首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
These experiments were designed to evaluate whether removal of approximately 95% visible ovarian tissue would interrupt the short- or long-term regulation of cyclic ovarian function. On cycle Days 2 4 (onset of menses = Day 1), the entire left ovary and approximately 90% of the right ovary were removed from three cycling cynomolgus monkeys. After approximately 95% ovariectomy, there was an acute elevation of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which lasted 11 +/- 2 days. A midcycle-like gonadotropin surge occurred 20 +/- 3 days following approximately 95% ovariectomy; the next menses occurred 19 +/- 1 days later. Follicular phase patterns of estradiol preceded the midcycle gonadotropin surge, and luteal phase progesterone levels indicated subsequent ovulation. Two of three monkeys resumed normal menstrual cyclicity in the following cycle with follicular phase, luteal phase, and menstrual cycle lengths similar to pretreatment levels. Histological examination of the ovarian remnant removed on Day 21 of the next cycle revealed a morphologically normal corpus luteum and many small follicles. A second group of 6 rhesus monkeys also underwent approximately 95% ovariectomy for long-term evaluation of menstrual cyclicity; typical 28-day menstrual cycle patterns were observed in 4 of the 6 monkeys for 5 mo, with 2 of these 3 animals maintaining regular menstrual cycles for 1 yr. In summary, our data suggest that normal ovarian function, i.e. recruitment, selection, and dominance of the ovulatory follicle, ovulation, and subsequent corpus luteum function, is maintained with only approximately 5% of functional ovarian tissue remaining.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Peripheral concentrations of immunoreactive relaxin are undetectable in primates during the nonfertile menstrual cycle, but become measurable during the interval when chorionic gonadotropin (CG) rises in early pregnancy. The objectives of the current study were to determine if exogenous CG, administered in a dosage regimen which invoked patterns and concentrations resembling those of early pregnancy, would induce relaxin secretion in nonpregnant rhesus monkeys, and whether the induction was dependent on the age of the corpus luteum (CL) at the onset of treatment. Female rhesus monkeys received twice-daily i.m. injections of increasing doses of human CG (hCG) for 10 days beginning in the early (n = 4), mid (n = 6) or late (n = 4) luteal phase of the menstrual cycle [5.3 +/- 0.3, 8.3 +/- 0.5, and 12.0 +/- 0.4 days after the midcycle luteinizing hormone (LH) surge, respectively; means +/- SEM]. Whereas immunoreactive relaxin was nondetectable in the luteal phase of posttreatment cycles, detectable levels of relaxin were observed in 2 of 4, 5 of 6, and 3 of 4 monkeys during hCG treatment in the early, mid and late luteal phase, respectively. Although CG treatment rapidly enhance progesterone levels, the appearance of relaxin was deferred; relaxin was first detectable 9.0 +/- 1.0 and 4.7 +/- 1.9 days after the onset of CG treatment at early and late luteal phases. Patterns of relaxin concentrations differed among groups (P less than 0.05, ANOVA; split plot design) and relaxin levels were lowest (P less than 0.01) in monkeys treated during the early luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Ten chronically hemiovariectomized cynomolgus and rhesus monkeys were luteectomized 5.5 +/- 0.3 days after the midcycle luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surge in two consecutive cycles. The corpus luteum (CL) was removed, weighed, dispersed with collagenase and the luteal cells counted. Luteal cells (50,000/ml) were incubated in Ham's F10 medium for 3 h at 37 degrees C either in the presence or absence of 100 ng/ml human chorionic gonadotropin (hCG). Daily blood samples were taken from the monkeys throughout the study for determination of LH, FSH, estradiol (E2) and progesterone levels. Within 5 days following each luteectomy (LX), all monkeys responded with a significant increase in FSH and LH (P less than 0.05). Ovulatory LH/FSH surges occurred 14.4 +/- 0.5 days after the first LX. Hormonal profiles of serum progesterone prior to the first and second LX, CL weight and number of luteal cells/CL were similar (P greater than 0.05). However, luteal cells obtained at the second LX produced more progesterone (P less than 0.05) in vitro under basal and hCG-stimulated conditions than cells from the first LX. The areas under the LH and FSH curves following the first LX were highly correlated (P less than 0.05) with the in vitro progesterone production following the second LX. Thus, the monkeys with the largest areas under the LH and FSH curves subsequently had the highest in vitro progesterone production.  相似文献   

