首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The relationship between Al-induced depolarization of root-cell transmembrane electrical potentials (Em) and Al tolerance in wheat (Triticum aestivum L.) was investigated. Al exposure induced depolarizations of Em in the Al-tolerant wheat cultivars Atlas and ET3, but not in the Al-sensitive wheat cultivars Scout and ES3. The depolarizations of Em occured in root cap cells and as far back as 10 mm from the root tip. The depolarization was specific to Al3+; no depolarization was observed when roots were exposed to the rhizotoxic trivalent cation La3+. The Al-induced depolarization occurred in the presence of anion-channel antagonists that blocked the release of malate, indicating that the depolarization is not due to the electrogenic efflux of malate2-. K+-induced depolarizations in the root cap were of the same magnitude as Al-induced depolarizations, but did not trigger malate release, indicating that Al-induced depolarization of root cap cell membrane potentials is probably linked to, but is not sufficient to trigger, malate release.  相似文献   

2.
Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots   总被引:4,自引:0,他引:4  
We investigated the relation between the toxic effect of aluminum (Al) on root growth and the lignin deposition in wheat ( Triticum aestivum L. cvs Atlas 66 and Scout 66). In the Al-tolerant cultivar Atlas 66, control treatment without AlCl3 at pH 4.75, cell length increased dramatically in the portion of the root that was 0.6 to 3.2 mm from the root cap junction (approximately 1.0 to 3.6 mm from the root tip). However, treatment with 20 μ M AlCl3 for 24 and 48 h completely inhibited root elongation and markedly decreased the length and increased the diameter of the cells in the same portion of the root. Moreover, marked deposition of lignin was observed in the cells that corresponded to the portion 1.5 to 4.5 mm from the root tip in Atlas 66 roots treated with 20 μ M AlCl3, while no deposition of lignin was detected in control roots. Treatment with 5 μ M AlCl3 slightly inhibited root growth and there was no deposition of lignin in the root. On the other hand, in roots of the Al-sensitive cultivar Scout 66, treatment with 5 μ M AlCl3 completely inhibited root growth and markedly induced deposition of lignin. These results suggest that lignification in the elongating region coincided with the extent of inhibition of root growth by Al in two wheat cultivars that differed in their sensitivity to Al.  相似文献   

3.
Control of rhizosphere pH and exclusion of Al by the plasma membrane have been hypothesized as possible mechanisms for Al tolerance. To test primarily the rhizosphere pH hypothesis, wheat cultivars (Triticum aestivum L. `Atlas 66' and `Scout'), which differ in Al tolerance, were grown in either complete nutrient solution, or 0.6 millimolar CaSO4, with and without Al at pH 4.50. A microelectrode system was used to simultaneously measure rhizosphere pH, K+, and H+ fluxes, and membrane potentials (Em) along the root at various distances from the root apex. In complete nutrient solution, the rhizosphere pH associated with mature root cells (measured 10-40 millimeters from the root apex) of Al-tolerant `Atlas 66' was slightly higher than that of the bulk solution, whereas roots of Al-sensitive `Scout' caused a very small decrease in the rhizosphere pH. In CaSO4 solution, no significant differences in rhizosphere pH were found between wheat cultivars, while differential Al tolerance was still observed, indicating that the rhizosphere pH associated with mature root tissue is not directly involved in the mechanism(s) of differential Al tolerance. In Al-tolerant `Atlas 66', growth in a CaSO4 solution with 5 micromolar Al (pH 4.50) had little effect on net K+ influx, H+ efflux, and root-cell membrane potential measured in cells of mature root tissue (from 10-40 mm back from apex). However, in Al-sensitive `Scout', Al treatment caused a dramatic inhibition of K+ influx and both a moderate reduction of H+ efflux and depolarization of the membrane potential. These results demonstrate that increased Al tolerance in wheat is associated with the increased ability of the tolerant plant to maintain normal ion fluxes and membrane potentials across the plasmalemma of root cells in the presence of Al.  相似文献   

