首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Confluent 3T3-L1 fibroblasts incubated for 72 h with methylisobutylxanthine, dexamethasone, and insulin differentiate and acquire phenotypic characteristics of mature adipocytes, including hormone-sensitive cAMP phosphodiesterase activity located in a particulate fraction of homogenates. About 10 days after initiating differentiation, a maximally effective concentration of insulin (100 pM) increased particulate cAMP phosphodiesterase activity 40 to 60% in 8 min; activation persisted for at least 30 min in the presence of insulin. Incubation of adipocytes for 6-8 min with agents that increased cAMP, e.g. 1 microM epinephrine, 0.1 microM isoproterenol, corticotropin (2 mu units/ml), or thyroid-stimulating hormone (15 ng/ml), also increased particulate phosphodiesterase activity 40-60%. Changes in phosphodiesterase activity produced by epinephrine tended to lag behind changes in cAMP. Insulin, epinephrine, and corticotropin increased Vmax, not Km (0.5 microM), for cAMP. Particulate phosphodiesterase activity, solubilized with detergent, eluted in a single peak from DEAE-Bio-Gel. Insulin and epinephrine increased the activity eluted in this peak. Neither insulin nor lipolytic hormones increased activity in soluble fractions from differentiated cells or particulate or soluble fractions from undifferentiated cells. Incubation of adipocytes for 48 h with 1 microM dexamethasone prevented insulin-induced activation of the particulate phosphodiesterase and did not alter basal activity. After incubation for 72 h with 0.1 microM dexamethasone, insulin and epinephrine activation were abolished. These effects of dexamethasone on hormonal regulation of particulate phosphodiesterase activity could account for some of the so-called permissive effects of glucocorticoids on cAMP-mediated processes as well as the "anti-insulin" effects of glucocorticoids.  相似文献   

2.
A "low Km" cAMP phosphodiesterase with properties of a peripheral membrane protein accounts for approximately 90% of total cAMP phosphodiesterase activity in particulate (100,000 X g) fractions from rat fat cells. Incubation of fat cells with insulin for 10 min increased particulate (but not soluble) cAMP phosphodiesterase activity, with a maximum increase (approximately 100%) at 1 nM insulin. Most of the increase in activity was retained after solubilization (with non-ionic detergent and NaBr) and partial purification (approximately 20-fold) on DEAE-Sephacel. The solubilized enzyme from adipose tissue was purified approximately 65,000-fold to apparent homogeneity (yield approximately 20%) by chromatography on DEAE-Sephacel and Sephadex G-200 and affinity chromatography on aminoethyl agarose conjugated with the N-(2-isothiocyanato)ethyl derivative of the phosphodiesterase inhibitor cilostamide (OPC 3689). A 63,800 +/- 200-Da polypeptide (accounting for greater than 90% of the protein eluted from the affinity column) was identified by polyacrylamide gel electrophoresis in sodium dodecyl sulfate (with or without reduction). Enzyme activity was associated with the single protein band after electrophoresis under nondenaturing conditions. On gel permeation, Mr(app) was 100,000-110,000, suggesting that the holoenzyme is a dimer. A pI of 4.9-5.0 was estimated by isoelectric focusing. At 30 degrees C, the purified enzyme hydrolyzed both cAMP and cGMP with normal Michaelis-Menten kinetics; the pH optimum was 7.5. The Km(app) for cAMP was 0.38 microM and Vmax, 8.5 mumol/min/mg; for cGMP, Km(app) was 0.28 microM and Vmax, 2.0 mumol/min/mg. cGMP competitively inhibited cAMP hydrolysis with a Ki of approximately 0.15 microM. The enzyme was also inhibited by several OPC derivatives and "cardiotonic" drugs, but not by RO 20-1724. It was very sensitive to inhibition by agents which covalently modify protein sulfhydryls, but not by diisopropyl fluorophosphate. The activation by insulin and other findings indicate that the purified enzyme, which seems to belong to a subtype of low Km cAMP phosphodiesterases that is specifically and potently inhibited by cGMP, cilostamide, other OPC derivatives, and certain cardiotonic drugs, is likely to account for the hormone-sensitive particulate low Km cAMP phosphodiesterase activity of rat adipocytes.  相似文献   

