首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
K Yusa  K Shikama 《Biochemistry》1987,26(21):6684-6688
Hydrogen peroxide, one of the potent oxidants in muscle tissues, can induce very rapid oxidation of oxymyoglobin (MbO2) to metmyoglobin (metMb) with an apparent rate constant of 7.5 X 10(4) h-1 M-1 (i.e., 20.8 s-1 M-1) over the wide pH range of 5.5-10.2 in 0.1 M buffer at 25 degrees C. Its molecular mechanism, however, is quite different from that of the autoxidation of MbO2 to metMb. Kinetic analysis has revealed that the hydrogen peroxide oxidation proceeds through the formation of ferryl-Mb(IV) from deoxy-Mb(II), which is in equilibrium with MbO2, by a two-equivalent oxidation with H2O2. Once the ferryl species is formed, it reacts rapidly with another deoxy-Mb(II) in a bimolecular fashion so as to yield 2 mol of metMb(III). Under physiological conditions, the rate-determining step was the oxidation of the deoxy species by H2O2, its rate constant being estimated to be on the order of 3.6 X 10(3) s-1 M-1 at 25 degrees C. These findings leads us to the view that a good supply of dioxygen provides rather an important defense against the oxidation of myoglobin with hydrogen peroxide in cardiac and skeletal muscle tissues.  相似文献   

2.
The catalase reaction has been studied in detail by using myoglobin (Mb) mutants. Compound I of Mb mutants (Mb-I), a ferryl species (Fe(IV)=O) paired with a porphyrin radical cation, is readily prepared by the reaction with a nearly stoichiometric amount of m-chloroperbenzoic acid. Upon the addition of H2O2 to an Mb-I solution, Mb-I is reduced back to the ferric state without forming any intermediates. This indicates that Mb-I is capable of performing two-electron oxidation of H2O2 (catalatic reaction). Gas chromatography-mass spectroscopy analysis of the evolved O2 from a 50:50 mixture of H2(18)O2/H2(16)O2 solution containing H64D or F43H/H64L Mb showed the formation of 18O2 (m/e = 36) and 16O2 (m/e = 32) but not 16O18O (m/e = 34). This implies that O2 is formed by two-electron oxidation of H2O2 without breaking the O-O bond. Deuterium isotope effects on the catalatic reactions of Mb mutants and catalase suggest that the catalatic reactions of Micrococcus lysodeikticus catalase and F43H/H64L Mb proceed via an ionic mechanism with a small isotope effect of less than 4.0, since the distal histidine residue is located at a proper position to act as a general acid-base catalyst for the ionic reaction. In contrast, other Mb mutants such as H64X (X is Ala, Ser, and Asp) and L29H/H64L Mb oxidize H2O2 via a radical mechanism in which a hydrogen atom is abstracted by Mb-I with a large isotope effect in a range of 10-29, due to a lack of the general acid-base catalyst.  相似文献   

3.
Studies that elucidate the behavior of the hemoglobins (Hbs) and myoglobins upon reaction with hydrogen peroxide are essential to the development of oxygen carrier substitutes. Stopped-flow kinetics and resonance Raman data show that the reaction between hydrogen peroxide and oxygenated and deoxygenated ferric Hb I (oxy- and deoxy-HbI) from Lucina pectinata produce compound I and compound II ferryl species. The rate constants ratio (k23/k41) between the formation of compound II from compound I (k23) and the oxidation of the ferrous HbI (k41, i.e., 25 M(-1) s(-1)) of 12 x 10(-4) M suggests that HbI has a peroxidative capacity for removing H2O2 from solution. Resonance Raman presents the formation of both, met-aquo-HbI and compound II ferryl species in the cyclic reaction of HbI with H2O2. The ferric HbI species is maintained by the presence of H2O2; it can produce HbI compound I, or it can be reduced to a deoxy-HbI derivative to form HbI compound II upon reaction with H2O2. The compound II ferryl vibration frequency appears at 805 and 769 cm(-1) for HbIFe(IV)=(16)O and HbIFe(IV)=(18)O species, respectively. This ferryl mode indicates the absence of hydrogen bonding between the carbonyl group of the distal Q64 and the HbIFe(IV)=O ferryl moiety. The observation suggests that both the trans-ligand effect and the polarizabilty of the HbI heme pocket are responsible for the observed ferryl oxo vibrational energy. The vibrational mode also suggests that the carbonyl group of the distal Q64 is oriented toward the iron of the heme group, increasing the distal pocket electron density.  相似文献   