4.
In the presence of a functional corpus luteum, positive estrogen feedback on the surge modes of gonadotropin secretion is blocked in rhesus monkeys. We investigated the effects of luteectomy (Lx) on the time required for recovery of pituitary responsiveness (LH/FSH surges) to positive estrogen feedback. Estradiol-17 beta-3- benzoate (EB, 50 microgram/kg sc) was given: 1) 24th prior to, 2) the day of, or 3) 24 h after luteal ablation. Daily measurements of serum follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol-17 beta (e2) and progesterone (P) were made on each monkey for 5 days. Serum P fell to undetectable levels within 24 h after Lx, whereas E2 levels in circulation peaked within 24h after injection of EB. Among early follicular phase monkeys, this EB treatment results in typical midcycle type LH/FSH surges within 48h. Lx alone was not soon followed by significant changes in pituitary gonadotropin secretion. When circulating P levels were undetectable the pituitary responded fully to EB; that is, typical midcycle type FSH/LH surges occurred. When serum P was in the midst of declining after Lx, gonadotropin surges were present, but attenuated. However, when P levels remained elevated for more than 24 h after EB injection, the surge modes of FSH/LH secretion remained fully blocked. These results demonstrate that the suppressive influence of luteal secretions (principally progesterone) on positive estrogen feedback regulation of the surge modes of pituitary gonadotropin secretion is quite transient in these primates.  相似文献   

5.
Corpus luteum function in cynomolgus monkeys (Macaca fascicularis) during the menstrual cycle and immediately following parturition was evaluated through in vitro studies on progesterone production by dispersed luteal cells in the presence and absence of human chorionic gonadotropin (hCG) or human prolactin (hPRL). Luteal cells isolated between days 17-20 of the menstrual cycle secreted progesterone (P) during short-term incubation (21.6 +/- 1.2 ngP/ml/5 X 10(4) cells/3 hr, X +/- S.E., n = 7) and responded to the addition of 1-100 ng hCG with a significant (p less than 0.05) increase in P secretion. Cells removed the day of delivery secreted large, but variable (27.9-222 ng/ml, n = 4) amounts of P during short-term incubation. Moreover, hCG (100 ng/ml) stimulation of P production by cells at delivery (176 +/- 19% of control) was less than that of cells from the cycle of (336 +/- 65%). The presence of hPRL (2.5-5000 ng/ml) failed to influence P secretion by luteal cells during short-term incubation in the presence or absence of hCG. P production by luteal cells obtained following delivery declined markedly during 8 days of culture in Ham's F10 medium: 10% fetal calf serum. Continual exposure to 100 ng/ml of hCG or hPRL failed to influence P secretion through Day 2 of culture. Thereafter hCG progressively enhanced (p less than 0.05) P secretion to 613% of control levels at Day 8 of culture. In contrast, hPRL significantly increased P secretion (163% of control levels, p less than 0.05) between Day 2-4 of culture, but the stimulatory effect diminished thereafter. The data indicate that dispersed luteal cells from the cynomolgus monkey provide a suitable model for in vitro studies on the primate corpus luteum during the menstrual cycle, pregnancy, and the puerperium, including further investigation of the possible roles of gonadotropin and PRL in the regulation of luteal function in primates.  相似文献   

6.
Doses of 100 or 200 micrograms of a novel GnRH antagonist ([N-acetyl-D beta Na11-D-pCl-Phe2-D-Phe3-D-Arg6-Phe7-Arg8-D-Ala10]NH2 GnRH) (4 animals/dose) were administered on Days 10/11 of the luteal phase and induced a marked suppression of circulating bioactive LH and progesterone concentrations within 1 day of treatment (P less than 0.01). Thereafter, progesterone concentrations remained low or undetectable until after the next ovulation. Similar results were obtained when 200 micrograms antagonist were given on Days 5/6 of the luteal phase (N = 4). The interval from injection of antagonist (200 micrograms but not 100 micrograms) to ovulation (based on a rise in progesterone above 10 ng/ml) was significantly longer than that from prostaglandin-induced luteal regression to ovulation in control cycles (N = 4/treatment) (range, 13-15 days after antagonist vs 8-10 days after prostaglandin, P less than 0.01). This delay of 4-5 days was equivalent to the duration for which LH concentrations were significantly suppressed by 200 micrograms antagonist when administered to ovariectomized animals (N = 3). Corpus luteum function during the cycle after GnRH antagonist treatment appeared normal according to the pattern of circulating progesterone. These results show that corpus luteum function and preovulatory follicular development in the marmoset monkey are dependent on pituitary gonadotrophin secretion.  相似文献   

