首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Goss R 《Planta》2003,217(5):801-812
The substrate specificity of the enzyme violaxanthin de-epoxidase (VDE) of the primitive green alga Mantoniella squamata (Prasinophyceae) was tested in in vitro enzyme assays employing the following xanthophyll mono-epoxides: antheraxanthin (Ax), diadinoxanthin (Ddx), lutein-epoxide (LE), cryptoxanthin-epoxide (CxE), 9- cis neoxanthin (cNx), all- trans neoxanthin (Nx), and xanthophyll di-epoxides: 9- cis violaxanthin (cVx), all- trans violaxanthin (Vx), cryptoxanthin-di-epoxide (CxDE). The data presented in this study show that the VDE of M. squamata not only exhibits a low affinity for the mono-epoxide Ax, as has been reported by R. Frommolt et al. (2001, Planta 213:446-456), but has a reduced substrate affinity for the mono-epoxides Ddx, LE, CxE, and Nx as well. On the other hand, xanthophylls with a second epoxy-group (Vx, CxDE) can be de-epoxidized with a higher efficiency. Such a preference for xanthophyll di-epoxides cannot be observed for the higher-plant VDE, where, in general, no marked differences in the pigment de-epoxidation rates between xanthophyll mono- and di-epoxides are visible. Despite this substantial difference between the VDEs of M. squamata and S. oleracea there are also features common to both enzymes. Neither VDE is able to convert xanthophylls with a 9- cis configuration in the acyclic polyene chain and both rely on substrates in the all- trans configuration. Both enzymes furthermore exhibit a dependence of enzyme activity on the polarity of the substrate. Highly polar (Nx) or non-polar (CxE) xanthophylls are de-epoxidized with greatly reduced rates in comparison to substrates with an intermediate polarity (Vx, Ax, LE, Ddx). This dependence on substrate polarity becomes more obvious when the higher-plant VDE is examined, as the substrate affinity of the VDE of M. squamata is more strongly influenced by the existence or absence of a second epoxy-group. In summary, the data presented in this study underline the fact that different VDEs, although in general catalyzing the same reaction sequence, are functionally diverse.  相似文献   

2.
The xanthophyll cycle (Xc), which involves violaxanthin de-epoxidase (VDE) and the zeaxanthin epoxidase (ZEP), is one of the most rapid and efficient responses of plant and algae to high irradiance. High light intensity can activate VDE to convert violaxanthin (Vx) to zeaxanthin (Zx) via antheraxanthin (Ax). However, it remains unclear whether VDE remains active under low light or dark conditions when there is no significant accumulation of Ax and Zx, and if so, how the ΔpH required for activation of VDE is built. In this study, we used salicylaldoxime (SA) to inhibit ZEP activity in the intertidal macro-algae Ulva sp. (Ulvales, Chlorophyta) and then characterized VDE under low light and dark conditions with various metabolic inhibitors. With inhibition of ZEP by SA, VDE remained active under low light and dark conditions, as indicated by large accumulations of Ax and Zx at the expense of Vx. When PSII-mediated linear electron transport systems were completely inhibited by SA and DCMU, alternative electron transport systems (i.e., cyclic electron transport and chlororespiration) could maintain VDE activity. Furthermore, accumulations of Ax and Zx decreased significantly when SA, DCMU, or DBMIB together with an inhibitor of chlororespiration (i.e., propyl gallate (PG)) were applied to Ulva sp. This result suggests that chlororespiration not only participates in the build-up of the necessary ΔpH, but that it also possibly influences VDE activity indirectly by diminishing the oxygen level in the chloroplast.  相似文献   

