首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee JK  Choi CK  Lee KH  Yim SB 《Bioresource technology》2008,99(16):7788-7796
This study investigated characteristics of a sequencing batch reactor (SBR) system which was varied with respect to sludge retention time (SRT) (5.9, 8.2, 10.5, 12.2, and 16.2 days). The removal efficiencies of chemical oxygen demand (COD) were more than 90% under all SRT conditions, and the greatest efficiency (92.2%) occurred with a SRT of 16.2 days. As the SRT increased, the denitrification rate per mixed liquor suspended solids (MLSS) during the anoxic(I) period decreased significantly from 166.3 mg NO(X)(-)-N/g MLSS d to 68.8 mg NO(X)(-)-N/g MLSS d. As the SRT increased, the phosphorus removal efficiency decreased from 47.1% (SRT of 5.9 days) to 31.0% for a SRT of 16.2 days, because active phosphate release and uptake occurred under shorter SRT conditions. The mass balance of nitrogen (with respect to nitrogen in the influent) at a SRT of 16.2 days (the highest nitrogen removal efficiency) showed 14.9% of nitrogen was removed in clarified water effluent, 49.7% was removed by the sludge waste process and 33.3% was removed by denitrification. Nitrogen processing was well accounted for in the SBR system as the nitrogen mass balance was close to 100% (97.9%).  相似文献   

2.
Nitrate can affect phosphate release and lead to reduced efficiency of biological phosphorus removal process. The inhibition effect of remaining nitrate at the anaerobic/anoxic phases was investigated in a lab scale sequencing batch reactor. In this study the influence of denitrification process on reactor performance and phosphorus removal was examined. The experiments were carried out through simultaneous filling and decanting, mixing, mixing-aeration and settling modes. Glucose and acetate were used as carbon sources. The proposed treatment system was capable of removing approximately 80% of the influent PO4-P, 98% NH4-N and 97% COD at a SRT of 25 days. In the fill/decant phase, anoxic and anaerobic conditions prevailed and a large quantity of nitrate was removed in this stage. In the anoxic phase the remaining nitrate concentration was quickly reduced and a considerable amount of phosphate was released. This was attributed to the availability of acetate in this stage. For effective nitrogen and phosphate removal, a short anoxic phase was beneficial before an aerobic phase.  相似文献   

3.
This study compared the PHAs production behavior of sludges from the anaerobic and oxic phases of an enhanced biological phosphorus removal (EBPR) system. This was accomplished by using the kinetics and stoichiometric coefficients obtained from aerobic batch tests to evaluate the performance of these two sludges. Experimental results indicated that the metabolic behavior of the sludges for PHAs production depend significantly on the operating sludge retention time (SRT) of the EBPR system. The oxic sludge with 5 days of SRT exhibited better PHAs production performance than anaerobic sludge. Conversely, the anaerobic sludge with 15 days of SRT had superior PHAs production capability compared to oxic sludge. These comparisons suggest that whether anaerobic or oxic sludge should be employed for PHAs production depends mainly on the operating SRT of the EBPR system.  相似文献   

4.
Two lab-scale aerobic granular sludge sequencing batch reactors were operated at 20 and 30°C and compared for phosphorus (P) removal efficiency and microbial community composition. P-removal efficiency was higher at 20°C (>90%) than at 30°C (60%) when the sludge retention time (SRT) was controlled at 30 days by removing excess sludge equally throughout the sludge bed. Samples analyzed by fluorescent in situ hybridization (FISH) indicated a segregation of biomass over the sludge bed: in the upper part, Candidatus Competibacter phosphatis (glycogen-accumulating organisms--GAOs) were dominant while in the bottom, Candidatus Accumulibacter phosphatis (polyphosphate-accumulating organisms--PAOs) dominated. In order to favour PAOs over GAOs and hence improve P-removal at 30°C, the SRT was controlled by discharging biomass mainly from the top of the sludge bed (80% of the excess sludge), while bottom granules were removed in minor proportions (20% of the excess sludge). With the selective sludge removal proposed, 100% P-removal efficiency was obtained in the reactor operated at 30°C. In the meantime, the biomass in the 30°C reactor changed in color from brownish-black to white. Big white granules appeared in this system and were completely dominated by PAOs (more than 90% of the microbial population), showing relatively high ash content compared to other granules. In the reactor operated at 20°C, P-removal efficiency remained stable above 90% regardless of the sludge removal procedure for SRT control. The results obtained in this study stress the importance of sludge discharge mainly from the top as well as in minor proportions from the bottom of the sludge bed to control the SRT in order to prevent significant growth of GAOs and remove enough accumulated P from the system, particularly at high temperatures (e.g., 30°C).  相似文献   