7.
To investigate the mechanism of suppression of follicular development during the luteal phase of the human menstrual cycle, the corpus luteum was enucleated surgically from 10 women at various times after ovulation. In the 24 h after CL enucleation there was an immediate and rapid fall in the concentration of oestradiol and progesterone and a temporary decline in the concentration of FSH and LH. Within 3 days, however, all 10 women showed evidence of renewed follicular activity as indicated by a progressive rise in the concentration of oestradiol. This rise was preceded by a rise in the concentration of FSH and LH, and ovulation, as indicated by a mid-cycle surge in LH and rise in the concentration of plasma progesterone, occurred 16-19 days after enucleation. There was no significant difference in the time to ovulation following enucleation at different times of the luteal phase. The post-operative follicular phase, measured from the time of enucleation, was 3 days longer than that observed pre-operatively from the first day of menstrual bleeding. In the follicular phase of post-operative cycles the concentration of FSH was higher and that of oestradiol lower than the corresponding values before surgery. These results indicate that the absence of healthy antral follicles in the luteal phase of the cycle is due to the inhibitory effects of the corpus luteum. The fact that, after CL enucleation, emergence of the dominant follicle was always preceded by a rise in the concentration of FSH and LH suggests that suppression of gonadotrophins by ovarian steroids secreted by the corpus luteum is responsible for the inhibition of follicular development during the luteal phase of the cycle.  相似文献   

8.
Aspiration of ovarian follicular contents in humans is a well-established procedure used to obtain oocytes for fertilization in vitro (IVF). However, the effects of aspiration on the menstrual cycle and resulting luteal function have been incompletely characterized. The present study was designed to investigate alterations in the temporal and endocrine characteristics of menstrual cycles following aspiration of contents of the dominant preovulatory follicle (DF) on day 10 of the cycle in normal rhesus monkeys. When aspiration was performed prior to the preovulatory surge of luteinizing hormone (LH), cycle length was extended to 38.6 ± 8.6 [15] (x days ± SD, [n]), as compared to 29.5 ± 5.7 [8] days when the surge occurred before the time of aspiration. Mean and maximal amounts of progesterone (P) in the luteal phase and the number of days in which P-values were > 1 ng/ml were significantly greater when aspiration was performed prior to the surge of LH than for aspiration after this event. Laparoscopic observations made in the midluteal phase in animals of the former group demonstrated that the corpus luteum (CL was derived from a follicle other than the original DF which had been aspirated on day 10 of the menstrual cycle; observations in the latter group of animals indicated that the CL was derived from the DF.  相似文献   

9.
We have investigated the pituitary and luteal responses to LH-RH and their related changes. 11 normal women were studied during the luteal phase (day +4/+11). Blood samples were collected every 15 min for a basal period of 180 and 120 min after the intravenous administration of 25 micrograms of LH-RH. Progesterone (P) and LH were assayed by radioimmunoassay. Data were analyzed as maximum peak and its percent increase (delta max), integrated secretory area (ISA) and percent increase of ISA (delta A) in respect to basal values for both P and LH. LH-RH elicited a secretory response of both hormones in all cases. ISA of LH was significantly greater after LH-RH administration in respect to basal values (p less than 0.001) and delta max accounted to 475 +/- (SE) 36% of the basal concentration. Luteal responsiveness varied from about 115-130% to more marked increments. ISA of P differed from basal to stimulated conditions (p less than 0.05) and delta max was 166 +/- (SE) 14%. The analysis of temporal relationship between P and LH secretion showed that LH promptly rose after LH-RH, while the enhancement of P plasma levels occurred within 31 +/- 19 min after LH rise. Then P levels reached a plateau, values of which were statistically different from those observed before LH-RH administration. In two cases where luteal function was blunted or absent, in spite of marked increments of LH, P secretion did not occur. These data are consistent with the presence of close relationships between hypothalamic, pituitary and luteal functions and strengthen the contention about the usefulness of LH-RH during luteal phase for the lifespan and maintenance of corpus luteum.  相似文献   