3.
In the present study, we investigated the epoxidation reaction of the violaxanthin (Vx) cycle in intact cells of Chlorella vulgaris. Our results show that the overall epoxidation is slightly slower in darkness compared to the epoxidation during high light (HL) illumination. The calculation of the rate constants of the two epoxidation steps revealed that, for both conditions, the first epoxidation step from zeaxanthin (Zx) to antheraxanthin (Ax) is faster than the second epoxidation step from Ax to Vx. However, the most noteworthy result of our present study is that Ax, which is transiently formed during the epoxidation reaction, participates in non-photochemical quenching of chlorophyll fluorescence (NPQ). A correlation between NPQ and the de-epoxidized xanthophyll cycle pigments during the time-course of the epoxidation reaction can only be achieved when NPQ is plotted versus the sum of Zx and Ax. The accumulation of significant amounts of Ax during the epoxidation reaction further indicates that Ax-dependent quenching proceeds with a similar efficiency compared to the Zx-mediated NPQ. As the xanthophyll-dependent NPQ relies on the presence of de-epoxidized xanthophylls in the PS II antenna, Ax-dependent NPQ is only possible under the assumption that Ax rebinds to the light-harvesting complex (LHC) II during the epoxidation reaction.  相似文献   

4.
The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat. The function of Zx in photosystem I is still unclear. In this work we investigated the de-epoxidation characteristics of light-harvesting complex proteins of photosystem I (LHCI) under in vivo and in vitro conditions. Recombinant LHCI (Lhcal-4) proteins were reconstituted with Vx and lutein, and the convertibility of Vx was studied in an in vitro assay using partially purified Vx de-epoxidase isolated from spinach thylakoids. All four LHCI proteins exhibited unique de-epoxidation characteristics. An almost complete Vx conversion to Zx was observed only in Lhca3, whereas Zx formation in the other LHCI proteins decreased in the order Lhca4 > Lhca1 > Lhca2. Most likely, these differences in Vx de-epoxidation were related to the different accessibility of the respective carotenoid binding sites in the distinct antenna proteins. The results indicate that Vx bound to site V1 and N1 is easily accessible for de-epoxidation, whereas Vx bound to L2 is only partially and/or with the slower kinetics convertible to Zx. The de-epoxidation properties determined for the monomeric recombinant proteins were consistent with those obtained for isolated native LHCI-730 and LHCI-680 in the same in vitro assay and the de-epoxidation state found under in vivo conditions in native LHCIs.  相似文献   

5.
Zeaxanthin epoxidase (ZE) is an enzyme operating in the violaxanthin cycle, which is involved in photoprotective mechanisms. In this work model systems to study zeaxanthin (Zx) epoxidation were developed. Two assay systems are presented in which epoxidation of Zx was observed. In these assays two mutants of Arabidopsis thaliana which have active only one of the two xanthophyll cycle enzymes were used. The npq1 mutant possesses an active ZE and is thus able to convert Zx to violaxanthin (Vx) but the violaxanthin de-epoxidase (VDE) is inactive, so that Vx cannot be converted to Zx. The other mutant, npq2, possesses an active VDE and can convert exogenous Vx to Zx under strong light conditions but reverse reaction is not possible. The first assay containing thylakoids from npq1 and npq2 mutants of A. thaliana gave positive results and high efficiency of epoxidation reaction was observed. The amount of Zx was reduced by 25%. To optimize high efficiency of epoxidation reaction additional factors facilitating both fusion of the two types of thylakoids and incorporation of Zx to their membranes were also studied. The second kind of assay contained npq1 mutant thylakoids of A. thaliana supplemented with exogenous Zx and monogalactosyldiacylglycerol (MGDG). Experiments with different proportions of Zx and MGDG showed that their optimal ratio is 1:60. In such system, due to epoxidation, the amount of Zx was reduced by 38% of its initial level. The in vitro systems of Zx epoxidation described in this paper enable analysis some properties of the ZE without necessity of its isolation.  相似文献   