3.
Acidic phospholipids and lysophospholipids modify cAMP phosphodiesterase activity of rat liver microsomal membranes to different extents, depending on the cAMP concentrations employed. At low concentrations, they activate the hormone-sensitive low-Km form of the enzyme through an increase of Vmax (diphosphatidylglycerol greater than phosphatidylglycerol greater than phosphatidic acid = lysophosphatidylserine greater than phosphatidylserine greater than lysophosphatidylcholine). At high concentrations, only lysophospholipids activate the high-Km form of phosphodiesterase through a marked increase in both Vmax and apparent Km for the cAMP.  相似文献   

4.
Stabilization of cyclic adenosine 3',5'-monophosphate (cAMP)-phosphodiesterase (PDE) in 50% glycerol made possible the removal of endogenous inhibitors from tissue extracts by dialysis and the storage of the extracts at -20 degrees C without loss of PDE activity. Dialysates of heat-inactivated epididymal extracts were fractionated by liquid chromatography, and 4 fractions-F2, F5, F7, and F12-were found to contain endogenous inhibitors of PDE. The masses of the fractions required to inhibit low-Km PDE activity by ca. 50% in 430-microliter incubation mixtures were F2, 89 micrograms; F5, 23 micrograms; F7, 275 micrograms; and F12, 1.2 mg. The mechanisms of inhibition of low-Km PDE by the endogenous inhibitors were investigated by kinetic analysis of enzyme-inhibitor interaction. F2 and F12 inhibited PDE competitively; F5 and F7 decreased both apparent Km and Vmax, suggesting an uncompetitive mechanism of inhibition. The high potency of F5 in low concentration suggests that it may be a physiological modulator of low-Km cAMP-PDE activity.  相似文献   

5.
Incubation of 3T3-L1 adipocytes with insulin or isoproterenol for 10 min increased particulate "low Km" cAMP phosphodiesterase activity by 42% and 50%, respectively. Pertussis toxin catalyzed the [32P]-ADP ribosylation of a 41,000 dalton protein in adipocyte particulate fractions; prior incubation of adipocytes with toxin markedly reduced incorporation of radiolabel. Exposure of adipocytes to pertussis toxin (0.3 microgram, 18 hr) increased glycerol production and inhibited activation of cAMP phosphodiesterase by insulin, but not by isoproterenol. These results suggest that pertussis toxin can interfere with receptor-mediated processes that stimulate cAMP hydrolysis as well as those that inhibit cAMP formation.  相似文献   

6.
The ability of nine phospholipids to alter the activity of low-Km cyclic AMP phosphodiesterase was examined in microsomal fractions of rat adipocytes. The enzyme was activated by phosphatidylserine (21% at 300 microM) and phosphatidylglycerol (36% at 300 microM). The activation was concentration dependent over the range 1-1000 microM. Six other phospholipids were without effect. Phosphatidylinositol 4-phosphate inhibited the activity of the enzyme over the same range of concentrations (26% at 300 microM). Phosphatidylserine also activated a partially purified preparation of the enzyme, whereas phosphatidylinositol 4-phosphate was ineffective. The mechanism of the activation of the enzyme by phosphatidylserine and phosphatidylglycerol involved an increase in the apparent Vmax of the enzyme, while the inhibition by phosphatidylinositol 4-phosphate was associated with an increase in the Km of the enzyme for substrate. The phospholipid modulators of low-Km cyclic AMP phosphodiesterase activity did not alter the activity of high-Km cyclic AMP phosphodiesterase. The ability of phospholipids to alter the activity of low-Km cyclic AMP phosphodiesterase in native membranes suggests a possible role for phospholipids in metabolic regulation.  相似文献   

7.
1. cAMP Phosphodiesterase activity and kinetic parameters (Km and Vmax) were measured in subcutaneous and perirenal adipocyte plasma membranes from Large White male and castrated pigs. The animals were fed a control low fat diet or a sunflower diet enriched with linoleic acid (C18:2 n-6). 2. Phosphodiesterase activity, low Km and Vmax were lowered by castration. 3. In animals fed the sunflower diet, phosphodiesterase activity decreased without affecting either Km or Vmax. 4. Phosphodiesterase activity was higher in perirenal sites than in subcutaneous ones, particularly in male pigs. This may be explained by a lower Km or a higher cAMP phosphodiesterase affinity to cAMP in perirenal sites. 5. Theophylline was a potent inhibitor of phosphodiesterase activity principally in perirenal sites. 6. The intermediate role of cAMP phosphodiesterase in adenylate cyclase activity and lipolytic processes is discussed.  相似文献   

