首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The bilirubin UDP-glucuronyltransferase assay described by Van Roy & Heirwegh (1968) has been improved. 2. Extraction of final azo-derivatives is rendered more simple and efficient by thorough emulsification and by cooling. 3. Pretreatment of homogenates and cell fractions with digitonin increases the sensitivity of the assays and gives less variable results than those with untreated preparations. The activation procedure is flexible. 4. Blank values (obtained from incubation mixtures from which activating bivalent metal ion and UDP-glucuronic acid were omitted) are low. No endogenous conjugate formation could be detected except with untreated, fresh liver homogenates. Control incubation mixtures containing the latter preparations are preferably kept at 0 degrees C. 5. With activated microsomal preparations, rates of breakdown of UDP-glucuronic acid (as monitored by release of P(i)) were low. Little if any increase in enzyme activity was found when UDP-N-acetylglucosamine was included in the incubation mixtures. 6. Slight deviation from Michaelis-Menten kinetics with respect to bilirubin observed at low substrate concentrations is probably related to the use of binding protein in the assay mixtures. Michaelis-Menten kinetics were followed with respect to UDP-glucuronic acid. Part of the enzyme in microsomal preparations from rat liver functioned independently of added bivalent metal ions. Mn(2+) was slightly more, and Ca(2+) somewhat less, stimulatory than Mg(2+). The Mg(2+)-dependent fraction showed Michaelis-Menten kinetics with respect to the added Mg(2+). 7. The enzyme activities found were higher than values reported in the literature for untreated or purified preparations from rat liver. They were above reported values of the maximal biliary excretion rate of bilirubin.  相似文献   

2.
3.
4.
5.
1. The glucuronide conjugation of p-nitrophenol, phenolphthalein, o-aminophenol and 4-methylumbelliferone by rat liver microsomes has been studied. The detergent Triton X-100 activated UDP-glucuronyltransferase activity towards all these substrates, therefore the optimum activating concentration was added in all experiments. 2. Mg2+ enhanced the conjugation of the substrates. 3. With phenolphthalein substrate inhibition occurred but this could be relieved by adding albumin, which binds excess of phenolphthalein. 4. Kinetic constants of the substrates and UDP-glucuronate have been determined. Mutual inhibition was found with the substrates p-nitrophenol, 4-methylumbelliferone and phenolphthalein. p-Nitrophenol conjugation was inhibited competitively by phenolphthalein and 4-methylumbelliferone. 5. o-Aminophenol did not inhibit the conjugation of the other three substrates because these are conjugated preferentially to o-aminophenol. 6. It is concluded that the four substrates are conjugated by one enzyme at the same active site.  相似文献   

6.
Golgi apparatus isolated from cat liver contained UDPglucose pyrophosphorylase (UTP:alpha-D-glucose-1-phosphate uridylyltransferase, EC 2.7.7.9) activity. The results of washing suggested that pyrophosphorylase was bound firmly to Golgi membranes. Moreover, the enzyme was activated by Triton X-100 in the same extent as galactosyltransferase, a typical Golgi apparatus enzyme. Two-substrate kinetic studies were performed with the enzymes from cytosol and Golgi fractions. The soluble enzyme showed an apparent 2.5-fold greater activity for the glucose 1-phosphate than for UTP, while pyrophosphorylase of Golgi apparatus had the same affinity for the two substrates. A random mechanism was observed with a direct dependence of apparent Michaelis constant values on the concentration of second substrate for soluble enzyme. In contrast, with Golgi enzyme one ligand had no effect on the binding of the other.  相似文献   

7.
Enzymic oxidation of unconjugated bilirubin by rat liver.   总被引:2,自引:1,他引:2       下载免费PDF全文
The presence of the enzyme bilirubin oxidase, which degrades bilirubin in vitro, was demonstrated in the liver. Subcellular-fractionation experiments indicate that bilirubin oxidase is located in both the inner and outer membranes of the mitochondria. The mean rate of the reaction is 1.57 +/- 0.38 (S.D.) nmol of bilirubin degraded/min per mg of mitochondrial protein (munits/mg of protein). With respect to the overall breakdown of bilirubin, the enzyme has a Km' of 136 microM-bilirubin and a Vmax.' of 9.13 munits/mg of protein. Its activity is influenced by the ionic strength of the media and is inhibited by KCN, thiol reagents, NADH and albumin. The enzyme is aerobic, and between 1 and 1.5 mol of O2 are consumed per mol of bilirubin degraded. The products of the reaction include propentdyopents. The hepatic bilirubin oxidase activity of the jaundiced Gunn-rat liver is not significantly different from that of the Sprague-Dawley rat, and it is not induced by beta-naphthoflavone.  相似文献   