6.
In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx.  相似文献   

7.
In higher plants, the de-epoxidation of violaxanthin (Vx) to antheraxanthin and zeaxanthin is required for the pH-dependent dissipation of excess light energy as heat and by that process plays an important role in the protection against photo-oxidative damage. The de-epoxidation reaction was investigated in an in vitro system using reconstituted light-harvesting complex II (LHCII) and a thylakoid raw extract enriched in the enzyme Vx de-epoxidase. Reconstitution of LHCII with varying carotenoids was performed to replace lutein and/or neoxanthin, which are bound to the native complex, by Vx. Recombinant LHCII containing either 2 lutein and 1 Vx or 1.6 Vx and 1.1 neoxanthin or 2.8 Vx per monomer were studied. Vx de-epoxidation was inducible for all complexes after the addition of Vx de-epoxidase but to different extents and with different kinetics in each complex. Analysis of the kinetics indicated that the three possible Vx binding sites have at least two, and perhaps three, specific rate constants for de-epoxidation. In particular, Vx bound to one of the two lutein binding sites of the native complex, most likely L1, was not at all or only at a slow rate convertible to Zx. In reisolated LHCII, newly formed Zx almost stoichiometrically replaced the transformed Vx, indicating that LHCII and Vx de-epoxidase stayed in close contact during the de-epoxidation reactions and that no release of carotenoids occurred.  相似文献   

8.
Based on our recent findings that in the diatom Phaeodactylum tricornutum, chlororespiration in periods of prolonged darkness leads to the accumulation of diatoxanthin (DT), we have elaborated in detail the interdependence between the chlororespiratory proton gradient and the activation of diadinoxanthin de-epoxidase (DDE). The data clearly demonstrates that activation of DDE in Phaeodactylum occurs at higher pH-values compared to activation of violaxanthin de-epoxidase (VDE) in higher plants. In thylakoid membranes as well as in enzyme assays with isolated DDE, the de-epoxidation of diadinoxanthin (DD) is efficiently catalyzed at pH 7.2. In comparison, de-epoxidation of violaxanthin (Vx) in spinach thylakoids is observed below pH 6.5. Phaeodactylum thylakoids isolated from high light grown cells, that also contain the pigments of the violaxanthin cycle, show violaxanthin de-epoxidation at higher pH-values, thus suggesting that in Phaeodactylum, one de-epoxidase converts both diadinoxanthin and violaxanthin. We conclude that the activation of DDE at higher pH-values can explain how the low rates of chlororespiratory electron flow, that lead to the build-up of a rather small proton gradient, can induce the observed accumulation of diatoxanthin in the dark. Furthermore, we show that dark activation of diadinoxanthin de-epoxidation is not restricted to Phaeodactylum tricornutum but was also found in another diatom, Cyclotella meneghiana  相似文献   

9.
When the leaf segments of rice (Oryza sativa L.) plants were subjected to chilling in the moderate light, zeaxanthin (Zx) formation was faster in a chilling-tolerant Dongjin-byeo (DJ) than in a chilling-sensitive IR841. Although the rate of Zx formation was accelerated by the treatment of 5 mM salicylaldoxime, an inhibitor of Zx epoxidase (ZE), there was almost no changes in DJ. A similar result was observed when leaf segments were treated with 50 mM sodium fluoride, a potent inhibitor of chloroplast phosphatase. The slow Zx epoxidation in IR841 during light-chilling was confirmed in leaf segments treated with 10 mM dithiothreitol, an inhibitor of violaxanthin de-epoxidase (VDE). However, the differences between the two cultivars were not observed at 25oC. These results suggest that compared with IR841 the higher rate of Zx formation in DJ is not due to the higher VDE activity in DJ but is due to more rapid down-regulation of ZE in DJ, possibly by its phosphorylation. Compared with DJ, IR841 accumulated more superoxide with PSI inactivation during light-chilling, which eliminates the possibility of increased ZE down-regulation in DJ leaves by photo-oxidation. In vitro study with alkaline phosphatase supports the idea of down-regulation of ZE by phosphorylation under light-chilling condition. We propose that this reversible down-regulation of Zx epoxidation possibly by the phosphorylation of ZE is an important regulation mechanism of violaxanthin cycle that confers chilling tolerance of a rice cultivar under chilling stress in the light with moderate intensities.  相似文献   