4.
The ability of myoglobin (Mb) to reversibly bind O2 and other ligands has been well characterized. Mb also participates with a variety of redox metals to form metmyoglobin (metMb). By using an anaerobic stopped-flow device we have measured outer-sphere oxidation by [Fe(CN)6]3 of native sperm whale myoglobin, recombinant wild-type Mb, and a series of mutant Mb proteins in which the distal His-64 was changed to Gly, Phe, Leu or Val. Second-order rate constants for oxidation of mutant proteins are 10-15 times greater than for recombinant or native (kox approximately 10(6) M-1 s-1). We attribute the reduced rate of oxidation of wild-type protein to a higher reorganization energy imposed by the presence of the unique water/His-64/heme interaction, which is absent in the mutant proteins.  相似文献   

5.
The formation of ferryl heme (Fe(IV) = O) species, i.e., compound I and compound II, has been identified as the main intermediates in heme protein peroxidative reactions. We report stopped-flow kinetic measurements which illustrate that the reaction of hemoglobin I (HbI) from Lucina pectinata with hydrogen peroxide produce ferryl intermediates compound I and compound II. Compound I appears relatively stable displaying an absorption at 648 nm. The rate constant value (k'(2)) for the conversion of compound I to compound II is 3.0 x 10(-2) s(-1), more than 100 times smaller than that reported for myoglobin. The rate constant value for the oxidation of the ferric heme (k'(12) + k'(13)) is 2.0 x 10(2) M(-1) s(-1). These values suggest an alternate route for the formation of compound II (by k'(13)) avoiding the step from compound I to compound II (k'(2)). In HbI from L. pectinata the stabilization of compound I is attribute to the unusual collection of amino acids residues (Q64, F29, F43, F68) in the heme pocket active site of the protein.  相似文献   

6.
Fe(IV)=O resonance Raman stretching vibrations were recently identified by this laboratory for horseradish peroxidase compound II and ferryl myoglobin. In the present report it is shown that Fe(IV)=O stretching frequency for horseradish peroxidase compound II will switch between two values depending on pH, with pKa values corresponding to the previously reported compound II heme-linked ionizations of pKa = 6.9 for isoenzyme A-2 and pKa = 8.5 for isoenzyme C. Similar pH-dependent shifts of the Fe(IV)=O frequency of ferryl myoglobin were not detected above pH 6. The Fe(IV)=O stretching frequencies of compound II of the horseradish peroxidase isoenzymes at pH values above the transition points were at a high value approaching the Fe(IV)=O stretching frequency of ferryl myoglobin. Below the transition points the horseradish peroxidase frequencies were found to be 10 cm-1 lower. Frequencies of the Fe(IV)=O stretching vibrations of horseradish peroxidase compound II for one set of isoenzymes were found to be sensitive to deuterium exchange below the transition point but not above. These results were interpreted to be indicative of an alkaline deprotonation of a distal amino acid group, probably histidine, which is hydrogen bonded to the oxyferryl group below the transition point. Deprotonation of this group at pH values above the pKa disrupts hydrogen bonding, raising the Fe(IV)=O stretching frequency, and is proposed to account for the lowering of compound II reactivity at alkaline pH. The high value of the Fe(IV)=O vibration of compound II above the transition point appears to be identical in frequency to what is believed to be the Fe(IV)=O vibration of compound X.  相似文献   

7.
The biological conversions of O(2) and peroxides to water as well as certain incorporations of oxygen atoms into small organic molecules can be catalyzed by metal ions in different clusters or cofactors. The catalytic cycle of these reactions passes through similar metal-based complexes in which one oxygen- or peroxide-derived oxygen atom is coordinated to an oxidized form of the catalytic metal center. In haem-based peroxidases or oxygenases the ferryl (Fe(IV)O) form is important in compound I and compound II, which are two and one oxidation equivalents higher than the ferric (Fe(III)) form, respectively. In this study we report the 1.35 A structure of a compound II model protein, obtained by reacting hydrogen peroxide with ferric myoglobin at pH 5.2. The molecular geometry is virtually unchanged compared to the ferric form, indicating that these reactive intermediates do not undergo large structural changes. It is further suggested that at low pH the dominating compound II resonance form is a hydroxyl radical ferric iron rather than an oxo-ferryl form, based on the short hydrogen bonding to the distal histidine (2.70 A) and the Fe...O distance. The 1.92 A Fe...O distance is in agreement with an EXAFS study of compound II in horseradish peroxidase.  相似文献   

8.
Ferryl (Fe(IV)=O) species are involved in key enzymatic processes with direct biomedical relevance; among others, the uncontrolled reactivities of ferryl Mb (myoglobin) and Hb (haemoglobin) have been reported to be central to the pathology of rhabdomyolysis and subarachnoid haemorrhage. Rapid-scan stopped-flow methods have been used to monitor the spectra of the ferryl species in Mb and Hb as a function of pH. The ferryl forms of both proteins display an optical transition with pK approximately 4.7, and this is assigned to protonation of the ferryl species itself. We also demonstrate for the first time a direct correlation between Hb/Mb ferryl reactivity and ferryl protonation status, simultaneously informing on chemical mechanism and toxicity and with broader biochemical implications.  相似文献   

