首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ion-sensitive microelectrodes were used to measure the intracellular activities of Na, K, and Cl in proximal tubules of the perfused Necturus kidney. Cell Cl was 2-3 times higher than the value predicted for passive distribution during perfusion with normal Ringer; intracellular Na was far below the level for passive distribution. Cell Na and Cl fell to very low values when the lumen was NaCl-free. Cl entry into the tubule cell from the lumen required luminal Na. Na entered the cell across the luminal membrane both by diffusion and by coupled movement with Cl.  相似文献   

2.
Summary The apical membrane K+ permeability of the newt proximal tubular cells was examined in the doubly perfused isolated kidney by measuring the apical membrane potential change (V a change) during alteration of luminal K+ concentration and resultant voltage deflections caused by current pulse injection into the lumen.V a change/decade for K+ was 50 mV at K+ concentration higher than 25mm, and the resistance of the apical membrane decreased bt 58% of control when luminal K+ concentration was increased from 2.5 to 25mm. Ba2+ (1mm in the lumen) reducedV a change/decade to 24 mV and increased the apical membrane resistance by 70%. These data support the view that Ba2+-sensitive K+ conductance exists in the apical membrane of the newt proximal tubule. Furthermore, intracellular K+ activity measured by K+-selective electrode was 82.4 ± 3.6 meq/liter, which was higher than that predicted from the Nernst equation for K+ across both cell membranes. Thus, it is concluded that cell K+ passively diffuses, at least in part, through the K+ conductive pathway of the apical membrane.  相似文献   

3.
Summary The present study was designed to investigate the apical and basolateral transport processes responsible for intracellular pH regulation in the thin descending limb of Henle. Rabbit thin descending limbs of long-loop nephrons were perfused in vitro and intracellular pH (pH i ) was measured using BCECF. Steady-state pH i in HEPES buffered solutions (pH 7.4) was 7.18±0.03. Following the removal of luminal Na+, pH i decreased at a rate of 1.96±0.37 pH/min. In the presence of luminal amiloride (1mm), the rate of decrease of pH i was significantly less, 0.73±0.18 pH/min. Steady-state pH i decreased 0.18 pH units following the addition of amiloride (1mm) to the lumen (Na+ 140mm lumen and bath). When Na+ was removed from the basolateral side of the tubule, pH i decreased at a rate of 0.49±0.05 pH/min. The rate of decrease of pH i was significantly less in the presence of 1mm basolateral amiloride, 0.29±0.04 pH/min. Addition of 1mm amiloride to the basolateral side (Na+ 140mm lumen and bath) caused steady-state pH i to decrease significantly by 0.06 pH units. When pH i was acutely decreased to 5.87±0.02 following NH4Cl removal (lumen, bath), pH i failed to recover in the absence of Na+ (lumen, bath). Addition of 140mm Na+ to the lumen caused pH i to recover at a rate of 2.17±0.59 pH/min. The rate of pH i recovery was inhibited 93% by 1mm luminal amiloride. When 140mm Na+ was added to the basolateral side, pH i recovered only partially at 0.38±0.07 pH/min. Addition of 1mm basolateral amiloride inhibited the recovery of pH i , by 97%. The results demonstrate that the rabbit thin descending limb of long-loop nephrons possesses apical and basolateral Na+/N+ antiporters. In the steady state, the rate of Na+-dependent H+ flux across the apical antiporter exceeds the rate of Na+-dependent H+ flux via the basolateral antiporter. Recovery of pH i following acute intracellular acidification is Na+ dependent and mediated primarily by the luminal antiporter.  相似文献   