10.
11.
In this study, we have examined the influence of different lipids on the solubility of the xanthophyll cycle pigments diadinoxanthin (Ddx) and violaxanthin (Vx) and on the efficiency of Ddx and Vx de-epoxidation by the enzymes Vx de-epoxidase (VDE) from wheat and Ddx de-epoxidase (DDE) from the diatom Cyclotella meneghiniana, respectively. Our results show that the lipids MGDG and PE are able to solubilize both xanthophyll cycle pigments in an aqueous medium. Substrate solubilization is essential for de-epoxidase activity, because in the absence of MGDG or PE Ddx and Vx are present in an aggregated form, with limited accessibility for DDE and VDE. Our results also show that the hexagonal structure-forming lipids MGDG and PE are able to solubilize Ddx and Vx at much lower lipid concentrations than bilayer-forming lipids DGDG and PC. We furthermore found that, in the presence of MGDG or PE, Ddx is much more solubilizable than Vx. This substantial difference in Ddx and Vx solubility directly affects the respective de-epoxidation reactions. Ddx de-epoxidation by the diatom DDE is saturated at much lower MGDG or PE concentrations than Vx de-epoxidation by the higher-plant VDE. Another important result of our study is that bilayer-forming lipids DGDG and PC are not able to induce efficient xanthophyll de-epoxidation. Even in the presence of high concentrations of DGDG or PC, where Ddx and Vx are completely solubilized, a strongly inhibited Ddx de-epoxidation is observed, while Vx de-epoxidation by VDE is completely absent. This indicates that the inverted hexagonal phase domains provided by lipid MGDG or PE are essential for de-epoxidase activity. We conclude that in the natural thylakoid membrane MGDG serves to solubilize the xanthophyll cycle pigments and furthermore provides inverted hexagonal structures associated with the membrane bilayer, which are essential for efficient xanthophyll de-epoxidase activity.  相似文献   

12.
13.
Yamamoto HY 《Planta》2006,224(3):719-724
Monogalactosyldiacylglyceride (MGDG) and digalactosyldiacylglyceride (DGDG) are the major membrane lipids of chloroplasts. The question of the specialized functions of these unique lipids has received limited attention. One function is to support violaxanthin de-epoxidase (VDE) activity, an enzyme of the violaxanthin cycle. To understand better the properties of this system, the effects of galactolipids and phosphatidylcholines on VDE activity were examined by two independent methods. The results show that the micelle-forming lipid (MGDG) and bilayer forming lipids (DGDG and phosphatidylcholines) support VDE activity differently. MGDG supported rapid and complete de-epoxidation starting at a threshold lipid concentration (10 μM) coincident with complete solubilization of violaxanthin. In contrast, DGDG supported slow but nevertheless complete to nearly complete de-epoxidation at a lower lipid concentration (6.7 μM) that did not completely solubilize violaxanthin. Phosphotidylcholines showed similar effects as DGDG except that de-epoxidation was incomplete. Since VDE requires solubilized violaxanthin, aggregated violaxanthin in DGDG at low concentration must become solubilized as de-epoxidation proceeds. High lipid concentrations had lower activity possibly due to formation of multilayered structures (liposomes) that restrict accessibility of violaxanthin to VDE. MGDG micelles do not present such restrictions. The results indicate VDE operates throughout the lipid phase of the single bilayer thylakoid membrane and is not limited to putative MGDG micelle domains. Additionally, the results also explain the differential partitioning of violaxanthin between the envelope and thylakoid as due to the relative solubilities of violaxanthin and zeaxanthin in MGDG, DGDG and phospholipids. The violaxanthin cycle is hypothesized to be a linked system of the thylakoid and envelope for signal transduction of light stress.  相似文献   

14.
In the present study we have examined the effects of grana stacking on the rate of violaxanthin (Vx) de-epoxidation and the extent of non-photochemical quenching of chlorophyll a fluorescence (NPQ) in isolated thylakoid membranes of spinach. Our results show that partial and complete unstacking of thylakoids in reaction media devoid of sorbitol and MgCl2 did not significantly affect the efficiency of Vx de-epoxidation. Under high light (HL) illumination we found slightly higher values of Vx conversion in stacked membranes, whereas in thylakoids incubated at pH 5.2 in the dark, representing the pH-optimum of Vx de-epoxidase, de-epoxidation was slightly increased in the unstacked membranes. Partial and complete unstacking of grana membranes, however, had a dramatic effect on the HL-induced NPQ. High NPQ values could only be achieved in stacked thylakoid membranes in the presence of MgCl2 and sorbitol. In unstacked membranes NPQ was drastically decreased. The effects of grana stacking on the xanthophyll cycle-dependent component of NPQ were even more pronounced, and complete unstacking of thylakoid membranes led to a total loss of this quenching component. Our data imply that grana stacking in the thylakoid membranes of higher plants is of high importance for the process of overall NPQ. For the xanthophyll cycle-dependent component of NPQ it may even be essential. Possible effects of grana stacking on the mechanism of zeaxanthin-dependent quenching are discussed.  相似文献   