4.
The present study was conducted to investigate the cell wall properties in two wheat (Triticum aestivum L.) cultivars differing in their sensitivity to Al stress. Seedlings of Al-resistant, Inia66 and Al-sensitive, Kalyansona cultivars were grown in complete nutrient solutions for 4 days and then subjected to treatment solutions containing Al (0, 50 microM) in a 0.5 mM CaCl(2) solution at pH 4.5 for 24 h. Root elongation was inhibited greatly by the Al treatment in the Al-sensitive cultivar compared to the Al-resistant cultivar. The Al-resistant cultivar accumulated less amount of Al in the root apex than in the Al-sensitive cultivar. The contents of pectin and hemicellulose in roots were increased with Al stress, and this increase was more conspicuous in the Al-sensitive cultivar. The molecular mass of hemicellulosic polysaccharides was increased by the Al treatment in the Al-sensitive cultivar. The increase in the content of hemicellulose was attributed to increase in the contents of glucose, arabinose and xylose in neutral sugars. Aluminum treatment increased the contents of ferulic acid and p-coumaric acid especially in the Al-sensitive cultivar by increasing the activity of phenylalanine ammonia lyase (PAL, EC 4.3.1.5). Aluminum treatment markedly decreased the beta-glucanase activity in the Al-sensitive cultivar, but did not exert any effect in the Al-resistant cultivar. These results suggest that the modulation of the activity of beta-glucanase with Al stress may be involved in part in the alteration of the molecular mass of hemicellulosic polysaccharides in the Al-sensitive cultivar. The increase in the molecular mass of hemicellulosic polysaccharides and ferulic acid synthesis in the Al-sensitive cultivar with Al stress may induce the mechanical rigidity of the cell wall and inhibit the elongation of wheat roots.  相似文献   

5.
大豆耐铝性品种差异及其与有机酸的关系   总被引:10,自引:2,他引:8  
刘拥海  俞乐 《广西植物》2004,24(6):554-557,549
从 1 0个大豆品种中筛选出两个耐铝性差异显著的品种 ,研究了其耐铝性与有机酸的关系。经铝处理后 ,吴川品种的相对根长为 1 3 3 .5 % ,化州只有 68.9% ,表明吴川相对耐铝 ,化州对铝较敏感。将不同浓度的AlCl3 加入营养液中处理大豆 1 0d,化州较吴川根长受到较大影响 ,进一步证实吴川相对耐铝毒 ,而化州对酸铝敏感。机理研究发现大豆在铝胁迫下根系可分泌两种有机酸 (草酸、柠檬酸 ) ,其中吴川根系草酸分泌速率提高了 74% ,化州几乎没有提高 ,表明耐铝性大豆品种的根系草酸分泌速率明显提高 ,可增强其缓解酸铝毒性的能力。而二者分泌柠檬酸的速率虽然均有显著提高 ,但处理后感抗品种之间差异不大 ,表明柠檬酸在缓解铝毒性中的作用不大。铝处理下大豆根系虽然分泌两种有机酸 ,但草酸在大豆耐酸铝机制中的作用可能更为重要。  相似文献   

6.
We investigated the role of organic acids in conferring Al tolerance in near-isogenic wheat (Triticum aestivum L.) lines differing in Al tolerance at the Al tolerance locus (Alt1). Addition of Al to nutrient solutions stimulated excretion of malic and succinic acids from roots of wheat seedlings, and Al-tolerant genotypes excreted 5- to 10-fold more malic acid than Al-sensitive genotypes. Malic acid excretion was detectable after 15 min of exposure to 200 [mu]M Al, and the amount excreted increased linearly over 24 h. The amount of malic acid excreted was dependent on the external Al concentration, and excretion was stimulated by as little as 10 [mu]M Al. Malic acid added to nutrient solutions was able to protect Al-sensitive seedlings from normally phytotoxic Al concentrations. Root apices (terminal 3-5 mm of root) were the primary source of the malic acid excreted. Root apices of Al-tolerant and Al-sensitive seedlings contained similar amounts of malic acid before and after a 2-h exposure to 200 [mu]M Al. During this treatment, Al-tolerant seedlings excreted about four times the total amount of malic acid initially present within root apices, indicating that continual synthesis of malic acid was occurring. Malic acid excretion was specifically stimulated by Al, and neither La, Fe, nor the absence of Pi was able to elicit this response. There was a consistent correlation of Al tolerance with high rates of malic acid excretion stimulated by Al in a population of seedlings segregating for Al tolerance. These data are consistent with the hypothesis that the Alt1 locus in wheat encodes an Al tolerance mechanism based on Al-stimulated excretion of malic acid.  相似文献   