4.
Summary The purpose of this study was to characterize the basolateral membrane of the S3 segment of the rabbit proximal tubule using conventional and ion-selective microelectrodes. When compared with results from S1 and S2 segments, S3 cells under control conditions have a more negative basolateral membrane potential (V bl=–69 mV), a higher relative potassium conductance (t K=0.6), lower intracellular Na+ activity (A Na=18.4mm), and higher intracellular K+ activity (A K=67.8mm). No evidence for a conductive sodium-dependent or sodium-independent HCO 3 pathway could be demonstrated. The basolateral Na–K pump is inhibited by 10–4 m ouabain and bath perfusion with a potassium-free (0-K) solution. 0-K perfusion results inA Na=64.8mm,A K=18.5mm, andV bl=–28 mV. Basolateral potassium channels are blocked by barium and by acidification of the bathing medium. The relative K+ conductance, as evaluated by increasing bath K+ to 17mm, is dependent upon the restingV bl in both S2 and S3 cells. In summary, the basolateral membrane of S3 cells contains a pump-leak system with similar properties to S1 and S2 proximal tubule cells. The absence of conductive bicarbonate pathways results in a hyperpolarized cell and larger Na+ and K+ gradients across the cell borders, which will influence the transport properties and intracellular ion activities in this tubule segment.  相似文献   

5.
Summary Conventional microelectrode techniques were combined with unilateral mucosal ionic substitutions to determine the effects of luminal pH and luminal alkali-earth cation concentrations on apical membrane cation permeability inNecturus gallbladder epithelium. Acidification of the mucosal solution caused reversible depolarization of both cell membranes and increase of transepithelial resistance. Low pH media also caused: (a) reduction of the apical membrane depolarization induced by high K, and (b) increase of the apical membrane hyperpolarization produced by Na replacement with Li or N-Methyl-d-glucamine. These results, in conjunction with estimates of cell membrane conductances, indicate that acidification of the luminal solution produces a reduction of apical membrane K permeability (P K). Addition of alkali earth cations (Mg2+, Ca2+, Sr2+, or Ba2+) produced cell membrane depolarization, increase of relative resistance of the luminal membrane and reduction of the apical membrane potential change produced by a high-K mucosal medium. These results, as those produced by low pH, can be explained by a reduction of apical membraneP K. The effects of Ba2+ on membrane potential and relative apical membraneP K were larger than those of all other four cations at all concentrations tested (1–10mm). The effect of Sr2+ was significantly larger than those of Mg2+ and Ca2+ at 10mm, but not different at 5mm. The reduction ofP K produced by mucosal acidification appears to be mediated by: (a) nonspecific titration of membrane fixed negative charges, and (b) an effect of luminal proton activity on the apical K channel. Divalent cations reduce apical membraneP K probably by screening negative surface charges. The larger magnitude of the effects of Ba2+ and Sr2+ can be explained by binding to membrane sites, in the surface or in the K channel, in addition to their screening effect. We suggest that the action of luminal pH on K secretion in some segments of the renal tubule could be mediated in part by this pH-dependent K permeability of the luminal membrane.  相似文献   

6.
Summary In a previous study we presented evidence that chloride transport across the basolateral membrane inNecturus proximal tubule cells occurs predominantly via exchange for both Na+ and HCO 3 . In this study the regulation of intracellular chloride was further examined in the doubly-perfused kidney preparation using conventional and chloride-sensitive microelectrodes. Application of hypertonic basolateral solutions containing 80mm raffinose stimulated an efflux of chloride such that chloride activity remained unchanged at control levels. Membrane potential did not change in these experiments. Inhibition of Cl exit across the basolateral cell membrane by removal of either HCO 3 or Na+ from the perfusion solution resulted in a significant increase in intracellular chloride activity,a Cl i , when basolateral osmolarity was raised. Hypertonic basolateral solutions also produced a significant rise ina Cl i in the presence of SITS.This study provides further evidence that chloride is transported across the basolateral cell membrane in exchange for both Na+ and HCO 3 . Since this exchange mechanism is activated in response to hypertonic solutions, these studies suggest a functional role for this exchanger in the regulation ofa Cl i in theNecturus proximal tubule cell during volume changes.  相似文献   