8.
9.
10.
11.
12.
13.
14.
6,6-Dithiodinicotinate shows half-of-the-sites reactivity towards the six catalytic-site thiol groups of bovine liver UDP-glucose dehydrogenase. The reagent introduces three intrasubunit disulphide linkages between catalytic-site thiol groups and non-catalytic-site thiol groups and abrogates 60% of the catalytic activity of the hexameric enzyme; excess 2-mercaptoethanol rapidly restores full catalytic activity. These results show the half-of-the-sites behaviour of the enzyme with the reagent and the presence of a non-catalytic-site thiol group capable of forming a disulphide linkage with a catalytic-site thiol group on the same subunit without irreversible denaturation.  相似文献   

15.
A procedure for the preparation of crystalline UDP-glucose pyrophosphorylase is described. K(s) values for UDP-glucose and UTP were determined as 7 and 20 muM respectively, the latter being confirmed by three methods. By assuming an octameric structure, 1 mol of enzyme subunit bound 1 mol of substrate. The metal-ion activator, Mg2+, did not affect the equilibrium between nucleotide and enzyme. A substrate analogue, alphabeta-methylene-UTP, was synthesized and had the same K(s) value as UTP. In its presence, the K(s) for glucose 1-phosphate decreased by two orders of magnitude, thus confirming a compulsory binding order and excluding an uridylated enzyme intermediate. The results are discussed with respect to their implications in vivo.  相似文献   

16.
17.
18.
The synthesis of UDP-glucose-6-s-H was performed through condensation of alpha-D-glucopyranosyl phosphate-6-3-H and uridine 5'-phosphomorpholidate. Enzymic oxidation of UDP-glucose-6-3-H with calf liver UDP-glucose dehydrogenase was found to proceed with direct transfer of the hydrogen from C-6 of UDP-glucose onto NAD.  相似文献   

19.
The interaction of alpha-D-glucopyranosyl pyrophosphates of 5-X-uridines (X = CH3, NH2, CH3O, I, Br, Cl, OH) with uridine diphosphate glucose (UDPGlc) dehydrogenase (EC 1.1.1.22) from calf liver has been studied. All the derivatives investigated were able to serve as substrates for the enzyme. The apparent Michaelis constants for UDPGlc-analogs were dependent both on electronic and steric factors. Increase of substituent negative inductive effect lead to decrease of pKa for ionization of the NH-group in the uracil nucleus and, consequently, to a diminishing of the proportion of the active analog species under the conditions of assay. After correction for the ionization effect, the Km values were found to depend on the van der Waals radius of the substituent. The value of 1.95 A seems to be critical, as the analogs with bulkier substituents at C-5 showed a decreased affinity to the enzyme. The maximal velocity values of the analogs were also dependent on nature of the substituent. Good linear correlation between log V and substituent hydrophobic phi-constant was observed for a number of the analogs, although V values for the nucleotides with X = H, OH or NH2 were higher than would be expected on the basis of the correlation. The significance of the results for understanding of the topography of UDPGlc dehydrogenase active site is discussed.  相似文献   

20.
Comparative time-course studies of glycogen synthesis from glucose 6-phosphate, glucose 1-phosphate and UDP-glucose show that glucose 1-phosphate forms glycogen at an initial rate faster than that obtained with glucose 6-phosphate and UDP-glucose. After 5min. the rates from glucose monophosphates are considerably slower. 2,4-Dinitrophenol decreases glycogen synthesis from both glucose monophosphates, whereas arsenate and EDTA increase glycogen synthesis from glucose 1-phosphate and inhibit the reaction from glucose 6-phosphate, galactose and galactose 1-phosphate. Mitochondria-free pigeon liver cytoplasmic fraction forms less glycogen from glucose monophosphates than does the whole homogenate. 2-Deoxyglucose 6-phosphate inhibits glycogen synthesis from glucose monophosphates. Glycogen formation from UDP-glucose is relatively unaffected by dinitrophenol, by arsenate, by EDTA, by 2-deoxyglucose 6-phosphate and by the removal of mitochondria from the whole homogenate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号