15.
Photosynthetic organisms need protection against excessive light. By using non‐photochemical quenching, where the excess light is converted into heat, the organism can survive at higher light intensities. This process is partly initiated by the formation of zeaxanthin, which is achieved by the de‐epoxidation of violaxanthin and antheraxanthin to zeaxanthin. This reaction is catalyzed by violaxanthin de‐epoxidase (VDE). VDE consists of three domains of which the central lipocalin‐like domain has been the most characterized. By truncating the domains surrounding the lipocalin‐like domain, we show that VDE activity is possible without the C‐terminal domain but not without the N‐terminal domain. The N‐terminal domain shows no VDE activity by itself but when separately expressed domains are mixed, VDE activity is possible. This shows that these domains can be folded separately and could therefore be studied separately. An increase of the hydrodynamic radius of wild‐type VDE was observed when pH was lowered toward the pH required for activity, consistent with a pH‐dependent oligomerization. The C‐terminally truncated VDE did not show such an oligomerization, was relatively more active at higher pH but did not alter the KM for ascorbate. Circular dichroism measurements revealed the presence of α‐helical structure in both the N‐ and C‐terminal domains. By measuring the initial formation of the product, VDE was found to convert a large number of violaxanthin molecules to antheraxanthin before producing any zeaxanthin, favoring a model where violaxanthin is bound non‐symmetrically in VDE.  相似文献   

16.
Macko S  Wehner A  Jahns P 《Planta》2002,216(2):309-314
The enzyme violaxanthin de-epoxidase (VxDE) is localized in the thylakoid lumen and catalyzes the de-epoxidation of membrane-bound violaxanthin (Vx) to zeaxanthin. De-epoxidation from the opposite, stroma side of the membrane has been investigated in the npq1 mutant from Arabidopsis thaliana (L.) Heynh. - which lacks VxDE - by adding partially purified VxDE from spinach thylakoids. The accessibility of Vx to the exogenously added enzyme (exoVxDE) and the kinetics of Vx conversion by the exoVxDE in thylakoids from npq1 plants were very similar to the characteristics of Vx conversion by the endogenous enzyme (endoVxDE) in thylakoids from wild-type plants. However, the conversion of Vx by exoVxDE was clearly retarded at lower temperatures when compared with the reaction catalyzed by endoVxDE. Since the exoVxDE - in contrast to the endoVxDE - has no access to the stacked regions of the membrane, where the xanthophylls bound to photosystem II are located, these results support the assumption of pronounced diffusion of xanthophylls within the thylakoid membrane.  相似文献   

17.
This paper describes violaxanthin de-epoxidation in model lipid bilayers. Unilamellar egg yolk phosphatidylcholine (PtdCho) vesicles supplemented with monogalactosyldiacylglycerol were found to be a suitable system for studying this reaction. Such a system resembles more the native thylakoid membrane and offers better possibilities for studying kinetics and factors controlling de-epoxidation of violaxanthin than a system composed only ofmonogalactosyldiacylglycerol and is commonly used in xanthophyll cycle studies. The activity of violaxanthin de-epoxidase (VDE) strongly depended on the ratio of monogalactosyldiacylglycerol to PtdCho in liposomes. The mathematical model of violaxanthin de-epoxidation was applied to calculate the probability of violaxanthin to zeaxanthin conversion at different phases of de-epoxidation reactions. Measurements of deepoxidation rate and EPR-spin label study at different temperatures revealed that dynamic properties of the membrane are important factors that might control conversion of violaxanthin to antheraxanthin. A model of the molecular mechanism of violaxanthin de-epoxidation where the reversed hexagonal structures (mainly created by monogalactosyldiacylglycerol) are assumed to be required for violaxanthin conversion to zeaxanthin is proposed. The presence of monogalactosyldiacylglycerol reversed hexagonal phase was detected in the PtdCho/monogalactosyldiacylglycerol liposomes membrane by 31P-NMR studies. The availability of violaxanthin for de-epoxidation is a diffusion-dependent process controlled by membrane fluidity. The significance of the presented results for understanding themechanism of violaxanthin de-epoxidation in native thylakoid membranes is discussed.  相似文献   