10.
Adult 15 female Japanese monkeys showing regular menstrual cycles were subjected to the daily blood sampling for the measurement of estradiol (E2), progesterone (P) and biological LH in the mating season. Monkeys were maintained under controlled conditions in a standardized environment. Of the 35 cycles observed, 18 (51.4%) were estimated as anovulatory cycles and 17 (48.6%) were ovulatory cycles. The anovulatory cycles were classified into three types according to the peak level of E2 (Type I: E2 less than 50 pg/ml 3 cycles, Type II: E2 less than 170 pg/ml 7 cycles, Type III: E2 greater than 170 pg/ml 8 cycles). The ovulatory cycles were classified into two Types according to the peak level of P (Type IV: P less than 5.0 ng/ml 5 cycles, Tyep V: P greater than 5.0 ng/ml 12 cycles). The menstrual cycle was 27.5 +/- 7.8 days. The differences between mid cycle LH surge and P level in Type IV and in Type V were statistically significant. It was revealed that female Japanese monkeys kept under controlled condition in the mating season showed high incidence of various types of anovulatory cycles and that the ovulatory cycles with low P elevation in the mid luteal phase showed low LH and P secretions on the mid cycle date.  相似文献   

11.
The Yunnan snub-nosed monkey (Rhinopithecus bieti) is one of the most endangered species in the world, and it is endemic to China. According to our knowledge, there was no information on reproduction for this species. The present study was designed to understand the characteristics of reproductive hormone secretion during the menstrual cycle and pregnancy of this species by monitoring urinary estrone conjugate (E1C), pregnanediol-3-glucuronide (PdG), bioactive follicle-stimulating hormone (FSH), and luteinizing hormone (LH). The urine samples were collected each day from four adult females for eight menstrual cycles, and once in 3 days during pregnancy (three full-term pregnancies, one mid-term abortion). The steroid conjugate was tested by radioimmunoassays (RIAs), and bioactive FSH and LH levels were measured in vitro by the sensitive bioassays granulosa cell aromatize bioassay (GAB) and rat interstitial cell testosterone (RICT), respectively. The results showed that: 1) E1C presented a preovulatory peak (183.9 +/- 8.6 ng/mgCr) followed by a definite elevation of PdG; 2) PdG in the luteal phase (754.4 +/- 30.6 ng/mgCr) was three- to fivefold higher than during the corresponding follicular phase (198.3 +/- 11.4 ng/mgCr); 3) the peaks of bio-LH and bio-FSH were on the same day, while the E1C peak was 1 or 2 days before the peaks for these two hormones; 4) bio-FSH levels were higher in the follicular phase than in the luteal phase, and bio-LH levels elevated slightly in the luteal phase; 5) the mean cycle length was 23.6 +/- 3.5 days (n = 3) based upon successive urinary LH peaks; 6) based on the interval from the day of E1C peak to the day of parturition, the gestation was 203.7 +/- 2.5 days (n = 3); and 7) both E1C and PdG increased and remained high after pregnancy, with a sharp decrease in basal levels following parturition or mid-term abortion. The results suggested that the pattern of reproductive hormones for R. bieti is similar to that of other Old World monkeys, but the concentration of the hormones is different from that of other species. This species has a longer progestation period, which may be related to its classification status.  相似文献   