7.
Summary Screening large populations of plant species for Al tolerance requires simple and rapid tests. In this study, root characteristics of 12 cultivars of triticale (X Triticosecale, Witt Mack), wheat (Triticum aestivum L.), and rye (Secale cereale L.) were measured in nutrient solution with 0 or 6 ppm Al added. Aluminum injury to roots of triticale and wheat was characterized by decreases in root length, increases in the number of roots, and in Al-sensitive Redcoat and Arthur wheats by decrease in root weight. Root length and number of roots were correlated in triticale (r=−0.73*) and in wheat (r=−0.85*). Root length was also correlated with root weight in wheat (r=0.65*); there was no relationship between the number of roots and weight. Differences in Al tolerance of cultivars of the three species were greater when the solution was adjusted to pH 4.8 only on the first day of the experiment than when pH was maintained at pH 4.8 throughout the growing period. Triticale and rye cultivars low in ability to increase solution pH gradually overcame Al toxicity by increasing the nutrient solution pH between 12 and 22 days. Aluminum sensitive triticale and wheat accumulated more Al in roots than tolerant cultivars when the solution pH was not adjusted daily; but no differences in Al accumulation were obtained between wheat cultivars at constant pH value. This study indicated that root length and number of roots can be reliably used for screening triticales for Al tolerance within 12 days of exposure to Al. Root length, Al concentration, and dry weight after 22 days of Al treatment were also reliable criteria for evaluating differential Al tolerances among triticale cultivars.  相似文献   

8.
The role of Al interactions with root-cell plasma membrane (PM) Ca2+ channels in Al toxicity and resistance was studied. The experimental approach involved the imposition of a transmembrane electrical potential (via K+ diffusion) in right-side-out PM vesicles derived from roots of two wheat (Triticum aestivum L.) cultivars (Al-sensitive Scout 66 and Al-resistant Atlas 66). We previously used this technique to characterize a voltage-dependent Ca2+ channel in the wheat root PM (J.W. Huang, D.L. Grunes, L.V. Kochian [1994] Proc Natl Acad Sci USA 91: 3473-3477). We found that Al3+ effectively blocked this PM Ca2+ channel; however, Al3+ blocked this Ca2+ channel equally well in both the Al-sensitive and -resistant cultivars. It was found that the differential genotypic sensitivity of this Ca2+ transport system to Al in intact roots versus isolated PM vesicles was due to Al-induced malate exudation localized to the root apex in Al-resistant Atlas but not in Al-sensitive Scout. Because malate can effectively chelate Al3+ in the rhizosphere and exclude it from the root apex, the differential sensitivity of Ca2+ influx to Al in intact roots of Al-resistant versus Al-sensitive wheat cultivars is probably due to the maintenance of lower Al3+ activities in the root apical rhizosphere of the resistant cultivar.  相似文献   

9.
Short-term Al treatment (90 microM Al at pH 4.5 for 1 h) of the distal transition zone (DTZ; 1-2 mm from the root tip), which does not contribute significantly to root elongation, inhibited root elongation in the main elongation zone (EZ; 2.5-5 mm from the root tip) to the same extent as treatment of the entire maize (Zea mays) root apex. Application of Al to the EZ had no effect on root elongation. Higher genotypical resistance to Al applied to the entire root apex, and specifically to the DTZ, was expressed by less inhibition of root elongation, Al accumulation, and Al-induced callose formation, primarily in the DTZ. A characteristic pH profile along the surface of the root apex with a maximum of pH 5.3 in the DTZ was demonstrated. Al application induced a substantial flattening of the pH profile moreso in the Al-sensitive than in the Al-resistant cultivar. Application of indole-3-acetic acid to the EZ but not to the meristematic zone significantly alleviated the inhibition of root elongation induced by the application of Al to the DTZ. Basipetal transport of exogenously applied [(3)H]indole-3-acetic acid to the meristematic zone was significantly inhibited by Al application to the DTZ in the Al-sensitive maize cv Lixis. Our results provide evidence that the primary mechanisms of genotypical differences in Al resistance are located within the DTZ, and suggest a signaling pathway in the root apex mediating the Al signal between the DTZ and the EZ through basipetal auxin transport.  相似文献   