18.
The dynamics of the xanthophyll cycle relative to non-photochemical quenching (NPQ) were examined in tobacco plants overexpressing violaxanthin de-epoxidase (VDE), PsbS and PsbS+VDE for effects on NPQ and violaxanthin (V) de-epoxidation over a range of light intensities. Induction of de-epoxidation and NPQ increased in overexpressed VDE and PsbS plants, respectively. Surprisingly, under low light, overexpressing PsbS enhanced de-epoxidation in addition to NPQ. The effect was hypothesized as due to PsbS binding zeaxanthin (Z) or inducing the binding of Z within the quenching complex, thus shifting the equilibrium toward higher de-epoxidation states. Studies in model systems show that Z can stereospecifically inhibit VDE activity against violaxanthin. This effect, observed under conditions of limiting lipid concentration, was interpreted as product feedback inhibition. These results support the hypothesis that the capacity of the thylakoid lipid phase for xanthophylls is limited and modulates xanthophyll-cycle activity, in conjunction with the release of V and binding of Z by pigment-binding proteins. These modulating factors are incorporated into a lipid-matrix model that has elements of a signal transduction system wherein the light-generated protons are the signal, VDE the signal receptor, Z the secondary messenger, the lipid phase the transduction network, and Z-binding proteins the targets.  相似文献   

19.
Violaxanthin de-epoxidase (VDE) catalyzes the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in the xanthophyll cycle. Tobacco was transformed with an antisense VDE construct under control of the cauliflower mosaic virus 35S promoter to determine the effect of reduced levels of VDE on plant growth. Screening of 40 independent transformants revealed 18 antisense lines with reduced levels of VDE activity with two in particular (TAS32 and TAS39) having greater than 95% reduction in VDE activity. Northern analysis demonstrated that these transformants had greatly suppressed levels of VDE mRNA. De-epoxidation of violaxanthin was inhibited to such an extent that no zeaxanthin and only very low levels of antheraxanthin could be detected after exposure of leaves to high light (2000 μmol m−2 s−1 for 20 min) with no observable effect on levels of other carotenoids and chlorophyll. Non-photochemical quenching was greatly reduced in the antisense VDE tobacco, demonstrating that a significant level of the non-photochemical quenching in tobacco requires de-epoxidation of violaxanthin. Although the antisense plants demonstrated a greatly impaired de-epoxidation of violaxanthin, no effect on plant growth or photosynthetic rate was found when plants were grown at a photon flux density of 500 or 1000 μmol m−2 s−1 under controlled growth conditions as compared to wild-type tobacco. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
In this study we present evidence that one of two reactions of the xanthophyll cycle, violaxanthin de-epoxidation, may occur in unilamellar egg phosphatidylcholine vesicles supplemented with monogalactosyldiacylglycerol (MGDG). Activity of violaxanthin de-epoxidase (VDE) in this system was found to be strongly dependent on the content of MGDG in the membrane; however, only to a level of 30 mol%. Above this concentration the rate of violaxanthin de-epoxidation decreased. The effect of individual thylakoid lipids on VDE-independent violaxanthin transformation was also investigated and unspecific effects of phosphatidylglycerol and sulphoquinovosyldiacyglycerol, probably related to the acidic character of these lipids, were found. The presented results suggest that violaxanthin de-epoxidation most probably takes place inside MGDG-rich domains of the thylakoid membrane. The described activity of the violaxanthin de-epoxidation reaction in liposomes opens new possibilities in the investigation of the xanthophyll cycle and may contribute to a better understanding of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号