7.
Summary Chloride equilibrium exchange was measured in the presence of intracellular and extracellular urea, several different alkylureas and thiourea. Urea half-inhibited Cl exchange at about 2.5m, but the other, less polar analogs had significantly higher potencies; e.g., butylurea half-inhibited at about 60mm. Onset and reversal of inhibition occurred within less than 2 sec. The inhibition exhibited no obvious sigmoidal dependence on urea concentration, and at low concentrations dimethylurea was a noncompetitive inhibitor of Cl exchange. However, at higher concentrations the Dixon plots were curved upward and a Hill analysis of the dimethylurea data yielded a Hill coefficient of at least 1.5. When present on only one side of the membrane, the slowly penetrating thiourea inhibited Cl exchange with a higher potency from the outside of the cell. Cl/Br exchange was inhibited less under conditions of self-inhibition of anion exchange than in the absence of self-inhibition. These data indicate that the ureas inactivate the anion transporter by a reversible denaturation process, and that the function of the anion transport mechanism may be more sensitive to small perturbations of protein structure than are spectroscopically derived structural parameters.  相似文献   

8.
The effect of foreign anions on transepithelial potential difference and transepithelial input conductance was studied in the isolated perfused Necturus kidney. Two microelectrodes (recording and current-injecting) were inserted into the lumen of single proximal tubules and the peritubular perfusate was shifted reversibly for 30-60 sec from a physiologic Ringer's solution to a test solution in which chloride was replaced isosmotically by a foreign anion. The permeability sequence, obtained by potential measurements, was: lactate less than glutamate less than gluconate less than pyruvate less than benzene sulfonate less than or equal to acetate less than or equal to F less than propionate less than BrO3 less than formate less than ClO3 less than Cl than ClO4 less than I less than or equal to Br less than NO3 less than SCN. Transepithelial conductance decreased when the tissue was perfused with anions less permeable than chloride but the conductance sequence was different from the permeability sequence. Such discrepancies were more pronounced during perfusion with hyperpolarizing anions; ClO4 and I- (both more permeable than chloride) produced an important decrease in transepithelial conductance, followed by incomplete reversibility when the perfusion was shifted again to chloride Ringer's. The results are best explained by the presence of weak positive fixed charges, governing anion permeation, at the shunt pathway of the proximal tubule. An analysis of the data allows tentative estimates of shape and size of the sites.  相似文献   

9.
Stable electrical potential differences can be measured by means of conventional glass microelectrodes across the cell membrane of renal tubule cells and across the epithelial wall of single tubules in the doubly perfused kidney of Necturus. These measurements have been carried out with amphibian Ringer's solution, and with solutions of altered ionic composition. The proximal tubule cell has been found to be electrically asymmetrical inasmuch as a smaller potential difference is maintained across the luminal cell membrane than across the peritubular cell boundary. The tubule lumen is always electrically negative with respect to the peritubular extracellular medium. Observations on the effectiveness of potassium ions in depolarizing single tubule cells indicate that the transmembrane potential is essentially an inverse function of the logarithm of the external potassium concentration. The behavior of the peritubular transmembrane potential resembles more closely an ideal potassium electrode than that of the luminal transmembrane potential. From these results, and the effects of various ionic substitutions on the electrical profile of the renal tubular epithelium, a thesis concerning the origin of the observed potential differences is presented. A sodium extrusion mechanism is considered to be located at the peritubular cell boundary, and reasons are given for the hypothesis that the electrical asymmetry across the proximal renal tubule cell could arise as a consequence of differences in the relative sodium and potassium permeability at the luminal and peritubular cell boundaries.  相似文献   

10.
Summary Cl-sensitive microelectrodes were employed to investigate the mechanism of Cl secretion by canine tracheal epithelium. In control tissues with a mean calculated short-circuit current (I sc) of 18.1 A/cm2, the intracellular Cl activity (a Cl i ) was 47.2mm. This value is 30.1mm (or 27.0 mV) above the electrochemical equilibrium for Cl across the apical membrane. Epinephrine, which stimulates Cl secretion, increased the calculatedI sc to 160 A/cm2 and decreaseda Cl i to 32.2mm, a value only 11.2mm (or 10.9 mV) above equilibrium for the apical membrane. These results indicate a secretagogue induced decrease in the impedance to Cl exit from the cell via the apical membrane. From these and prior measurements we calculate that epinephrine-induced Cl efflux from the cell can occur by simple diffusion across the apical membrane. Further implications of these calculations are also discussed.  相似文献   