10.
Summary Two barley cultivars differing in Al tolerance, Kearney (Al-sensitive) and Dayton (Al-tolerant) were exposed to Al stress with varied Ca and Mg concentrations in the nutrient solution. Increase in calcium and magnesium supply protected root meristems and root growth from Al toxicity more effectively in the Al-tolerant cultivar than in the Al-sensitive one. Lateral roots were much more sensitive to Al than adventitious roots. Exposure to 0.33 mM Al with low concentrations of Ca (1.3 mM) and Mg (0.3 mM) caused damage to root tips in both cultivars. Increasing the Ca concentration to 4.3 and 6.3 mM prevented root tip damage in Dayton but not in Kearney. In the Al-tolerant cultivar Dayton, however, the root tips regenerated even at the low Ca concentration of 1.3 mM, whereas 6.3 mM Ca was necessary for this to occur in Kearney. This difference was due to the fact that Dayton's root meristem cells were more resistant to damage. Magnesium responses also varied between the two cultivars. At the lowest Ca concentration an increase in Mg to 6.3 mM permitted regeneration of damaged Kearney root tips and completely prevented any damage in Dayton. It is to be assumed that the different responses of the two cultivars are due to differences in plasma membrane properties.  相似文献   

11.
Two kinds of Polygonum species (Polygonum aviculare L. and Polygonum lapathifolium L.) grown in tea garden soils at pH around 3.5 and one Polygonum bungeanum Turcz grown in neutral soils were collected to investigate the mechanisms involved in their high Al resistance. Hydroponic experiments showed that the root elongation was only inhibited by 15% in P. aviculare and 35% in P. lapathifolium after exposure to 50 μM Al for 24 h. Their Al resistance was respectively higher than and similar to that in an Al resistant buckwheat (Fagopyrum esculentum Moench) cultivar. In contrast, P. bungeanum was much more Al sensitive since the root elongation was inhibited by 80% under the same condition. The difference in Al resistance among Polygonum species was confirmed in a 10-d intermittent Al treatment experiment, the root biomass of the first two species were unaltered and decreased by 50% in the latter species. However, high Al accumulation was not found in the leaves, indicating these species were not Al accumulators. Oxalate efflux was detected in root exudates of both Al resistant species, efflux initiated within 30 min treatment of 50 μM Al. No organic acid anions were detected in the root exudates of the Al sensitive species. The anion channel inhibitor phenylglyoxal (PG) inhibited the oxalate efflux greatly. Inhibition of root elongation was greater in the presence of PG, confirming that oxalate efflux was associated with the Al resistance. However, since the efflux rate was much lower than their related species buckwheat, other mechanisms must be involved in Al resistance and these need to be studied further.  相似文献   

12.
Rice (Oryza sativa L.) roots were fed with L-ascorbic acid (AsA) and its putative precursors to observe AsA and oxalate concentrations and the resistance of rice to chilling, water stress, and Al toxicity. AsA concentration was significantly enhanced in both shoots and roots of rice seedlings by feeding with D-glucose or L-galactono-gamma-lactone. AsA or L-galactono-gamma-lactone treatment increased accumulation of oxalate mainly in soluble form, while these treatments decreased electrolyte leakage from root cells, H2O2 and lipid peroxidation level in rice seedlings subjected to chilling, water stress, and Al toxicity. They also alleviated the inhibition on root growth by Al. These results indicated that AsA and its immediate precursor protected plants against the oxidative damages induced by various stresses. However, 0.5 mM AsA and 10 mM L-galactono-gamma-lactone treatment had no significant effect on superoxide dismutase and catalase activity and ascorbate-peroxidase activities. Enhanced Al resistance caused by AsA and L-galactono-gamma-lactone may possibly be resulted from increased level of oxalate, which acts as metal chelator. Thus it is proposed that manipulation of AsA and oxalate biosynthesis through enhancement of L-galactono-gamma-lactone level in plants could be a strategy for improving abiotic stress tolerance.  相似文献   