5.
The resilience of microbial communities to press disturbances and whether ecosystem function is governed by microbial composition or by the environment have not been empirically tested. To address these issues, a whole-ecosystem manipulation was performed in a full-scale activated sludge wastewater treatment plant. The parameter solids retention time (SRT) was used to manipulate microbial composition, which started at 30 days, then decreased to 12 and 3 days, before operation was restored to starting conditions (30-day SRT). Activated sludge samples were collected throughout the 313-day time series in parallel with bioreactor performance (‘ecosystem function''). Bacterial small subunit (SSU) rRNA genes were surveyed from sludge samples resulting in a sequence library of >417 000 SSU rRNA genes. A shift in community composition was observed for 12- and 3-day SRTs. The composition was altered such that r-strategists were enriched in the system during the 3-day SRT, whereas K-strategists were only present at SRTs⩾12 days. This shift corresponded to loss of ecosystem functions (nitrification, denitrification and biological phosphorus removal) for SRTs⩽12 days. Upon return to a 30-day SRT, complete recovery of the bioreactor performance was observed after 54 days despite an incomplete recovery of bacterial diversity. In addition, a different, yet phylogenetically related, community with fewer of its original rare members displaced the pre-disturbance community. Our results support the hypothesis that microbial ecosystems harbor functionally redundant phylotypes with regard to general ecosystem functions (carbon oxidation, nitrification, denitrification and phosphorus accumulation). However, the impacts of decreased rare phylotype membership on ecosystem stability and micropollutant removal remain unknown.  相似文献   

6.
Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors.  相似文献   

7.
Effects of operating lab-scale nitrifying membrane bioreactors (MBR) at short solids retention times (SRT = 3, 5 and 10d) were presented with focus on reactor performance and microbial community composition. The process was capable of achieving over 87% removal of ammonia and 95% removal of chemical oxygen demand (COD), almost regardless of SRT. The denaturing gradient gel electrophoresis (DGGE) analysis shown that bacterial communities evolved in time in a similar way at different SRT. The results of clone library analysis indicated that Betaproteobacteria was the dominant bacterial group in all the reactors but there were significant difference of species for different SRT with higher species diversity at longer SRT. Ammonia and COD removal efficiencies were not correlated with the number of bacterial species or their diversity.  相似文献   

8.
Nutrients in piggery wastewater with high organic matter, nitrogen (N) and phosphorus (P) content were biologically removed in a sequencing batch reactor (SBR) with anaerobic, aerobic and anoxic stages. The SBR was operated with 3 cycles/day, temperature 30 degrees C, sludge retention time (SRT) 1 day and hydraulic retention time (HRT) 11 days. With a wastewater containing 1500 mg/l ammonium and 144 mg/l phosphate, a removal efficiency of 99.7% for nitrogen and 97.3% for phosphate was obtained. Experiments set up to evaluate the effect of temperature on the process showed that it should be run at temperatures higher than 16 degrees C to obtain good removals (> 95%). Batch tests (ammonia utilization rate, nitrogen utilization rate and oxygen utilization rate) proved to be good tools to evaluate heterotrophic and autotrophic biomass activity. The SBR proved to be a very flexible tool, and was particularly suitable for the treatment of piggery wastewater, characterized by high nutrient content and by frequent changes in composition and therefore affecting process conditions.  相似文献   