11.
Summary Na–K–Cl cotransport stoichiometry and affinities for Na, K and Cl were determined in flounder intestine. Measurement of simultaneous NaCl and RbCl influxes resulted in ratios of 2.2 for Cl/Na and 1.8 for Cl/Rb. The effect of Na and Rb on Rb influx showed first order kinetics withK 1/2 values of 5 and 4.5mm and Hill coefficients of 0.9 and 1.2, respectively. The effect of Cl on rubidium influx showed a sigmoidal relationship withK 1/2 of 20mm and a Hill coefficient of 2.0. The effects of variations in Na and Cl concentration on short-circuit current (I sc) were also determined. TheK 1/2 for Na was 7mm with a Hill coefficient of 0.9 and theK 1/2 for Cl was 46mm with a Hill coefficient of 1.9. Based on the simultaneous influx measurements, a cotransport stoichiometry of 1Na1K2Cl is concluded. The Hill coefficients for Cl suggest a high degree of cooperativity between Cl binding sites. Measurements of the ratio of net Na and Cl transepithelial fluxes under short-circuit conditions (using a low Na Ringer solution to minimize the passive Na flux) indicate that the Cl/Na flux ratio is approximately 21. Therefore Na recycling from serosa to mucosa does not significantly contribute to theI sc. Addition of serosal ouabain (100 m) inhibited Rb influx, indicating that Na–K–Cl cotransport is inhibited by ouabain. This finding suggests that a feedback mechanism exists between the Na–K-ATPase on the basolateral membrane and the apical Na–K–2Cl cotransporter.  相似文献   

12.
Summary Intracellular ion activities inNecturus gallbladder epithelium were measured with liquid ion-exchanger microelectrodes. Mean values for K, Cl and Na activities were 87, 35 and 22mm, respectively. The intracellular activities of both K and Cl are above their respective equilibrium values, whereas the Na activity is far below. This indicates that K and Cl are transported uphill toward the cell interior, whereas Na is extruded against its electrochemical gradient. The epithelium transports NaCl from mucosa to serosa. From the data presented and the known Na and Cl conductances of the cell membranes, we conclude that neutral transport driven by the Na electrochemical potential difference can account for NaCl entry at the apical membrane. At the basolateral membrane, Na is actively transported. Because of the low Cl conductance of the membrane, only a small fraction of Cl transport can be explained by diffusion. These data suggest that Cl transport across the basolateral membrane is a coupled process which involves a neutral NaCl pump, downhill KCl transport, or a Cl-anion exchange system.  相似文献   

13.
Summary The lepidopteran midgut is a model for the oxygendependent, electrogenic K+ transport found in both alimentary and sensory tissues of many economically important insects. Structural and biochemical evidence places the K+ pump on the portasome-studded apical plasma membrane which borders the extracellular goblet cavity. However, electrochemical evidence implies that the goblet cell K+ concentration is less than 50mm. We used electron probe X-ray microanalysis of frozenhydrated cryosections to measure the concentration of Na, Mg, P, S, Cl, K, Ca and H2O in several subcellular sites in the larval midgut ofManduca sexta under several experimental regimes. Na is undetectable at any site. K is at least 100mm in the cytoplasm of all cells. Typicalin vivo values (mm) for K were: blood, 25; goblet and columnar cytoplasm, 120; goblet cavity, 190; and gut lumen, 180. The high K concentration in the apically located goblet cavity declined by 100mm under anoxia. Both cavity and gut fluid are Cl deficient, but fixed negative charges may be present in the cavity. We conclude that the K+ pump is sited on the goblet cell apical membrane and that K+ follows a nonmixing pathway via only part of the goblet cell cytoplasm. The cavity appears to be electrically isolated in alimentary tissues, as it is in sensory sensilla, thereby allowing a PD exceeding 180 mV (lumen positive) to develop across the apical plasma membrane. This PD appears to couple K+ pump energy to nutrient absorption and pH regulation.  相似文献   