13.
The influence of Al exposure on long-distance Ca2+ translocation from specific root zones (root apex or mature root) to the shoot was studied in intact seedlings of winter wheat (Triticum aestivum L.) cultivars (Al-tolerant Atlas 66 and Al-sensitive Scout 66). Seedlings were grown in 100 [mu]M CaCl2 solution (pH 4.5) for 3 d. Subsequently, a divided chamber technique using 45Ca2+-labeled solutions (100 [mu]M CaCl2 with or without 5 or 20 [mu]M AlCl3, pH 4.5) was used to study Ca2+ translocation from either the terminal 5 to 10 mm of the root or a 10-mm region of intact root approximately 50 mm behind the root apex. The Al concentrations used, which were toxic to Scout 66, caused a significant inhibition of Ca2+ translocation from the apical region of Scout 66 roots. The same Al exposures had a much smaller effect on root apical Ca2+ translocation in Atlas 66. When a 10-mm region of the mature root was exposed to 45Ca2+, smaller genotypic differences in the Al effects effects on Ca2+ translocation were observed, because the degree of Al-induced inhibition of Ca2+ translocation was less than that at the root apex. Exposure of the root apex to Al inhibited root elongation by 70 to 99% in Scout 66 but had a lesser effect (less than 40% inhibition) in Atlas 66. When a mature root region was exposed to Al, root elongation was not significantly affected in either cultivar. These results demonstrate that genotypic differences in Al-induced inhibition of Ca2+ translocation and root growth are localized primarily in the root apex. The pattern of Ca2+ translocation within the intact root was mainly basipetal, with most of the absorbed Ca2+ translocated toward the shoot. A small amount of acropetal Ca2+ translocation from the mature root regions to the apex was also observed, which accounted for less than 5% of the total Ca2+ translocation within the entire root. Because Ca2+ translocation toward the root apex is limited, most of the Ca2+ needed for normal cellular function in the apex must be absorbed from the external solution. Thus, continuous Al disruption of Ca2+ absorption into cells of the root apex could alter Ca2+ nutrition and homeostasis in these cells and could play a pivotal role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars.  相似文献   

14.
Ryan PR  Kochian LV 《Plant physiology》1993,102(3):975-982
Aluminum (Al) is toxic to plants at pH < 5.0 and can begin to inhibit root growth within 3 h in solution experiments. The mechanism by which this occurs is unclear. Disruption of calcium (Ca) uptake by Al has long been considered a possible cause of toxicity, and recent work with wheat (Triticum aestivum L. Thell) has demonstrated that Ca uptake at the root apex in an Al-sensitive cultivar (Scout 66) was inhibited more than in a tolerant cultivar (Atlas 66) (J.W. Huang, J.E. Shaff, D.L. Grunes, L.V. Kochian [1992] Plant Physiol 98: 230-237). We investigated this interaction further in wheat by measuring root growth and Ca uptake in three separate pairs of near-isogenic lines within which plants exhibit differential sensitivity to Al. The vibrating calcium-selective microelectrode technique was used to estimate net Ca uptake at the root apex of 6-d-old seedlings. Following the addition of 20 or 50 [mu]M AlCl3, exchange of Ca for Al in the root apoplasm caused a net Ca efflux from the root for up to 10 min. After 40 min of exposure to 50 [mu]M Al, cell wall exchange had ceased, and Ca uptake in the Al-sensitive plants of the near-isogenic lines was inhibited, whereas in the tolerant plants it was either unaffected or stimulated. This provides a general correlation between the inhibition of growth by Al and the reduction in Ca influx and adds some support to the hypothesis that a Ca/Al interaction may be involved in the primary mechanism of Al toxicity in roots. In some treatments, however, Al was able to inhibit root growth significantly without affecting net Ca influx. This suggests that the correlation between inhibition of Ca uptake and the reduction in root growth may not be a mechanistic association. The inhibition of Ca uptake by Al is discussed, and we speculate about possible mechanisms of tolerance.  相似文献   