9.
A mathematical model is developed to describe the growth of multiple microbial species such as heterotrophs and autotrophs in activated sludge system. Performance of a lab-scale sequencing batch reactor involving storage process is used to evaluate the model. Results show that the model is appropriate for predicting the fate of major model components, i.e., chemical oxygen demand, storage polymers (X STO), volatile suspended solid (VSS), ammonia, and oxygen uptake rate (OUR). The influence of sludge retention time (SRT) on reactor performance is analyzed by model simulation. The biomass components require different time periods from one to four times of SRT to reach steady state. At an SRT of 20 days, the active bacteria (autotrophs and heterotrophs) constitute about 57% of the VSS; the remaining biomass is not active. The model established demonstrates its capacity of simulating the reactor performance and getting insight in autotrophic and heterotrophic growth in complex activated sludge systems.  相似文献   

10.
Summary With the aim of studying the possible utilization of brewery waste water activated sludge for animal feeding, the influence of the solids retention time (SRT) and nitrogen supplementation were investigated, especially with respect to biomass production and biomass composition. It was found that the SRT strongly influenced both parameters. At an SRT of from 4 to 6 days excellent biomass production was obtained. This biomass had the highest protein content and the daily protein production was four times higher than at a SRT of 20 days. Supplementation with urea doubled the protein production, lowered the carbohydrate and poly--hydroxybutyric acid content, but increased the nucleic acid content. The COD removal was better and phosphorus removal increased. In order to study these variables, a multi-channel laboratory system was designed. Because of its simplicity in operation and its versatility this system is described in detail.  相似文献   

11.
The performance of a pilot-scale biological nutrient removal process has been evaluated for 336 days, receiving the real municipal wastewater with a flowrate of 6.8 m3/d. The process incorporated an intermittent aeration reactor for enhancing the effluent quality, and a nitrification reactor packed with the porous polyurethane foam media for supporting the attached-growth of microorganism responsible for nitrification. The observation shows that the process enabled a relatively stable and high performance in both organics and nutrient removals. When the SRT was maintained at 12 days, COD, nitrogen, and phosphorus removals averaged as high as 89% at a loading rate of 0.42–3.95 kg COD/m3 d (corresponding to average influent concentration of 304 mg COD/L), 76% at the loading rate of 0.03–0.27 kg N/m3 d (with 37.1 mg TN/L on average), and 95% at the loading rate of 0.01–0.07 kg TP/m3 d (with 5.4 mg TP/L on average), respectively.  相似文献   

12.
强化生物除磷(EBPR)被认为是一种最经济、可持续的污水除磷工艺。近年来大量研究报道,系统中聚糖菌的大量繁殖会使除磷工艺性能变差或完全失败。介绍了聚糖菌的代谢机理和影响聚糖菌与聚磷菌之间竞争的因素(如进水基质、P/C、pH值、温度和泥龄等),便于更好地理解聚糖菌的特性,从而实现提高生物除磷系统运行的性能与稳定性。  相似文献   

13.
Anaerobic bioreactors supplemented with membrane technology have become quite popular, owing to their favorable energy recovery characteristics. In this study, a lab-scale anaerobic Membrane Bioreactor (AnMBR) was assessed in experimental treatments of pre-settled dilute municipal wastewater obtained from a full-scaled wastewater treatment plant. The MBR system was operated in continuous flow mode for 440 days. To evaluate the performance of the AnMBR under various loading rates, the hydraulic retention time (HRT) was reduced in a stepwise manner (from 2 to 0.5 days). Afterward, the mixed liquor suspended solids (MLSS) were reduced from 7,000 to 3,000 mg/L in increments of 1,000 mg/L, resulting in a decrease in solids retention time (SRT) at a constant HRT of 1.0 day. The soluble chemical oxygen demand (SCOD) concentration in the feed varied between 38 and 131 mg/L, whereas the average permeate SCOD ranged between 18 and 37 mg/L, reflecting excellent effluent quality. The AnMBR performance in terms of COD removal proved stable, despite variations in influent characteristics and HRT and SRT changes. The concentration of extracellular polymeric substance (EPS) was reduced with decreases in HRT from 42 to 22 mg VS/mg of MLSS, thereby indicating that the increased biomass concentration biodegraded the EPS at lower HRTs. AnMBR is, therefore, demonstrably a feasible option for the treatment of dilute wastewater with separate stage nitrogen and phosphorus removal processes.  相似文献   