8.
Insulin sensitive phosphodiesterase from rat adipocytes is found in particulate fractions. Solubilisation of the enzyme with triton X-100 yields a preparation containing more than one phosphodiesterase activity as judged by its rate of thermal denaturation at 45 degrees C and by its non-linear kinetic plots. Immunoprecipitation of solubilised activity with a polyclonal antiserum raised against purified insulin-sensitive rat liver phosphodiesterase selected a form of the enzyme which showed a single exponential decay of enzyme activity when heated at 45 degrees C and linear low Km kinetics. Treatment of adipocytes with insulin ACTH, glucagon or isoproterenol stimulated the low Km particulate phosphodiesterase. The hormonal activation was retained following solubilisation and was also seen when activity was immunoprecipitated. It is suggested that all four hormones activate the same form of phosphodiesterase.  相似文献   

9.
The ability of acute insulin treatment to elicit a redistribution of the liver insulin-like growth factor-II/ mannose 6-phosphate (IGF-II/M6P) receptor has been studied in rats, using cell fractionation. Injection of insulin (0.4-50 microg) led to a time- and dose-dependent decrease in IGF-II binding activity in Golgi-endosomal (GE) fractions, along with an increase in activity in the plasma membrane (PM) fraction; only receptor number was affected. Quantitative subfractionation of the microsomal fraction on sucrose density gradients showed that IGF-II binding activity distributed similarly to galactosyltransferase (a Golgi marker), at slightly higher densities than in vivo internalized (125)I-insulin, and at lower densities than 5' nucleotidase and alkaline phosphodiesterase (two plasma membrane markers). Insulin treatment led to a slight time-dependent and reversible shift of IGF-II binding activity toward higher densities. Subfractionation of the GE fraction on Percoll gradients showed that IGF-II binding activity was broadly distributed, with about 60% at low densities coinciding with galactosyltransferase and early internalized (125)I-insulin and with 40% at high densities in the region of late internalized (125)I-insulin. Insulin treatment caused a time-dependent and reversible shift of the distribution of IGF-II binding activity toward low densities. On SDS-PAGE, the size of the affinity-labeled IGF-II/M6P receptor was comparable in GE and PM fractions (about 255 kDa), but on Western blots receptor size was slightly lower in the latter (245 kDa) than in the former (255 kDa). Insulin treatment did not affect the size, but modified the abundance of the IGF-II/M6P receptor in a manner similar to that of IGF-II binding. In vivo chloroquine treatment fully suppressed the changes in IGF-II binding activity in liver GE and PM fractions observed in insulin-treated rats. We conclude that insulin elicits a time-dependent and reversible redistribution of liver IGF-II receptors from Golgi elements and endosomes to the plasma membrane, presumably via early endosomes.  相似文献   

10.
There are phosphodiesterase activities in both particulate and supernatant fractions which hydrolyze guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP) with an apparent Km of 2-8 muM and with an apparent Km of 44-222 muM. 4-(3-Butoxy-4-methoxybenzyl-2-imidazolidinone (RO20-1724) did not inhibit cGMP phosphodiesterase activity in homogenates of mouse neuroblastoma cells, but markedly inhibited cAMP phosphodiesterase activity. Papaverine and theophylline inhibited both cGMP and cAMP phosphodiesterase activities to about the same extent. The former was more potent than the latter. The specific activity of cGMP phosphodiesterase as a function of protein concentrations first increased and then decreased. The specific activity of cAMP phosphodiesterase decreased under a similar experimental condition.  相似文献   

11.
Cyclic nucleotide phosphodiesterase activity of several tissues of rat is inhibited by an endogenous factor isolated from rat adipocytes following exposure of these cells to agents that raise intracellular cyclic AMP levels. The inhibitory action was demonstrated with varying cAMP concentrations from 0.1-400 muM. Enzyme from 10,000 X g supernatant of epididymal adipose tissue was inhibited approximately 2-3 fold more than the plasma membrane of adipocytes by a given concentration of the feedback regulator. Kinetic analysis of cAMP phosphodiesterase of plasma membrane showed that feedback regulator (8.8 U/ml) inhibited the Vmax 48%. The maximum inhibition of phosphodiesterase by feedback regulator (20 U/ml) was about 80%. The apparent Km for cAMP was increased. The ability of phosphodiesterase from several tissues of rat (10,000 X g supernatant) to hydrolyze cAMP and cGMP was tested. Feedback regulator inhibited cGMP hydrolysis in cardiac muscle and 5 other tissues 23-92% more than it inhibited the hydrolysis of cAMP. The physiological significance of this inhibitory effect can begin to be clarified when the feedback regulator is purified to homogeneity and characterized.  相似文献   