9.
Osborne RL  Coggins MK  Walla M  Dawson JH 《Biochemistry》2007,46(34):9823-9829
The heme-containing respiratory protein, myoglobin (Mb), best known for oxygen storage, can exhibit peroxidase-like activity under conditions of oxidative stress. Under such circumstances, the initially formed ferric state can react with H2O2 (or other peroxides) to generate a long-lived ferryl [Fe(IV)=O] Compound II (Cpd II) heme intermediate that is capable of oxidizing a variety of biomolecules. In this study, the ability of Mb Cpd II to catalyze the oxidation of carcinogenic halophenols is demonstrated. Specifically, 2,4,6-trichlorophenol (TCP) is converted to 2,6-dichloro-1,4-benzoquinone in a H2O2-dependent process. The fact that Mb Cpd II is an active oxidant in halophenol dehalogenation is consistent with a traditional peroxidase order of addition of H2O2 followed by TCP. With 4-chlorophenol, a dimerized product is formed, consistent with a mechanism involving generation of a reactive phenoxy radical intermediate by an electron transfer process. The radical nature of this process may be physiologically relevant since recent studies have revealed that phenoxy radicals and electrophilic quinones, specifically of the type described herein, covalently bind to DNA [Dai, J., Sloat, A. L., Wright, M. W., and Manderville, R. A. (2005) Chem. Res. Toxicol. 18, 771-779]. Thus, the stability of Mb Cpd II and its ability to oxidize TCP may explain why such compounds are carcinogenic. Furthermore, the initial rate of dehalogenation catalyzed by Mb Cpd II is nearly comparable to that of the same reaction carried out by turnover of the ferric state, demonstrating the potential physiological danger of this long-lived, high-valent intermediate.  相似文献   

10.
Nitric oxide as an antioxidant.   总被引:21,自引:0,他引:21  
Benzoate monohydroxy compounds, and in particular salicylate, were produced during interaction of ferrous complexes with hydrogen peroxide (Fenton reaction) in a N2 environment. These reactions were inhibited when Fe complexes were flushed, prior to the addition in the model system, by nitric oxide. Methionine oxidation to ethylene by Fenton reagents was also inhibited by nitric oxide. Myoglobin in several forms such as metmyoglobin, oxymyoglobin, and nitric oxide-myoglobin were interacted with an equimolar concentration of hydrogen peroxide. Spectra changes in the visible region and the changes in membrane (microsomes) lipid peroxidation by the accumulation of thiobarbituric acid-reactive substances (TBA-RS) were determined. The results showed that metmyoglobin and oxymyoglobin were activated by H2O2 to ferryl myoglobin, which initiates membrane lipid peroxidation; but not nitric oxide-myoglobin, which, during interaction with H2O2, did not form ferryl but metmyoglobin which only poorly affected lipid peroxidation. It is assumed that nitric oxide, liganded to ferrous complexes, acts to prevent the prooxidative reaction of these complexes with H2O2.  相似文献   

11.
This study investigates the potential role of the ferric/ferryl redox cycle of myoglobin (Mb) in the development of endothelial cell injury. Bovine aortic endothelial cells were incubated with ferric Mb (0.5-100 micro M) in the presence or absence of low steady states of H(2)O(2) (3-4 micro M) generated by glucose oxidase (GOX). The reaction of ferric Mb with H(2)O(2) generated ferryl Mb as monitored spectrophotometrically. Ferryl Mb formation correlated with the induction of apoptosis as indicated by morphological criteria, caspase 3 activation, phosphatidylserine (PS) externalization, and nuclear condensation by Hoechst 33342 staining. The addition of ascorbate or catalase inhibited the formation of ferryl Mb and the onset of apoptosis, whereas apoptosis was enhanced in cells depleted of intracellular glutathione by pretreatment with buthionine sulfoximine. Mb and Mb/GOX suppressed cell cycle progression, but only Mb/GOX produced significant cell loss revealed by the accumulation of sub G1 events. These results suggest a role for the Mb redox cycle in the induction of endothelial cell apoptosis, which may be relevant in the pathophysiology of diseases characterized by the release of Mb from damaged muscle.  相似文献   