14.
The methodology for determination of the minimally required aerobic sludge retention time (SRTminaer) in biological phosphorus removal (BPR) systems is presented in this article. Contrary to normal biological conversions, the BPR process is not limited by a SRTmin resulting from the maximum growth rate of the organisms. This is because the aerobic SRT should be long enough to oxidize the amount of poly-hydroxy-alkanoates (PHA) stored in the anaerobic phase. This means that the SRTminaer will primarily depend on the PHA conversion kinetics and the maximal achievable PHA content in the cell (storage capacity). The model for the prediction of the minimally required aerobic SRT as a function of kinetic and process parameters was developed and compared with experimental data used to evaluate several operational aspects of BPR in a sequencing batch reactor (SBR) system. The model was proved as capable of describing them satisfactorily.Copyright 1998 John Wiley & Sons, Inc.  相似文献   

15.
Solid retention time (SRT) is a very important operational variable in continuous and semicontinuous waste treatment processes since the organic matter removal efficiency - expressed in terms of percentage of Dissolved Organic Carbon (% DOC) or Volatile Solids (% VS) removed - and the biogas or methane production are closely related with the SRT imposed. Optimum SRT is depending on the waste characteristics and the microorganisms involved in the process and, hence, it should be determined specifically in each case.In this work a series of experiments were carried out to determine the effect of SRT, from 40 to 8 days, on the performance of the dry (30% Total Solids) thermophilic (55 °C) anaerobic digestion of organic fraction of Municipal Solid Wastes (OFMSW) operating at semicontinuous regime of feeding.The experimental results show than 15 days is the optimum SRT (the best between all proved) for this process. Besides, data of organic matter concentration and methane production versus SRT have been used to obtain the kinetic parameters of the kinetic model of Romero García (1991): the maximum specific growth rate of the microorganisms (μmax = 0.580 days−1) and the fraction of substrate non-biodegradable (α = 0.268).  相似文献   

16.
Huang M  Li Y  Gu G 《Bioresource technology》2008,99(17):8107-8111
A laboratory-scale anaerobic-anoxic-aerobic (AAA) activated sludge wastewater treatment system was employed to investigate the effects of hydraulic retention time (HRT) and sludge retention time (SRT) on the removal and fate of di-(2-ethylhexyl) phthalate (DEHP). In the range from 5 to 14h, HRT had no significant effect on DEHP removal. However, longer HRT increased DEHP accumulation in the system and DEHP retention in the waste sludge. When SRT was increased from 15 to 25d, DEHP removal efficiency stayed above 96%. Compared to the removal of only 88% at SRT of 10d, longer SRT enhanced DEHP degradation efficiency. The optimal HRT and SRT for both nutrients (nitrogen and phosphorus) and DEHP removal were 8h and 15d. At these retention times, about 71% of DEHP was degraded by the activated sludge process, 26% was accumulated in the system, 2% was released in the effluent, and 1% remained in the waste sludge. The anaerobic, anoxic and aerobic reactors were responsible for 15%, 19% and 62% of the overall DEHP removal, respectively.  相似文献   