12.
We have developed culture methods for human luteinizing granulosa cells (GLC) that support the timely and dynamic secretion of estrogen (estradiol-17beta; E(2)), progesterone (P(4)), and relaxin (Rlx) in patterns that mimic serum hormone concentrations during the luteal phase of the menstrual cycle. Additional hCG, to simulate rescue of the corpus luteum, prevented the normal decline in GLC hormone production. To test the importance of the P(4) receptor in P(4) production, GLC were treated in vitro with two P(4) receptor antagonists. Human GLC received one of two hCG support protocols: a Baseline group simulating the normal luteal phase or a Rescue group simulating early pregnancy. Baseline and Rescue groups were treated with either RU-486 or HRP2000 either early or late in the cell culture period. The effects of treatments or control on ovarian steroid and peptide hormone production were determined (significant difference was P < 0.05). In the Rescue group, late treatment resulted in an immediate and dramatic decline in E(2), P(4), and Rlx secretion to nearly nondetectable levels within 1 day after treatment, and hormones remained depressed for the remaining 10 days of culture. In contrast, early treatment resulted in a decline in steroid hormone secretion that returned to control levels within 5 days of cessation of treatment, and Rlx secretion was delayed for approximately 5 days more than in controls. The data support the hypothesis that P(4) may be a required autocrine factor, not only for its own production but also for the maintenance of full endocrine function of the corpus luteum.  相似文献   

13.
Seasonal analysis of 1239 captive births of Siberian tigers (Panthera tigris altaica) indicated a peak in April to June (P less than 0.001). Studies on seven animals in Minnesota indicated that behavioral heat cycles and ovarian follicular phase cycles began in late January and ceased in early June. Behavioral observation of 12 heat cycles in four tigers yielded an estrous length of 5.3 +/- 0.2 days and an interestrous interval of 25.0 +/- 1.3 days. Hormone assays on weekly blood samples (N = 180) from three female tigers indicated 16 cycles in two breeding seasons. Peak estradiol-17 beta levels were 46.7 +/- 6.0 pg/ml (N = 17) and interestrous concentrations were 8.7 +/- 0.66 pg/ml (N = 28) during the breeding season. Anestrous estradiol levels were 4.2 +/- 0.5 pg/ml (N = 70). The interestrous interval between estradiol peaks was 24.9 +/- 1.3 days (N = 9) with two outliers of 42 days. Serum progesterone concentrations from February to June were 1.2 +/- 0.15 ng/ml (N = 32), providing no evidence for ovulation or corpus luteum formation. Luteinizing hormone (LH) levels were 0.56 +/- 0.04 ng/ml (N = 180). Serum testosterone (r=0.71, P less than 0.001) and androstenedione levels (r=0.75, P less than 0.001) were correlated with estradiol during the breeding season. The duration of anestrus was 8 mo in two of these tigers. The interval was shortened in one tiger by exposure to a 16L:8D photoperiod. The Siberian tiger appears to be a polyestrous seasonal breeder and an induced ovulator whose breeding season may be synchronized by photoperiod.  相似文献   

14.
Experiments were conducted to examine the pulsatile nature of biologically active luteinizing hormone (LH) and progesterone secretion during the luteal phase of the menstrual cycle in rhesus monkeys. As the luteal phase progressed, the pulse frequency of LH release decreased dramatically from a high of one pulse every 90 min during the early luteal phase to a low of one pulse every 7-8 h during the late luteal phase. As the pulse frequency decreased, there was a corresponding increase in pulse amplitude. During the early luteal phase, progesterone secretion was not episodic and there were increments in LH that were not associated with elevations in progesterone. However, during the mid-late luteal phase, progesterone was secreted in a pulsatile fashion. During the midluteal phase (Days 6-7 post-LH surge), 67% of the LH pulses were associated with progesterone pulses, and by the late luteal phase (Days 10-11 post-LH surge), every LH pulse was accompanied by a dramatic and sustained release of progesterone. During the late luteal phase, when the LH profile was characterized by low-frequency, high-amplitude pulses, progesterone levels often rose from less than 1 ng/ml to greater than 9 ng/ml and returned to baseline within a 3-h period. Thus, a single daily progesterone determination is unlikely to be an accurate indicator of luteal function. These results suggest that the changing pattern of mean LH concentrations during the luteal phase occurs as a result of changes in frequency and amplitude of LH release. These changes in the pulsatile pattern of LH secretion appear to have profound effects on secretion of progesterone by the corpus luteum, especially during the mid-late luteal phase when the patterns of LH concentrations are correlated with those of progesterone.  相似文献   

15.
Bilaterally ovariectomized ewes were used to investigate the effect of systemic administration (i.v.) of charcoal-treated aqueous luteal extracts from ovine corpora lutea on plasma concentrations of pituitary gonadotrophins. Jugular blood samples were taken every 15 min at least 5 h before (control period) and 5 h after (treatment period) injection. In Expt 1, the administration of luteal extract from corpora lutea of days 70-76 of pregnancy, but not of the extract prepared from muscular tissue, resulted in a significant decrease of mean concentrations of luteinizing hormone (LH) (P < 0.02) and frequency of LH pulses (P < 0.01). Plasma follicle-stimulating hormone (FSH) concentrations were not affected by injections of either extract. These findings provide the first demonstration of the presence of a nonsteroidal factor in the corpus luteum of midpregnancy that selectively suppresses the secretion of LH. In Expt 2, mean concentrations of LH and FSH and frequency of LH pulses were unaffected by injections of luteal extracts from ovine corpora lutea of days 10-12 of the oestrous cycle or day 15 of pregnancy. These data suggest that some factor(s), probably from the fetoplacental endocrine unit, is required to ensure the production of a significant quantity of the luteal LH-inhibiting factor after day 15 of pregnancy. In Expt 3, treatment of luteal extract from corpora lutea of day 70 of pregnancy with proteolytic enzymes destroyed the LH-inhibiting activity, suggesting the proteic nature of the luteal LH-inhibiting factor. In Expt 4, plasma concentrations of LH were not affected by injection of charcoal-treated extract prepared from fetal cotyledonary tissue of days 110-120 of pregnancy suggesting that the LH-inhibiting factor exclusively originates from the corpus luteum during pregnancy. These experiments provide the first direct evidence for the existence of a potent nonsteroidal factor of luteal origin that specifically inhibits pulsatile secretion of LH, without influencing FSH release in female animals. We propose the term LH-release-inhibiting factor (LH-RIF) to describe this activity.  相似文献   

16.
Daily measurement of serum luteinizing hormone, estradiol-17beta, and progesterone were made during the menstrual cycle in nine pigtail macaques (Macaca nemestrina). All data were normalized to the day of the luteinizing hormone peak. Serum estradiol-17beta increased from approximately 100 pg/ml during the early follicular phase to 442 +/- 156 pg/ml during the maximum midcycle concomitant with the luteinizing hormone peak, and a small increase in serum estradiol-17beta was observed during the luteal phase coincident with the progesterone peak. Serum progesterone values increased slightly at the time of the luteinizing hormone peak and increased from 0.2-0.3 ng/ml during the midfollicular phase to peak levels of 8.3 +/- 1.75 ng/ml 9 days after the luteinizing hormone surge. Serum luteinizing hormone remained low and relatively constant throughout the early and midcycle, then sharply increased approximately four-fold to peak values of 6.25 +/- 0.9 ng/ml. Sex skin swelling increased slowly during the follicular phase and declined slowly throughout the early luteal phase. Rectal temperature did not change significantly throughout the menstrual cycle. The similarity of plasma sex hormone changes during the menstrual cycle between women and the pigtail macaque suggested that this nonhuman primate should be a useful animal model for studying human reproduction.  相似文献   

17.
The endogenous opioid peptides (EOPs) may inhibit the rate of hypothalamic gonadotropin-releasing hormone (GnRH) release and hence the frequency of pulsatile luteinizing hormone (LH) release, particularly in the luteal phase of the menstrual cycle. Our objectives were to compare the effects of an opiate antagonist, naloxone (NAL), on the patterns of LH, estradiol-17 beta (E2), and progesterone (P4) secretion during the follicular and luteal phases of the macaque menstrual cycle. Plasma levels of E2, P4, and bioactive LH were measured in serial, 15-min blood samples during 8-hr infusions of NAL (2 mg/hr) or saline, either on Days 5 or 6 of the follicular phase (FN and FS, n = 5 and 4, respectively) or on Days 8, 9, or 10 of the luteal phase (LN and LS, n = 5 each) of a menstrual cycle. The pulsatile parameters of each hormone were determined by PULSAR analysis and the correspondence of steroid pulses with those of LH were analyzed for each cycle stage in each animal. As expected, LH mean levels and pulse frequencies in LS monkeys were only about one-third of those values in FS animals. NAL had no effects on pulsatile LH, E2, or P4 release during the follicular phase. In contrast, luteal phase NAL infusions increased both LH mean levels and pulse frequencies to values which were indistinguishable from those in FS animals. LH pulse amplitudes did not differ among the four groups. Mean levels and pulse frequencies of P4 secretion in LS monkeys were about 4- and 14-fold greater than those values in FS animals. Mean levels and pulse amplitudes of P4 release in LN animals were greater than those values in all other groups. LH and E2 pulses were not closely correlated in follicular phase animals, and this pulse association was not altered by NAL. In FS monkeys, LH and P4 pulses were not correlated; however, NAL increased this LH-p4 pulse correspondence. LH and P4 pulses were closely correlated in luteal phase animals and this association was not affected by NAL. Our data suggest that the EOPs inhibit the frequency of pulsatile LH secretion in the presence of luteal phase levels of P4. During the midfollicular phase when LH pulses occur every 60 to 90 min, the opioid antagonist NAL alters neither the pulsatile pattern of LH release nor E2 secretion, but NAL may directly affect P4-secreting cells.  相似文献   