15.
Root apical aluminum (Al) exclusion via Al-activated root citrate exudation is widely accepted as the main Al-resistance mechanism operating in maize (Zea mays) roots. Nonetheless, the correlation between Al resistance and this Al-exclusion mechanism has not been tested beyond a very small number of Al-resistant and Al-sensitive maize lines. In this study, we conducted a comparative study of the physiology of Al resistance using six different maize genotypes that capture the range of maize Al resistance and differ significantly in their genetic background (three Brazilian and three North American genotypes). In these maize lines, we were able to establish a clear correlation between root tip Al exclusion (based on root Al content) and Al resistance. Both Al-resistant genotypes and three of the four Al-sensitive lines exhibited a significant Al-activated citrate exudation, with no evidence for Al activation of root malate or phosphate release. There was a lack of correlation between differential Al resistance and root citrate exudation for the six maize genotypes; in fact, one of the Al-sensitive lines, Mo17, had the largest Al-activated citrate exudation of all of the maize lines. Our results indicate that although root organic acid release may play a role in maize Al resistance, it is clearly not the only or the main resistance mechanism operating in these maize roots. A number of other potential Al-resistance mechanisms were investigated, including release of other Al-chelating ligands, Al-induced alkalinization of rhizosphere pH, changes in internal levels of Al-chelating compounds in the root, and Al translocation to the shoot. However, we were unsuccessful in identifying additional Al-resistance mechanisms in maize. It is likely that a purely physiological approach may not be sufficient to identify these novel Al-resistance mechanisms in maize and this will require an interdisciplinary approach integrating genetic, molecular, and physiological investigations.  相似文献   

16.
The present study was conducted to investigate the effects of enhanced Ca supply on Al toxicity in relation to cell wall properties in two wheat (Triticum aestivum L.) cultivars differing in Al resistance. Seedlings of Al-tolerant Inia66 and Al-sensitive Kalyansona cultivars were grown in complete nutrient solutions for 4 days then subjected to treatment solutions containing Al (0, 50 μM) and Ca (500, 2500 μM) at pH 4.5 for 24 h. Root elongation was affected greatly by Al treatment in the Al-sensitive cultivar and a significant improvement in root growth was observed with enhanced Ca supply during Al stress. Pectin and hemicellulose contents in the root cell walls increased with Al stress, and this increase was more conspicuous in the Al-sensitive cultivar. The molecular mass of hemicellulosic polysaccharides increased with Al treatment in the Al-sensitive cultivar and decreased with enhanced Ca supply. The increase in the molecular mass of hemicellulosic polysaccharides was attributed to increased content of glucose, arabinose and xylose in neutral sugars. Enhanced Ca supply slightly decreased the content of these components with Al stress. Aluminum treatment increased the contents of ferulic and p-coumaric acid, especially in the Al-sensitive cultivar, by increasing peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia lyase (PAL, EC 4.3.1.5) activity, whereas enhanced Ca supply during Al stress decreased the content of these components by decreasing POD and PAL activity. These results suggest that the increased molecular mass of hemicellulosic polysaccharides and phenolic compounds in the Al-sensitive cultivar with Al stress might have inhibited root elongation associated with cell wall stiffening related to cross-linking among cell-wall polymers and lignin. Enhanced Ca supply might maintain the normal synthesis of these materials even with Al stress.  相似文献   

17.
The role of organic acids in aluminum (Al) tolerance has been the object of intensive research. In the present work, we evaluated the roles of organic acid exudation and concentrations at the root tip on Al tolerance of soybean. Exposing soybean seedlings to Al3+ activities up to 4.7 μ M in solution led to different degrees of restriction of primary root elongation. Al tolerance among genotypes was associated with citrate accumulation and excretion into the external media. Citrate and malate efflux increased in all genotypes during the first 6 h of Al exposure, but only citrate efflux in Al-tolerant genotypes was sustained for an extended period. Tolerance to Al was correlated with the concentration of citrate in root tips of 8 genotypes with a range of Al sensitivities (r2=0.75). The fluorescent stain lumogallion indicated that more Al accumulated in root tips of the Al-sensitive genotype Young than the Al-tolerant genotype PI 416937, suggesting that the sustained release of citrate from roots of the tolerant genotype was involved in Al exclusion. The initial stimulation of citrate and malate excretion and accumulation in the tip of all genotypes suggested the involvement of additional tolerance mechanisms. The experiments included an examination of Al effects on lateral root elongation. Extension of lateral roots was more sensitive to Al than that of tap roots, and lateral root tips accumulated more Al and had lower levels of citrate.  相似文献   