12.
The effect of insulin and factors which have insulin-like activity on the kinetic parameters of 3-O-methyl-D-glucose (MeGlc) transport in rat adipocytes were assessed. Carrier-mediated uptake of MeGlc was estimated by the difference in the amounts of [14C]MeGlc and L-[3H]glucose taken up in cells under equilibrium exchange conditions at 37 degrees C. The Km and Vmax values in basal cells were 17.4 mM and 0.24 nmol/10(6) cells/s, respectively. Removal of endogenous adenosine by adenosine deaminase resulted in a 26% decrease in the basal rate due to a slight increase in the Km (19.6 mM) and a decrease in the Vmax value (0.20 nmol/10(6) cells/s). The maximum concentration (10 nM) of insulin decreased the Km to approximately one-half of the basal (7.1 mM) concomitant with an 8.5-fold increase in the Vmax value (2.04 nmol/10(6) cells/s). Submaximal concentrations (50 and 150 pM) of insulin, N6-phenylisopropyladenosine (1 microM), mechanical agitation of cells by centrifugal force (160 x g), low temperature (15 degrees C), 12-O-tetradecanoylphorbol-13-acetate (1 microM), and hydrogen peroxide (10 mM) all decreased the basal Km value to a range of 13.5-7.3 mM, concomitant with a 1.7-7.4-fold increase in the Vmax. A possible explanation for the alterations in the kinetic parameters may be that insulin and other factors cause the translocation of the mobile low-Km glucose transporters from an intracellular site to the cell surface, where the stationary high-Km transporters are located. Thus, when the Km and Vmax values of the hypothetical high-Km transporters were assumed to be 20 mM and 0.20 nmol/10(6) cells/s, respectively, and the Km of the low-Km transporters was assumed to be 7 mM, the theoretical Km decreased from 20 to 7.5 mM as the Vmax of the low-Km transporters increased from near 0 to 2.0 nmol/10(6) cells/s. The relation between empirical Km and Vmax values as affected by several agents and conditions followed closely the relation predicted by the above two-transporter model.  相似文献   

13.
A single dose of dimethylbenz[a]anthracene (DMBA) at 20 mg/kg resulted in 100% incidence of intraductal mammary adenocarcinomas in Wistar rats, the large tumors averaging 1.87 +/- 0.45 g. gamma-Glutamyltranspeptidase activities were elevated in DMBA-induced mammary adenocarcinomas relative to lactating mammary tissue in all fractions examined: 18.8-fold in homogenates; 22.1-fold in particulate fractions; and 5.7-fold in supernatant fractions. In DMBA-induced mammary adenocarcinomas, gamma-glutamyltranspeptidase was 95% particulate, 5% supernatant, whereas in lactating mammary tissue, gamma-glutamyltranspeptidase was equally distributed between particulate and supernatant fractions. Particulate gamma-glutamyltranspeptidase from DMBA-induced mammary adenocarcinomas as well as lactating mammary tissue displayed classical Michaelis-Menten characteristics: for the adenocarcinoma enzyme Km was 2.5 nM and Vmax 200 nmol mg-1 min-1; for mammary tissue enzyme Km was 2.5 nM and Vmax 11.1 nmol X mg-1 X min-1. Both particulate enzymes were activated at 50 degrees C relative to 37 degrees C to the same extent: 1.37-fold. The activities of gamma-glutamyltranspeptidase were increased 1.8-fold in the livers of rats bearing DMBA-induced mammary adenocarcinomas relative to age-matched controls. Plasma levels of gamma-glutamyltranspeptidase were also increased 1.6-fold in tumor bearing rats. There was no observable sign of liver damage in tumor bearing rats; plasma glutamic pyruvic transaminase levels were normal in these animals. Blood glucose levels were elevated 17% in rats bearing DMBA-induced mammary adenocarcinomas compared to age-matched controls, although plasma insulin levels were the same in both groups: 35.4 +/- 3.5 microIU/ml for the former; 31.9 +/- 3.1 microIU/ml for the latter.  相似文献   

14.
Cyclic nucleotide phosphodiesterase in the plasma membranes of bovine epididymal spermatozoa was stimulated by added Ca2+ and calmodulin. The rate of hydrolysis and responsiveness toward calmodulin was greater for cAMP than for cGMP. The kinetic analysis of the activity revealed two forms of phosphodiesterase with apparent Km values of 7.5 and 95 microM for cAMP. Calmodulin stimulated both of the activities by increasing the Vmax without affecting the Km's. The activity response with respect to Ca2+ concentration appears to be biphasic in both the absence and presence of added calmodulin. Trifluoperazine inhibited the Ca2+- and calmodulin-sensitive enzyme activity in a dose-dependent manner. The calmodulin-stimulated phosphodiesterase activity in the sperm plasma membranes can be solubilized and absorbed to a Calmodulin-Sepharose affinity column in the presence of Ca2+.  相似文献   

15.
The effect of insulin on cyclic nucleotide phosphodiesterase (PDE) in rat luteal cells was studied. Cells were obtained from PMSG/hCG primed rats and further incubated or not with insulin. The hormone produced an increase of enzyme activity after a 10 min incubation of intact cells. Maximal stimulation was achieved at 0.2 nM of insulin. Two peaks of cyclic nucleotide phosphodiesterase activity were resolved after chromatography of cell cytosolic extracts on DEAE-cellulose. These peaks (I and II) were active with cAMP as substrate but only peak I was active with cGMP. The enzyme activity of both peaks was increased in cells treated with insulin. Phosphodiesterase activity in the two peaks show two kinetic components for cAMP hydrolysis, one of high affinity (Km 2-4 microM) and the other of low affinity (47-56 microM). Treatment of the cells with insulin produced a 2 to 8 fold increase of the Vmax of these peaks. In addition after stimulation with insulin, the activation of peak I phosphodiesterase by calmodulin was less effective.  相似文献   

16.
Cyclic AMP phosphodiesterase activity was examined in particulate (30,000 X g for 30 min sediment) and supernatant subcellular fractions of epididymal fat cells isolated from obese-hyperglycemic (ob/ob) mice and their lean (+/?) LITTERMATES. The activity of the enzyme(s) was measured during both the early onset phase (5-6 weeks of age) and the static (5 months of age) of the obese-hyperglycemia syndrome. Fat cell particulate and supernate cyclic AMP phosphodiesterase activity of obese-hyperglycemic mice and their lean littermates at both ages displayed nonlinear Lineweaver-Burk kinetic plots. The maximum velocities of the fat cell particulate cyclic AMP phosphodiesterase activity of the obese mice were 67% and 84% lower than those of their lean littermates at 5-6 weeks and 5 months of age, respectively. Incubating fat cells obtained from either lean or obese mice of both age groups with 30 to 240 microunits of insulin per ml for 15 min increased the activity of the particulate, low Km cyclic AMP phosphodiesterase. This increase in activity was manifest as an increase in the maximum velocity of the enzyme(s) with no significant alteration of the affinity of the enzyme(s) for cyclic AMP.  相似文献   

17.
A calmodulin-stimulated form of cyclic nucleotide phosphodiesterase from bovine brain has been extensively purified (1000-fold). Its specific activity is approximately 4 mumol min-1 (mg of protein)-1 when 1 microM cGMP is used as the substrate. This form of calmodulin-sensitive phosphodiesterase activity differs from those purified previously by showing a very low maximum hydrolytic rate for cAMP vs. cGMP. The purification procedure utilizing ammonium sulfate precipitation, ion-exchange chromatography on DEAE-cellulose, gel filtration on Sephacryl S-300, isoelectric focusing, and affinity chromatography on calmodulin-Sepharose and Cibacron blue-agarose results in a protein with greater than 80% purity with 1% yield. Kinetics of cGMP and cAMP hydrolysis are linear with Km values of 5 and 15 microM, respectively. Addition of calcium and calmodulin reduces the apparent Km for cGMP to 2-3 microM and increases the Vmax by 10-fold. cAMP hydrolysis shows a similar increase in Vmax with an apparent doubling of Km. Both substrates show competitive inhibition with Ki's close to their relative Km values. Highly purified preparations of the enzyme contain a major protein band of Mr 74 000 that best correlates with enzyme activity. Proteins of Mr 59 000 and Mr 46 000 contaminate some preparations to varying degrees. An apparent molecular weight of 150 000 by gel filtration suggests that the enzyme exists as a dimer of Mr 74 000 subunits. Phosphorylation of the enzyme preparation by cAMP-dependent protein kinase did not alter the kinetic or calmodulin binding properties of the enzyme. Western immunoblot analysis indicated no cross-reactivity between the bovine brain calmodulin-stimulated gGMP phosphodiesterase and the Mr 60 000 high-affinity cAMP phosphodiesterase present in most mammalian tissues.  相似文献   

18.
Plasma membranes were isolated from 3T3-L1 adipocytes. Plasma membrane phosphodiesterase (PM-PDE) was measured in the presence of 5 microM cilostamide. Time course and cAMP dose response ranging from 0 to 2 microM were measured. PM-PDE remained linear up to 20 min. Non-linear curve fitting analysis showed that the low Km cAMP dose data fit a two component curve significantly better than a one component curve, indicating that there are two iso-forms of PDE in the plasma membrane of 3T3-L1 adipocytes, similar to swine adipocytes. The Km and Vmax values for this two component curve were Km1=0.12 microM, Vmax1=3.08 pmol min(-1) mg(-1) protein, and Km2=3.67 microM, Vmax2=83.8 pmol min(-1) mg(-1) protein. Inhibitors of PDE1, PDE2 and PDE5 failed to inhibit PM-PDE, as observed in swine adipocyte plasma membranes. However, PDE4 inhibitors were three-fold more effective at inhibiting PDE in 3T3-L1 PM compared to swine adipocyte PM. One mM 1, 3-dipropyl-8-p-sulfophenylxanthine (DPSPX) inhibited PM-PDE by approximately 75% in both preparations. These data demonstrate that PM-PDE is distinct from microsomal membrane PDE and may be responsible for extracellular cAMP metabolism to AMP in 3T3-L1 adipocytes.  相似文献   

19.
Incubation of intact purified rat liver plasma membranes with insulin, cyclic AMP and ATP led to the activation of the peripheral "low-Km" cyclic AMP phosphodiesterase. When (gamma-32P]ATP was included in the incubation mixture, after purification of this enzyme to homogeneity it was found to contain 1 mol of alkali-labile 32P/mol of enzyme. Treatment of the homogeneous phosphorylated enzyme with alkaline phosphatase released all of the 32P from the protein while restoring its activity to the native state. The reversibility of the activation that is achieved by the phosphorylation of this enzyme could also be demonstrated with a high-speed supernatant from rat liver. This restored the activity of the activated membrane-bound enzyme to its native state. The Ka for the cyclic AMP-dependence of this process (1.6 micrometer) was unaffected by a range of ATP concentrations (1-10 mM) and by a range of membrane protein concentrations (0.2-2 mg/ml). Adenylyl imidodiphosphate could not substitute for ATP, and concanavalin A could not substitute for insulin, as essential ligands in the activation process. The purified activated enzyme exhibited Km 0.6 microM, Vmax 10.9 units/mg of protein and Hill coefficient (h) 0.47. The Vmax. for this activated enzyme was much higher than that of the native enzyme, yet h was much lower.  相似文献   

20.
The cell-cycle-related activities of the cAMP- and cGMP-dependent phosphodiesterases of Physarum polycephalum were assayed. The activities of plasmodial homogenate and of selected subcellular fractions were measured. The results suggested the presence of both cAMP- and cGMP-dependent phosphodiesterase in the isolated nuclei of P. polycephalum. In addition, they reveal that the cAMP- and cGMP-dependent phosphodiesterase activities of the subcellular fractions fluctuate throughout the cell cycle. The whole-cell homogenates exhibit no cell-cycle-related changes in the presence of 5 X 10(-4) M cGMP. Kinetic data suggest the presence of multiple phosphodiesterase activities in the homogenate and its particulate fractions for the cGMP-dependent enzyme. Multiple cAMP activities are also suggested for the particulate fractions. The Km values indicate that the substrate affinities of the phosphodiesterases from P. polycephalum are similar to those found previously in mammalian systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号