12.
A Hillar  P Nicholls 《FEBS letters》1992,314(2):179-182
Catalase-bound NADPH both prevents and reverses the accumulation of inactive bovine liver catalase peroxide compound II generated by 'endogenous' donors under conditions of steady H2O2 formation without reacting rapidly with either compound I or compound II. It thus differs both from classical 2-electron donors of the ethanol type, and from 1-electron donors of the ferrocyanide/phenol type. NADPH also inhibits compound II formation induced by the exogenous one-electron donor ferrocyanide. A catalase reaction scheme is proposed in which the initial formation of compound II from compound I involves production of a neighbouring radical species. NADPH blocks the final formation of stable compound II by reacting as a 2-electron donor to compound II and to this free radical. The proposed behaviour resembles that of labile free radicals formed in cytochrome c peroxidase and myoglobin. Such radical migration patterns within haem enzymes are increasingly common motifs.  相似文献   

13.
Ozaki S  Hara I  Matsui T  Watanabe Y 《Biochemistry》2001,40(4):1044-1052
The F43W and F43W/H64L myoglobin (Mb) mutants have been constructed to investigate effects of an electron rich oxidizable amino acid residue in the heme vicinity on oxidation activities of Mb. The Phe-43 --> Trp mutation increases the rate of one-electron oxidation of guaiacol by 3-4-fold; however, the peroxidase activity for F43W/H64L Mb is less than that of the F43W single mutant because the absence of histidine, a general acid-base catalyst, in the distal heme pocket suppresses compound I formation. More than 15-fold improvement versus wild-type Mb in the two-electron oxidation of thioanisole and styrene is observed with the Phe-43 --> Trp mutation. Our results indicate that Trp-43 in the mutants enhances both one- and two-electron oxidation activities (i.e., F43W Mb > wild-type Mb and F43W/H64L Mb > H64L Mb). The level of (18)O incorporation from H2(18)O2 into the epoxide product for the wild type is 31%; however, the values for F43W and F43W/H64L Mb are 75 and 73%, respectively. Thus, Trp-43 in the mutants does not appear to be utilized as a major protein radical site to form a peroxy protein radical in the oxygenation. The enhanced peroxygenase activity might be explained by the increase in the reactivity of compound I. However, the oxidative modification of F43W/H64L Mb in compound I formation with mCPBA prevents us from determining the actual reactivity of the catalytic species for the intact protein. The Lys-C achromobacter digestion of the modified F43W/H64L mutant followed by FPLC and mass analysis shows that the Trp-43-Lys-47 fragment gains a mass by 30 Da, which could correspond two oxygen atoms and loss of two protons.  相似文献   

14.
The H(2)O(2)-dependent reaction of lactoperoxidase (LPO) with sperm whale myoglobin (SwMb) or horse myoglobin (HoMb) produces LPO-Mb cross-linked species, in addition to LPO and SwMb homodimers. The HoMb products are a LPO(HoMb) dimer and LPO(HoMb)(2) trimer. Dityrosine cross-links are shown by their fluorescence to be present in the oligomeric products. Addition of H(2)O(2) to myoglobin (Mb), followed by catalase to quench excess H(2)O(2) before the addition of LPO, still yields LPO cross-linked products. LPO oligomerization therefore requires radical transfer from Mb to LPO. In contrast to native LPO, recombinant LPO undergoes little self-dimerization in the absence of Mb but occurs normally in its presence. Simultaneous addition of 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) and LPO to activated Mb produces a spin-trapped radical electron paramagnetic resonance signal located primarily on LPO, confirming the radical transfer. Mutation of Tyr-103 or Tyr-151 in SwMb decreased cross-linking with LPO, but mutation of Tyr-146, Trp-7, or Trp-14 did not. However, because DBNBS-trapped LPO radicals were observed with all the mutants, DBNBS traps LPO radicals other than those involved in protein oligomerization. The results clearly establish that radical transfer occurs from Mb to LPO and suggest that intermolecularly transferred radicals may reside on residues other than those that are generated by intramolecular reactions.  相似文献   

15.
We investigated the toxicity of hemoglobin/myoglobin on endothelial cells under oxidative stress conditions that include cellular hypoxia and reduced antioxidant capacity. Bovine aorta endothelial cells (BAECs), grown on microcarrier beads, were subjected to cycles of hypoxia and reoxygenation in a small volume of medium, and endothelial cell monolayers were depleted of their intracellular glutathione (GSH) by treatment with buthionine sulfoximine. Incubation of diaspirin cross-linked hemoglobin (DBBF-Hb) or horse skeletal myoglobin (Mb) with BAECs subjected to 3 h of hypoxia caused transient oxidation of the hemoproteins to the ferryl form (Fe(4+)). Formation of the ferryl intermediate was decreased in a concentration-dependent manner by the addition of L-arginine, a substrate of NO synthase, after 3 h of hypoxia. Optimal inhibition of ferryl formation, possibly due to the antioxidant action of NO, was achieved with 900 microM L-arginine. Addition of hydrogen peroxide to GSH-depleted cells in the presence of DBBF-Hb or Mb significantly decreased cell viability. