首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Springael JY  Nikko E  André B  Marini AM 《FEBS letters》2002,517(1-3):103-109
The membrane traffic and stability of the general amino acid permease Gap1 of Saccharomyces cerevisiae are under nitrogen control. Addition of a preferential nitrogen source such as ammonium to cells growing on a poor nitrogen source induces internalization of the permease and its subsequent degradation in the vacuole. This down-regulation requires ubiquitination of Gap1 through a process involving ubiquitin ligase Npi1/Rsp5, ubiquitin hydrolase Npi2/Doa4, and Bul1/2, two Npi1/Rsp5 interacting proteins. Here we report that yet another protein, Npi3, is involved in the regulation of Gap1 trafficking. We show that Npi3 is required for NH4+-induced down-regulation of Gap1, and particularly for efficient ubiquitination of the permease. Npi3 plays a pleiotropic role in permease down-regulation, since it is also involved in ubiquitination and stress-induced down-regulation of the uracil permease Fur4 and in glucose-induced degradation of hexose transporters Hxt6/7. We further provide evidence that Npi3 is required for direct vacuolar sorting of neosynthesized Gap1 permease as it occurs in npr1 mutant cells. NPI3 is identical to BRO1, a gene encoding a protein of unknown biochemical function and recently proposed to be involved in protein turnover. Npi3/Bro1 homologues include fungal proteins required for proteolytic cleavage of zinc finger proteins and the mouse Aip1 protein involved in apoptosis. We propose that proteins of the Npi3/Bro1 family, including homologues from higher species, may play a conserved role in ubiquitin-dependent control of membrane protein trafficking.  相似文献   

2.
When yeast cells growing on a poor nitrogen source are supplied with NH4+ ions, several nitrogen permeases including the general amino acid permease (Gap1p) are rapidly and completely inactivated. This report shows that inactivation by NH4+ of the Gap1 permease is accompanied by its degradation. A functional NPI1 gene product is required for both inactivation and degradation of Gap1p. Molecular analysis of the NPI1 gene showed that it is identical to RSP5 . The RSP5 product is a ubiquitin—protein ligase (E3 enzyme) whose physiological function was, however, unknown. Its C-terminal region is very similar to that of other members of the E6-AP-like family of ubiquitin-protein ligases. Its N-terminal region contains a single C2 domain that may be a Ca2+-dependent phospholipid interaction motif, followed by several copies of a recently identified domain called WW(P). The Npi1/Rsp5 protein has a homologue both in humans and in mice, the latter being involved in brain development. Stress-induced degradation of the uracil permease (Fur4p), a process in which ubiquitin is probably involved, was also found to require a functional NPI1/RSP5 product. Chromosomal deletion of NPI1/RSP5 showed that this gene is essential for cell viability. In the viable np1/rsp5 strain, expression of NPI1/RSP5 is reduced as a result of insertion of a Ty1 element in its 5' region. Our results show that the Npi1/Rsp5 ubiquitin-protein ligase participates in induced degradation of at least two permeases, Gap1p and Fur4p, and probably also other proteins.  相似文献   

3.
We have recently reported that the yeast plasma membrane uracil permease undergoes cell-surface ubiquitination, which is dependent on the Npi1/Rsp5 ubiquitin-protein ligase. Ubiquitination of this permease, like that of some other transporters and receptors, signals endocytosis of the protein, leading to its subsequent vacuolar degradation. This process does not involve the proteasome, which binds and degrades ubiquitin-protein conjugates carrying Lys48-linked ubiquitin chains. The data presented here show that ubiquitination and endocytosis of uracil permease are impaired in yeast cells lacking the Doa4p ubiquitin-isopeptidase. Both processes were rescued by overexpression of wild-type ubiquitin. Mutant ubiquitins carrying Lys-->Arg mutations at Lys29 and Lys48 restored normal permease ubiquitination. In contrast, a ubiquitin mutated at Lys63 did not restore permease polyubiquitination. Ubiquitin-permease conjugates are therefore extended through the Lys63 of ubiquitin. When polyubiquitination through Lys63 is blocked, the permease still undergoes endocytosis, but at a reduced rate. We have thus identified a natural target of Lys63-linked ubiquitin chains. We have also shown that monoubiquitination is sufficient to induce permease endocytosis, but that Lys63-linked ubiquitin chains appear to stimulate this process.  相似文献   

4.
Addition of ammonium ions to yeast cells growing on proline as the sole nitrogen source induces rapid inactivation and degradation of the general amino acid permease Gap1 through a process requiring the Npi1/Rsp5 ubiquitin (Ub) ligase. In this study, we show that NH4+ induces endocytosis of Gap1, which is then delivered into the vacuole where it is degraded. This down-regulation is accompanied by increased conversion of Gap1 to ubiquitinated forms. Ubiquitination and subsequent degradation of Gap1 are impaired in the npi1 strain. In this mutant, the amount of Npi1/Rsp5 Ub ligase is reduced >10-fold compared with wild-type cells. The C-terminal tail of Gap1 contains sequences, including a di-leucine motif, which are required for NH4+-induced internalization and degradation of the permease. We show here that mutant Gap1 permeases affected in these sequences still bind Ub. Furthermore, we provide evidence that only a small fraction of Gap1 is modified by Ub after addition of NH4+ to mutants defective in endocytosis.  相似文献   

5.
The general amino acid permease, Gap1, of Saccharomyces cerevisiae is very active in cells grown on proline as the sole nitrogen source. Adding NH4+ to the medium triggers inactivation and degradation of the permease via a regulatory process involving Npi1p/Rsp5p, a ubiquitin–protein ligase. In this study, we describe several mutations affecting the C-terminal region of Gap1p that render the permease resistant to NH4+-induced inactivation. An in vivo isolated mutation ( gap1 pgr  ) causes a single Glu→Lys substitution in an amino acid context similar to the DXKSS sequence involved in ubiquitination and endocytosis of the yeast α-factor receptor, Ste2p. Another replacement, substitution of two alanines for a di-leucine motif, likewise protects the Gap1 permease against NH4+-induced inactivation. In mammalian cells, such a motif is involved in the internalization of several cell-surface proteins. These data provide the first indication that a di-leucine motif influences the function of a plasma membrane protein in yeast. Mutagenesis of a putative phosphorylation site upstream from the di-leucine motif altered neither the activity nor the regulation of the permease. In contrast, deletion of the last eleven amino acids of Gap1p, a region conserved in other amino acid permeases, conferred resistance to NH4+ inactivation. Although the C-terminal region of Gap1p plays an important role in nitrogen control of activity, it was not sufficient to confer this regulation to two NH4+-insensitive permeases, namely the arginine (Can1p) and uracil (Fur4p) permeases.  相似文献   

6.
In yeast, ubiquitin plays a central role in proteolysis of a multitude of proteins and serves also as a signal for endocytosis of many plasma membrane proteins. We showed previously that ubiquitination of the general amino acid permease (Gap1) is essential to its endocytosis followed by vacuolar degradation. These processes occur when NH(4)(+), a preferential source of nitrogen, is added to cells growing on proline or urea, i.e. less favored nitrogen sources. In this study, we show that Gap1 is ubiquitinated on two lysine residues in the cytosolic N terminus (positions 9 and 16). A mutant Gap1 in which both lysines are mutated (Gap1(K9K16)) remains fully stable at the plasma membrane after NH(4)(+) addition. Furthermore, each of the two lysines harbors a poly-ubiquitin chain in which ubiquitin is linked to the lysine 63 of the preceding ubiquitin. The Gap1(K9) and Gap1(K16) mutants, in which a single lysine is mutated, are down-regulated in response to NH(4)(+) although more slowly. In proline-grown cells lacking Npr1, a protein kinase involved in the control of Gap1 trafficking, newly synthesized Gap1 is sorted from the Golgi to the vacuole without passing through the plasma membrane (accompanying article, De Craene, J.-O., Soetens, O., and André, B. (2001) J. Biol. Chem. 276, 43939-43948). We show here that ubiquitination of Gap1 is also required for this direct sorting to the vacuole. In an npr1Delta mutant, neosynthesized Gap1(K9K16) is rerouted to and accumulates at the plasma membrane. Finally, Bul1 and Bul2, two proteins interacting with Npi1/Rsp5, are essential to ubiquitination and down-regulation of cell-surface Gap1, as well as to sorting of neosynthesized Gap1 to the vacuole, as occurs in an npr1Delta mutant. Our results reveal a novel role of ubiquitin in the control of Gap1 trafficking, i.e. direct sorting from the late secretory pathway to the vacuole. This result reinforces the growing evidence that ubiquitin plays an important role not only in internalization of plasma membrane proteins but also in their sorting in the endosomes and/or trans-Golgi.  相似文献   

7.
Rsp5 is an essential ubiquitin ligase in Saccharomyces cerevisiae. We have found that the Ala401Glu rsp5 mutant is hypersensitive to various stresses, suggesting that Rsp5 is a key enzyme for yeast cell growth under stress conditions. The ubiquitination and the subsequent degradation of stress-induced misfolded proteins are indispensable for cell survival under stress conditions. In this study, we analyzed the ubiquitin-conjugating enzyme Ubc4 and the poly-ubiquitination of targeted proteins involved in the function of Rsp5 under ethanol stress conditions. Ubc4 was found to be important in yeast cell growth and poly-ubiquitination of the bulk proteins in the presence of ethanol. The general amino acid permease Gap1 is poly-ubiquitinated via Lys63 and is down-regulated after the addition of ammonium ions through a process requiring Rsp5. We found that Gap1 was removed from the plasma membrane in the presence of ethanol in a Rsp5-dependent manner, and that the disappearance of Gap1 required Ubc4 and involved the lysine residues of ubiquitin. Our results also indicate that Lys6 of ubiquitin might inhibit the disappearance of Gap1. These results suggest that Rsp5 down-regulates the ethanol-induced misfolded forms of Gap1. In addition, it appears that the substrates of Rsp5 are appropriately poly-ubiquitinated via different lysine residues of ubiquitin under various growth conditions.  相似文献   

8.
The reaction cycle of HECT domain ubiquitin ligases consists of three steps: 1) binding of an E2 protein, 2) transfer of ubiquitin from E2 to the HECT domain, and 3) transfer of ubiquitin to the substrate. We report the identification of a determinant that is specifically required for the last step of this cycle, a phenylalanine residue located four amino acids from the C terminus of most HECT domains, referred to here as the -4F. Alteration of this residue in human E6AP and Saccharomyces cerevisae Rsp5p did not affect ubiquitin-thioester formation, but effectively blocked substrate ubiquitination. Alteration of the -4F to alanine with concomitant substitution of a nearby residue to phenylalanine only partially restored Rsp5p activity, indicating that precise spatial placement of this residue is important. C-terminally extended E6AP and Rsp5p proteins were also defective for substrate ubiquitination, providing a likely biochemical understanding of a previously isolated Angelman syndrome-associated mutation of E6AP that alters the stop codon of an otherwise wild-type gene. We propose that the -4F may play a role in orienting ubiquitin when it is tethered to the HECT active site cysteine. This may be necessary to allow for approach of the incoming lysine epsilon-amino group of the substrate.  相似文献   

9.
In Saccharomyces cerevisiae, when a rich nitrogen source such as ammonium is added to the culture medium, the general amino acid permease Gap1p is ubiquitinated by the yeast Nedd4-like ubiquitin ligase Rsp5p, followed by its endocytosis to the vacuole. The arrestin-like Bul1/2p adaptors for Rsp5p specifically mediate this process. In this study, to investigate the downregulation of Gap1p in response to environmental stresses, we determined the intracellular trafficking of Gap1p under various stress conditions. An increase in the extracellular ethanol concentration induced ubiquitination and trafficking of Gap1p from the plasma membrane to the vacuole in wild-type cells, whereas Gap1p remained stable on the plasma membrane under the same conditions in rsp5A401E and Δend3 cells. A 14C-labeled citrulline uptake assay using a nonubiquitinated form of Gap1p (Gap1pK9R/K16R) revealed that ethanol stress caused a dramatic decrease of Gap1p activity. These results suggest that Gap1p is inactivated and ubiquitinated by Rsp5p for endocytosis when S. cerevisiae cells are exposed to a high concentration of ethanol. It is noteworthy that this endocytosis occurs in a Bul1/2p-independent manner, whereas ammonium-triggered downregulation of Gap1p was almost completely inhibited in Δbul1/2 cells. We also found that other environmental stresses, such as high temperature, H2O2, and LiCl, also promoted endocytosis of Gap1p. Similar intracellular trafficking caused by ethanol occurred in other plasma membrane proteins (Agp1p, Tat2p, and Gnp1p). Our findings suggest that stress-induced quality control is a common process requiring Rsp5p for plasma membrane proteins in yeast.  相似文献   

10.
Ubiquitylation of many plasma membrane proteins promotes their endocytosis followed by degradation in the lysosome. The yeast general amino acid permease, Gap1, is ubiquitylated and downregulated when a good nitrogen source like ammonium is provided to cells growing on a poor nitrogen source. This ubiquitylation requires the Rsp5 ubiquitin ligase and the redundant arrestin-like Bul1 and Bul2 adaptors. Previous studies have shown that Gap1 ubiquitylation involves the TORC1 kinase complex, which inhibits the Sit4 phosphatase. This causes inactivation of the protein kinase Npr1, which protects Gap1 against ubiquitylation. However, the mechanisms inducing Gap1 ubiquitylation after Npr1 inactivation remain unknown. We here show that on a poor nitrogen source, the Bul adaptors are phosphorylated in an Npr1-dependent manner and bound to 14-3-3 proteins that protect Gap1 against downregulation. After ammonium is added and converted to amino acids, the Bul proteins are dephosphorylated, dissociate from the 14-3-3 proteins, and undergo ubiquitylation. Furthermore, dephosphorylation of Bul requires the Sit4 phosphatase, which is essential to Gap1 downregulation. The data support the emerging concept that permease ubiquitylation results from activation of the arrestin-like adaptors of the Rsp5 ubiquitin ligase, this coinciding with their dephosphorylation, dissociation from the inhibitory 14-3-3 proteins, and ubiquitylation.  相似文献   

11.
Ubiquitination of integral plasma membrane proteins triggers their rapid internalization into the endocytic pathway. The yeast ubiquitin ligase Rsp5p, a homologue of mammalian Nedd4 and Itch, is required for the ubiquitination and subsequent internalization of multiple plasma membrane proteins, including the alpha-factor receptor (Ste2p). Here we demonstrate that Rsp5p plays multiple roles at the internalization step of endocytosis. Temperature-sensitive rsp5 mutant cells were defective in the internalization of alpha-factor by a Ste2p-ubiquitin chimera, a receptor that does not require post-translational ubiquitination. Similarly, a modified version of Ste2p bearing a NPFXD linear peptide sequence as its only internalization signal was not internalized in rsp5 cells. Internalization of these variant receptors was dependent on the catalytic cysteine residue of Rsp5p and on ubiquitin-conjugating enzymes that bind Rsp5p. Thus, a Rsp5p-dependent ubiquitination event is required for internalization mediated by ubiquitin-dependent and -independent endocytosis signals. Constitutive Ste2p-ubiquitin internalization and fluid-phase endocytosis also required active ubiquitination machinery, including Rsp5p. These observations indicate that Rsp5p-dependent ubiquitination of a trans-acting protein component of the endocytosis machinery is required for the internalization step of endocytosis.  相似文献   

12.
Kee Y  Lyon N  Huibregtse JM 《The EMBO journal》2005,24(13):2414-2424
Saccharomyces cerevisiae Rsp5 is an essential HECT ubiquitin ligase involved in several biological processes. To gain further insight into regulation of this enzyme, we identified proteins that copurified with epitope-tagged Rsp5. Ubp2, a deubiquitinating enzyme, was a prominent copurifying protein. Rup1, a previously uncharacterized UBA domain protein, was required for binding of Rsp5 to Ubp2 both in vitro and in vivo. Overexpression of Ubp2 or Rup1 in the rsp5-1 mutant elicited a strong growth defect, while overexpression of a catalytically inactive Ubp2 mutant or Rup1 deleted of the UBA domain did not, suggesting an antagonistic relationship between Rsp5 and the Ubp2/Rup1 complex. Consistent with this model, rsp5-1 temperature sensitivity was suppressed by either ubp2Delta or rup1Delta mutations. Ubp2 reversed Rsp5-catalyzed substrate ubiquitination in vitro, and Rsp5 and Ubp2 preferentially assembled and disassembled, respectively, K63-linked polyubiquitin chains. Together, these results indicate that Rsp5 activity is modulated by being physically coupled to the Rup1/Ubp2 deubiquitinating enzyme complex, representing a novel mode of regulation for an HECT ubiquitin ligase.  相似文献   

13.
Membrane trafficking of the general amino acid permease (Gap1) of Saccharomyces cerevisiae is under nitrogen regulation. In cells growing on proline or urea as the sole nitrogen source, newly synthesized Gap1 is delivered to the plasma membrane, where it accumulates. Upon addition of NH(4)(+), a preferential nitrogen source, Gap1 is endocytosed and targeted to the vacuole, where it is degraded. This down-regulation requires ubiquitination of the permease, and this ubiquitination is dependent on the essential Npi1/Rsp5 ubiquitin ligase. In this study, we investigated the role of the Npr1 kinase in the regulation of Gap1 trafficking. We show that Npr1 is required for stabilization of Gap1 at the plasma membrane: when an npr1(ts) mutant growing on proline is shifted to the restrictive temperature, Gap1 down-regulation is triggered, as it is when NH(4)(+) is added to wild-type cells. The fate of newly synthesized Gap1 en route to the plasma membrane is also under Npr1 control: in an npr1Delta mutant, neosynthesized Gap1 is sorted from the Golgi to the vacuole without passing via the plasma membrane. Similar direct sorting of neosynthesized Gap1 to the vacuole was observed in wild-type cells grown on NH(4)(+). Finally, Gap1 is phosphorylated in NPR1 cells, but this phosphorylation is not strictly dependent on Npr1. Our results show that Npr1 kinase plays a central role in the physiological control of Gap1 trafficking and that this control is exerted not only on Gap1 present at the plasma membrane but also on Gap1 late in the secretory pathway. Npr1 belongs to a subgroup of protein kinases, some of which are reported to exert a positive control on the activity of other permeases. We propose that these kinases also function as regulators of permease trafficking.  相似文献   

14.
15.
Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation.  相似文献   

16.
Ubiquitination of the yeast Gap1 permease at the plasma membrane triggers its endocytosis followed by targeting to the vacuolar lumen for degradation. We previously identified Bro1 as a protein essential to this down-regulation. In this study, we show that Bro1 is essential neither to ubiquitination nor to the early steps of Gap1 endocytosis. Bro1 rather intervenes at a late step of the multivesicular body (MVB) pathway, after the core components of the endosome-associated ESCRT-III protein complex and before or in conjunction with Doa4, the ubiquitin hydrolase mediating protein deubiquitination prior to their incorporation into MVB vesicles. Bro1 markedly differs from other class E vacuolar protein sorting factors involved in MVB sorting as lack of Bro1 leads to recycling of the internalized permease back to the plasma membrane by passing through the Golgi. This recycling seems to be accompanied by deubiquitination of the permease and unexpectedly requires a normal endosome-to-vacuole transport function.  相似文献   

17.
Endophilin A1 is an SH3 domain-containing protein functioning in membrane trafficking on the endocytic pathway. We have identified the E3 ubiquitin ligase itch/AIP4 as an endophilin A1-binding partner. Itch belongs to the Nedd4/Rsp5p family of proteins and contains an N-terminal C2 domain, four WW domains and a catalytic HECT domain. Unlike other Nedd4/Rsp5p family members, itch possesses a short proline-rich domain that mediates its binding to the SH3 domain of endophilin A1. Itch ubiquitinates endophilin A1 and the SH3/proline-rich domain interaction facilitates this activity. Interestingly, itch co-localizes with markers of the endosomal system in a C2 domain-dependent manner and upon EGF stimulation, endophilin A1 translocates to an EGF-positive endosomal compartment where it colocalizes with itch. Moreover, EGF treatment of cells stimulates endophilin A1 ubiquitination. We have thus identified endophilin A1 as a substrate for the endosome-localized ubiquitin ligase itch. This interaction may be involved in ubiquitin-mediated sorting mechanisms operating at the level of endosomes.  相似文献   

18.
The nuclear transport of both proteins and RNAs has attracted considerable interest in recent years. However, regulation pathways of the nuclear transport machineries are still not well characterized. Previous studies indicated that ubiquitination is involved in poly(A)+ RNA nuclear export. For this reason, we systematically investigated ubiquitin-protein ligasess from the homologous to E6-AP carboxy terminus (HECT) family for potential individual roles in nuclear transport in Saccharomyces cerevisiae . Here we report that Rsp5, an essential yeast ubiquitin ligase involved in many cellular functions, when deleted or mutated in ligase activity, blocks the nuclear export of mRNAs. Affected messenger RNAs include both total poly(A)+ mRNA and heat-shock mRNAs. Mutation of Rsp5 does not affect nuclear protein import or export. Deletion of RSP5 blocks mRNA export, even under conditions where its essential role in unsaturated fatty acids biosynthesis is bypassed. Using domain mapping, we find that the ligase activity is required for proper mRNA export, indicating that ubiquitination by Rsp5 acts directly or indirectly to affect RNA export. The finding that Rsp5p ligase mutations cause a more pronounced defect at high temperatures suggests that ubiquitination of transport factors by Rsp5p may also be essential during stress conditions.  相似文献   

19.
Many plasma membrane transporters in yeast are endocytosed in response to excess substrate or certain stresses and degraded in the vacuole. Endocytosis invariably requires ubiquitination by the HECT domain ligase Rsp5. In the cases of the manganese transporter Smf1 and the amino acid transporters Can1, Lyp1 and Mup1 it has been shown that ubiquitination is mediated by arrestin-like adaptor proteins that bind to Rsp5 and recognize specific transporters. As yeast contains a large family of arrestins, this has been suggested as a general model for transporter regulation; however, analysis is complicated by redundancy amongst the arrestins. We have tested this model by removing all the arrestins and examining the requirements for endocytosis of four more transporters, Itr1 (inositol), Hxt6 (glucose), Fur4 (uracil) and Tat2 (tryptophan). This reveals functions for the arrestins Art5/Ygr068c and Art4/Rod1, and additional roles for Art1/Ldb19, Art2/Ecm21 and Art8/Csr2. It also reveals functional redundancy between arrestins and the arrestin-like adaptors Bul1 and Bul2. In addition, we show that delivery to the vacuole often requires multiple additional ubiquitin ligases or adaptors, including the RING domain ligase Pib1, and the adaptors Bsd2, Ear1 and Ssh4, some acting redundantly. We discuss the similarities and differences in the requirements for regulation of different transporters.  相似文献   

20.
In addition to its well-known role in recognition by the proteasome, ubiquitin-conjugation is also involved in downregulation of membrane receptors, transporters and channels. In most cases, ubiquitination of these plasma membrane proteins leads to their internalization followed by targeting to the lysosome/vacuole for degradation. A crucial role in ubiquitination of many plasma membrane proteins appears to be played by ubiquitin-protein ligases of the Nedd4/Rsp5p family. All family members carry an N-terminal Ca2+-dependent lipid/protein binding (C2) domain, two to four WW domains and a C-terminal catalytic Hect-domain. Nedd4 is involved in downregulation of the epithelial Na+ channel, by binding of its WW domains to specific PY motifs of the channel. Rsp5p, the unique family member in S. cerevisiae, is involved in ubiquitin-dependent endocytosis of a great number of yeast plasma membrane proteins. These proteins lack apparent PY motifs, but carry acidic sequences, and/or phosphorylated-based sequences that might be important, directly or indirectly, for their recognition by Rsp5p. In contrast to polyubiquitination leading to proteasomal recognition, a number of Rsp5p targets carry few ubiquitins per protein, and moreover with a different ubiquitin linkage. Accumulating evidence suggests that, at least in yeast, ubiquitin itself may constitute an internalization signal, recognized by a hypothetical receptor. Recent data also suggest that Nedd4/Rsp5p might play a role in the endocytic process possibly involving its C2 domain, in addition to its role in ubiquitinating endocytosed proteins. Recieved: 19 January 2000/Revised: 6 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号