14.
Summary Simultaneous capillary and luminal microperfusion studies were performed in the rat proximal tubule to determine the effects of the beta agonist isoproterenol and the alpha agonist phenylephrine on water absorption. Capillary and luminal perfusion solutions were composed such that organic solutes were not present, no bicarbonate was present in the lumen, and no chloride gradient was imposed. Under such conditions, water absorption (Jv) averaged 0.36±0.11 nl·min–1·mm–1. The addition of isoproterenol to the capillary solution in concentrations of 10–6 and 10–4 m resulted in significantly higherJv's of 0.68±0.10 and 0.71±0.11 nl·min–1·mm–1, respectively. The enhancing effect of isoproterenol was inhibited by the beta blocker propranolol (10–4 m), but not by the alpha blocker phentolamine (10–7 m). The addition of phenylephrine (10–6 m) to the capillary perfusion solution also resulted in a significantly higherJv of 0.84±0.14 nl·min–1·mm–1, an effect inhibited by phentolamine (10–7 m), but not by propranolol (10–4 m). Neither phentolamine nor propranolol alone in the concentrations indicated had an effect on water absorption. These experiments indicate that both alpha and beta agonists stimulate water absorption in the superficial proximal tubule of the rat. This effect appears to be relatively specific for each class of agonist, as demonstrated by the effects of the specific antagonists.  相似文献   

15.
Summary The characteristics of Cl movement across luminal and basolateral membranes ofAmphiuma intestinal absorptive cells were studied using Cl-sensitive microelectrodes and tracer36Cl techniques. Intracellular Cl activity (a Cl i ) was unchanged when serosal Cl was replaced; when luminal Cl was replaced cell Cl was rapidly lost. Accordingly, the steady statea Cl i could be varied by changing the luminal [Cl]. As luminal [Cl] was raised from 1 to 86mM,a Cl i rose in a linear manner, the mucosal membrane hyperpolarized, and the transepithelial voltage became serosa negative. In contrast, the rate of Cl transport from the cell into the serosal medium, measured as the SITS-inhibitable portion of the Cl absorptive flux, attained a maximum whena Cl i reached an apparent value of 17mm, indicating the presence of a saturable, serosal transport step. The stilbeneinsensitive absorptive flux was linear with luminal [Cl], suggestive of a paracellular route of movement. Intracellulara Cl was near electrochemical equilibrium at all but the lowest values of luminal [Cl] after interference produced by other anions was taken into account.a Cl i was unaffected by Na replacement, removal of medium K, or elevation of medium HCO 3 . Mucosae labeled with36Cl lost isotope into both luminal and serosal media at the same rate and from compartments of equal capacity. Lowering luminal [Cl] or addition of theophylline enhanced luminal Cl efflux. It is concluded that a conductive Cl leak pathway is present in the luminal membrane. Serosal transfer is by a saturable, stilbene-inhibitable pathway. Luminal Cl entry appears to be passive, but an electrogenic uptake cannot be discounted.  相似文献   

16.
Summary The initial mechanisms of injury to the proximal tubule following exposure to nephrotoxic heavy metals are not well established. We studied the immediate effects of silver (Ag+) on K+ transport and respiration with extracellular K+ and O2 electrodes in suspensions of renal cortical tubules. Addition of silver nitrate (AgNO3) to tubules suspended in bicarbonate Ringer's solution caused a rapid, dose-dependent net K+ efflux (K m =10–4 m,V max=379 nmol K+/min/mg protein) which was not inhibited by furosemide, barium chloride, quinine, tetraethylammonium, or tolbutamide. An increase in the ouabain-sensitive oxygen consumption rate (QO2) (13.9±1.1 to 25.7±4.4 nmol O2/min/mg,P<0.001), was observed 19 sec after the K+ efflux induced by AgNO3 (10–4 m), suggesting a delayed increase in Na+ entry into the cell. Ouabain-insensitive QO2, nystatin-stimulated QO2, and CCCP-uncoupled QO2 were not significantly affected, indicating preserved function of the Na+, K+-ATPase and mitochondria. External addition of the thiol reagents dithiothreitol (1mm) and reduced glutathione (1mm) prevented and/or immediately reversed the effects on K+ transport and QO2. We conclude that Ag+ causes early changes in the permeability of the cell membrane to K+ and then to Na+ at concentrations that do not limit Na+, K+-ATPase activity or mitochondrial function. These alterations are likely the result of a reversible interaction of Ag+ with sulfhydryl groups of cell membrane proteins and may represent initial cytotoxic effects common to other sulfhydryl-reactive heavy metals on the proximal tubule.  相似文献   

17.
Summary In order to investigate whether the loop diuretic sensitive, sodium-chloride cotransport system described previously in shark rectal gland is in fact a sodium-potassium chloride cotransport system, plasma membrane vesicles were isolated from rectal glands ofSqualus acanthias and sodium and rubidium uptake were measured by a rapid filtration technique. In addition, the binding of N-methylfurosemide to the membranes was investigated. Sodium uptake into the vesicles in the presence of a 170mm KCl gradient was initially about five-fold higher than in the presence of a 170mm KNO3 gradient. In the presence of chloride, sodium uptake was inhibited 56% by 0.4mm bumetanide and 40% by 0.8mm N-methylfurosemide. When potassium chloride was replaced by choline chloride or lithium chloride, sodium uptake decreased to the values observed in the presence of potassium nitrate. Replacement of potassium chloride by rubidium chloride, however, did not change sodium uptake. Initial rubidium uptake into the membrane vesicles was about 2.5-fold higher in the presence of a 170mm NaCl gradient than in the presence of a 170mm NaNO3 gradient. The effect of chloride was completely abolished by 0.4mm bumetanide. Replacement of the sodium chloride gradient by a lithium chloride gradient decreased rubidium uptake by about 40%; replacement by a choline chloride gradient reduced the uptake even further. Rubidium uptake was also strongly inhibited by potassium. Sodium chloride dependence and bumetanide inhibition of rubidium flux were also found in tracer exchange experiments in the absence of salt gradients. The isolated plasma membranes bound3[H]-N-methylfurosemide in a dose-dependent manner. In Scatchard plots, one saturable component could be detected with an apparentK D of 3.5×10–6 m and a number of sitesn of 104 pmol/mg protein. At 0.8 m, N-methylfurosemide binding decreased 51% when sodium-free or low-potassium media were used. The same decrease was observed when the chloride concentration was increased from 200 to 600mm or when 1mm bumetanide or furosemide were added to the incubation medium. These studies indicate that the sodium-chloride cotransport system described previously in the rectal gland is in fact a sodium-potassium chloride cotransport system. It is postulated that this transport system plays an essential role in the secondary active chloride secretion of the rectal gland.  相似文献   

18.
Summary The effects of bathing solution HCO 3 /CO2 concentrations on baseline cell membrane voltages and resistances were measured inNecturus gallbladder epithelium with conventional intracellular microelectrode techniques. Gallbladders were bathed in either low HCO 3 /CO2 Ringer's solutions (2.4mm HCO 3 /air or 1mm HEPES/air) or a high HCO 3 /CO2 Ringer's (10mm HCO 3 /1% CO2). The principal finding of these studies was that the apical membrane fractional resistance (fR a) was higher in tissues bathed in the 10mm HCO 3 /CO2 Ringer's, averaging 0.87±0.06, whereasfR a averaged 0.63±0.07 and 0.48±0.08 in 2.4mm HCO 3 and 1mm HEPES, respectively. Intraepithelial cable analysis was employed to obtain estimates of the individual apical (R a) and basolateral membrane (R b) resistances in tissues bathed in 10mm HCO 3 /1% CO2 Ringer's. Compared to previous resistance measurements obtained in tissues bathed in a low HCO 3 /CO2 Ringer's, the higher value offR a was found to be due to both an increase inR a and a decrease inR b. The higher values offR a and lower values ofR b confirm the recent observations of others. To ascertain the pathways responsible for these effects, cell membrane voltages were measured during serosal solution K+ and Cl substitutions. The results of these studies suggest that an electrodiffusive Cl transport mechanism exists at the basolateral membrane of tissues bathed in a 10mm HCO 3 /1% CO2 Ringer's, which can explain in part the fall inR b. The above observations are discussed in terms of a stimulatory effect of solution [HCO 3 /PCO2 on transepithelial fluid transport, which results in adaptive changes in the conductive properties of the apical and basolateral membranes.  相似文献   