18.
Aluminum resistance of cowpea as affected by phosphorus-deficiency stress   总被引:2,自引:0,他引:2  
Plants growing in acid soils suffer both phosphorus (P) deficiency and aluminum (Al) toxicity stresses. Selection of genotypes for adaptation to either P deficiency or Al toxicity has sometimes been unsuccessful because these two soil factors often interact. Two experiments were conducted to evaluate eight cowpea genotypes for Al resistance and to study the combined effect of P deficiency and Al toxicity stress on growth, P uptake, and organic acid anion exudation of two genotypes of contrasting Al resistance selected from the first experiment. Relative root inhibition by 30 μM Al ranged from 14% to 60% and differed significantly among the genotypes. Al significantly induced callose formation, particularly in Al-sensitive genotypes. P accumulation was significantly reduced (28% and 95%) by Al application for both the Al-resistant and the Al-sensitive genotypes. Al supply significantly enhanced malate release of root apices of both genotypes. However, the exudation rate was significantly higher in the Al-resistant genotype. P deprivation induced an enhanced malate exudation in the presence of Al only in the Al-resistant genotype IT89KD-391. Citrate exudation rate of the root apices was lower than malate exudation by a factor of about 10, and was primarily enhanced by P deficiency in both genotypes. Al treatment further enhanced citrate exudation in P-sufficient, but not in P-deficient plants. The level of citrate exudation was consistently higher in the Al-resistant genotype IT89KD-391 particularly in presence of Al.It is concluded that the Al-resistant genotype is better adapted to acid Al-toxic and P-deficient soils than the Al-sensitive genotype since both malate and citrate exudation were more enhanced by combined Al and P-deficiency stresses.  相似文献   

19.
Aluminum (Al) uptake in roots of wheat nearisogenic lines having differing tolerances to aluminium toxicity was studied using roots and root segments immersed in a nutrient solution at a controlled pH and temperature. At low Al concentrations a mechanism preventing root tips from accumulating too much Al was observed in an Al-tolerant isoline and a BH1146 euploid. This mechanism was more efficient when divalent cations of calcium or magnesium were present in the nutrient medium. Al accumulation steadily increased in root tips of the Al-sensitive wheat isoline during all 24 h of incubation, and the presence of divalent cations in the medium even increased Al concentration in root tissue. However, at higher Al concentrations in the medium the mechanism preventing the root tips of Al-tolerant genotypes from accumulating too much Al was not observed, and in effect Al concentration in root tips of both Al-tolerant and Al-sensitive isolines increased. It is concluded that genetical factors are located on the long arm of chromosome 2D from the BH1146 euploid that control the mechanism preventing root apical meristems from accumulating too much Al at low Al concentrations in the medium. However, there must be other genetical factors also located on this chromosome segment that control Al detoxication in root tips of Al-tolerant lines at higher external Al concentrations.  相似文献   

20.
Zhao Z  Ma JF  Sato K  Takeda K 《Planta》2003,217(5):794-800
While barley ( Hordeum vulgare L.) is the most sensitive species to Al toxicity among small-grain crops, variation in Al resistance between cultivars does exist. We examined the mechanism responsible for differential Al resistance in 21 barley varieties. Citrate was secreted from the roots in response to Al stress. A positive correlation between citrate secretion and Al resistance [(root elongation with Al)/(root elongation without Al)] and a negative correlation between citrate secretion and Al content of root apices, were obtained, suggesting that citrate secretion from the root apices plays an important role in excluding Al and thereby detoxifying Al. The Al-induced secretion of citrate was characterized using an Al-resistant variety (Sigurdkorn) and an Al-sensitive variety (Kearney). In Sigurdkorn, Al-induced secretion of citrate occurred within 20 min, and the secretion did not increase with increasing external Al concentration. The Al-induced citrate secretion ceased at low temperature (6 degrees C) and was inhibited by anion-channel inhibitors. Internal citrate content of root apices was increased by Al exposure in Sigurdkorn, but was not affected in Kearney. The activity of citrate synthase was unaffected by Al in both Al-resistant and Al-sensitive varieties. The secretion rate of organic acid anions from barley was the lowest among wheat, rye and triticale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号