17.
The main objective of this study was to investigate the effect of condensate of food waste (CFW) on nutrient removal in a pilot-scale vertical submerged membrane bioreactor (VSMBR) treating municipal wastewater having total-chemical oxygen demand to total-nitrogen ratio (T-COD/T-N) of 5.5. In this reactor, the average removal efficiencies of T-COD, T-N, and T-P (total-phosphorus) were 96%, 74%, and 78%, respectively at 8-h hydraulic retention time (HRT), 60-day sludge retention time (SRT), and internal recycle rate of 400%. As the CFW was supplemented with 0.86% of the influent flow rate, the T-N and T-P removal efficiencies increased to 81% and 91%, respectively. Accordingly, in batch tests, it was concluded that the supply of CFW improved enhanced biological phosphorus removal (EBPR) activity of microorganisms resulting in improvement of nutrient removal efficiency. Under this condition, several kinds of poly-hydroxyalkanoates (PHAs) were detected inside the cells.  相似文献   

18.
Wang Y  Geng J  Ren Z  He W  Xing M  Wu M  Chen S 《Bioresource technology》2011,102(10):5674-5684
Nitrous oxide (N2O) is a highly potent greenhouse gas; however, the characteristics of N2O production during denitrification using poly-β-hydroxyalkanoates (PHA) as a carbon source are not well understood. In this study, effects of anaerobic reaction time (AnRT) on PHA formation, denitrifying phosphorus removal and N2O production were investigated using a laboratory-scale anaerobic/anoxic/oxic sequencing batch reactor (An/A/O SBR). The results showed that operation of the An/A/O SBR for 0.78 SRT (47 cycles) after the AnRT was shortened from 90 min to 60 min resulted in anaerobically synthesized PHA improving by 1.8 times. This improvement was accompanied by increased phosphorus removal efficiency and denitrification. Accordingly, the N2O-N production was reduced by 6.7 times. Parallel batch experiments were also conducted with AnRTs of 60, 90 and 120 min. All results indicated that in addition to the amount of anaerobically synthesized PHA, the kinetics of PHA degradation also regulated denitrifying phosphorus removal and N2O production.  相似文献   

19.
Anaerobic acidogenesis of primary sludge: the role of solids retention time   总被引:2,自引:0,他引:2  
This research investigates the effect of solids retention time (SRT) on the acid-phase anaerobic digestion of primary sludge. A series of experiments were conducted using two continuous-flow 3-L units with the following configuration: a completely mixed reactor (CMR) with clarifier and solids recycle and an upflow anaerobic sludge blanket (UASB) reactor. Results show that C(2) to C(5) volatile fatty acids (VFA) were the predominant compounds formed. At a constant hydraulic retention time (HRT) of 12 h, variation in SRT from 10 to 20 days resulted in a slight increase in VFA production in both systems, but at a shorter SRT (5 days) a drastic drop in acid production was observed. In addition, the percent distribution of VFA was to some extent affected by the change in SRT. On the other hand, organic matter degradation [measured by the chemical oxygen demand (COD) specific solubilization rate or the percent volatile suspended solids (VSS) reduction] appeared to be independent of SRT, at least in the range investigated. The percent soluble COD in the form of VFA, however, increased steadily with increasing SRT, approaching the 90% level at 20 days. The remaining soluble COD in the effluent from these systems may be mainly attributed to metabolic intermediates and unused soluble substrate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
Diffusion limitation of phosphate possibly constitutes a serious problem regarding the use of a biofilm reactor for enhanced biological phosphorus removal. A lab-scale reactor for simultaneous removal of phosphorus and nitrate was operated in a continuous alternating mode of operation. For a steady-state operation with excess amounts of carbon source (acetate) during the anaerobic phase, the same amount of phosphate was released during the anaerobic phase as was taken up during the anoxic phase. The measured phosphorus content of the biomass that detached during backwash after an anoxic phase was low, 2.4 +/- 0.4% (equal to 24 +/- 4 mg P/g TS). A simplified computer model indicated the reason to be phosphate diffusion limitation and the model revealed a delicate balance between the obtainable phosphorus contents of the biomass and operating parameters, such as backwash interval, biofilm thickness after backwash, and phase lengths. The aspect of diffusion is considered of crucial importance when evaluating the performance of a biofilter for phosphate removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号