18.
The effects of 30 min of exercise (74.1 +/- 3.0% (VO2), on the responses of progesterone (P), estradiol (E2), follicle stimulating hormone (FSH), and luteinizing hormone (LH) were investigated in 10 women. With such exercise significant increments occurred in P (37.6 +/- 9.5%) and E2 (13.5 +/- 7.5%) (P less than 0.05), whereas no changes were observed in FSH and LH (p greater than 0.05). Exercise in the luteal phase and during menses provoked similar changes in P, but E2 concentrations remained unchanged when exercise occurred during menses (p greater than 0.05). With 8-11 weeks of training the menstrual cycles were quite irregular and retesting of subjects in the same phase of the cycle was not possible. Yet, when subjects were retested after training, no changes occurred in P, E2 or LH (p greater than 0.05) but a decrement did occur in FSH (p less than 0.10). Thus, heavy exercise in untrained subjects provokes significant increments in ovarian hormones, whereas no such increments are observed in trained subjects exercising at the same absolute workload.  相似文献   

19.
RU486 is a steroid which possesses great affinity for the progesterone (P) receptor, but which has no P activity. It has been shown to be, as a result, a potent P antagonist. In the present study, we investigated the effect of this compound on the luteal phase of the rhesus monkey. The day of ovulation was diagnosed with a +/- 12 h accuracy, using serial laparoscopies and serum estradiol (E2) determinations, in regularly cycling rhesus monkeys. RU486 was administered by gavage (10 mg daily) in different regimens during the luteal phase: Group 1, days 1-5; Group 2, days 5-9; Group 3, days 9-13; and Groups 4, days 9-13, plus hCG (30, 60, 90, 180 and 360 IU i.m. on days 6-10). RU486 induced vaginal bleeding within 24-72 h after the initial administration in Groups 1-3. Animals of Group 4 presented luteal lengths ranging from 9-12 days. Progesterone concentrations at the onset of vaginal bleeding were 2.1 +/- 0.3, 4.9 +/- 0.6, 2.6 +/- 0.4 and 11.2 +/- 1.5 ng/ml (x +/- SEM) for animals of Groups 1-4, respectively. Serum follicle stimulating hormone (FSH), luteinizing hormone (LH), E2 and P levels were not altered during treatment. The availability of a compound such as RU486, that consistently induces vaginal bleeding due to its action at the target level (endometrium) without affecting the hormonal events of the menstrual cycle, opens a new approach to post-coital and interceptive contraception.  相似文献   

20.
A true hermaphrodite with a bilateral ovotestis and a 46 XX karyotype was studied. This 14-year old subject developed ambiguous puberty with bilateral gynecomastia and stage IV public hair. Relatively high level of testosterone (T) (2.80 ng/ml), was found. The 5 alpha-reductase activity for T in the pubic skin was similar to that observed in normal adult males. A hemorrhagic corpus luteum in the left ovotestis was observed at laparotomy. The luteal phase immediately after dexamethasone administration (1 mg/day for 7 days) was characterized by a significant decrease of plasma androgens, T and androstenedione (A). The constantly low level of T (0.30 ng/ml) during the luteal phase in this subject did not appear to be due to the previously administered dexamethasone. This decrease of T production in the luteal phase might be secondary either to the increase of the estradiol-17 beta (E2) secreted by the corpus luteum or to the decrease of LH levels. Both mechanisms might act concomitantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号