production of specific anti-H-2Kb and anti-I-Ab antisera previously quite difficult to obtain contamination by anti-Ia or anti-H-2K antibodies, respectively.  相似文献   

18.
In vitro primary syngeneic sensitization on monolayers of thyroid epithelial cells was performed with 21 inbred strains of mice representing 11 original H-2 haplotypes. Significant differences in the proliferative responses, assessed by thymidine uptake, were found to be related to the major histocompatibility complex haplotype. This result was further confirmed using congenic resistant strains of mice. In comparison with the experimental autoimmune thyroiditis induced by syngeneic thyroglobulin and adjuvant, primary syngeneic sensitization on monolayers of thyroid epithelial cells appeared to be under the same genetic control (H-2k strains being good responders, while H-2b mice are poor responders).  相似文献   

19.
The numbers of MHC class I molecules expressed by spleen cells from various mouse strains were determined by using MHC-specific monoclonal antibodies and a radioactive binding assay. Although small differences were found to exist in some cases, our general conclusion is that different mice of the same strain, congenic mice of different haplotypes, and syngeneic mice of varying background all express similar numbers of class I antigens. B10.A mice (8 to 10 wk old), for example, express 5.3 X 10(4) Kk molecules/cell, 5.4 X 10(4) Dd molecules/cell, and 2.2 X 10(4) Ld molecules/cell. Some of the differences observed in class I antigen expression included: 1) the level of Kk expression increased to a small but significant extent with age in B10.A mice; 2) female B10.A mice expressed slightly higher amounts of Kk than male mice; and 3) B10.A(2R) and B10.A(4R) recombinant strains expressed elevated levels of K-end antigens and slightly decreased levels of D-end antigens when compared with the unrecombinant B10.A strain. In several strains, F1 mice express approximately 50% as many copies of each parental antigen as do the homozygous parents. B10 mice, which are negative for the L antigen, nevertheless express the same total number of D-end molecules as do B10.A mice. The data suggest that the levels of expression of MHC class I molecules are controlled by at least two factors: gene dosage and another factor(s) that gives rise to the small variations in class I antigen expression seen with age, sex, and strain, and to the low expression of Ld relative to Dd and Kk.  相似文献   

20.
We generated nucleotide sequences for H-2Kk and H-2Dk from the C3H mouse, as well as for a genomic clone of H-2Db, in order to conduct an evolutionary analysis of the H-2 genes from three haplotypes, k, d, and b. H-2Kk from both the C3H and AKR strains, H-2Kd, H-2Kb, H-2Dk, H-2Ld, H-2Dd, H-2Db, and H-2Dp DNA sequences were aligned, and the alignments used to construct phylogenetic trees inferring the evolutionary relationships among the nine genes by two independent methods. Both approaches yielded trees with similar topologies. In addition, the sequence alignments revealed patterns of nucleotide substitutions which implicate both point mutation and recombination in the divergence of the H-2 genes. Future considerations for evolutionary analysis of class I genes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号