19.
In the rabbit as well as the rat, a Na+/H+ exchanger is expressed in the apical membrane of both the proximal and distal tubules of the renal cortex. Whereas the isoform derived from the proximal tubule has been extensively studied, little information is available concerning the distal luminal membrane isoform. To better characterize the latter isoform, we purified rabbit proximal and distal tubules, and examined the ethylpropylamiloride (EIPA)-sensitive 22Na uptake by the luminal membrane vesicles from the two segments. The presence of 100 μm EIPA in the membrane suspension decreased the 15 sec Na+ uptake to 75.70 ± 4.70% and 50.30 ± 2.23% of the control values in vesicles from proximal and distal tubules, respectively. The effect of EIPA on 35 mm Na+ uptake was concentration dependent, with a IC50 of 700 μm and 75 μm for the proximal and distal luminal membranes. Whereas the proximal tubule membrane isoform was insensitive to cimetidine and clonidine up to a concentration of 2 mm, the 35 mm Na+ uptake by the distal membrane was strongly inhibited by cimetidine (IC50 700 μm) and modestly inhibited by clonidine (IC50 1.6 mm). The incubation of proximal tubule suspensions with 1 mm (Bu2) cAMP decreased the 15-sec EIPA-sensitive Na+ uptake by the brush border membranes to 24.1 ± 2.38% of the control values. Unexpectedly, the same treatment of distal tubules enhanced this uptake by 46.5 ± 10.3%. Finally, incubation of tubule suspensions with 100 nm phorbol 12-myristate 13-acetate (PMA) decreased the exchanger activity to 58.6 ± 3.04% and 79.7 ± 3.21% of the control values in the proximal and distal luminal membranes, respectively. In conclusion, the high sensitivity of the distal luminal membrane exchanger to various inhibitors, and its stimulation by cAMP-dependent protein kinase A, indicate that this isoform differs from that of the proximal tubule and probably corresponds to isoform 1. Received: 6 March 1998/Revised: 6 July 1998  相似文献   

20.
Summary Conventional and Cl-selective liquid ion-exchanger intracellular microelectrodes were employed to study the effects of extracellular ionic substitutions on intracellular Cl activity (aCl i ) inNecturus gallbladder epithelium. As shown previously (Reuss, L., Weinman, S.A., 1979;J. Membrane Biol. 49:345), when the tissue was exposed to NaCl-Ringer on both sidesaCl i was about 30mm, i.e., much higher than the activity predicted from equilibrium distribution (aCleq) across either membrane (5–9mm). Removal of Cl from the apical side caused a reversible decrease ofaCl i towards the equilibrium value across the basolateral membrane. A new steady-stateaCl i was reached in about 10 min. Removal of Na from the mucosal medium or from both media also caused reversible decreases ofaCl i when Li, choline, tetramethylammonium or N-methyl-d-glucamine (NMDG) were employed to replace Na. During bilateral Na substitutions with choline the cells depolarized significantly. However, no change of cell potential was observed when NMDG was employed as Na substitute. Na replacements with choline or NMDG on the serosal side only did not changeaCl i . When K substituted for mucosal Na, the cells depolarized andaCl i rose significantly. Combinations of K for Na and Cl for SO4 substitutions showed that net Cl entry during cell depolarization can take place across either membrane. The increase ofaCl i in depolarized cells exposed to K2SO4-Ringer on the mucosal side indicates that the basolateral membrane Cl permeability, (P Cl) increased. These results support the hypothesis that NaCl entry at the apical membrane occurs by an electroneutral mechanism, driven by the Na electrochemical gradient. In addition, we suggest that Cl entry during cell depolarization is downhill and involves an increase of basolateral membraneP Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号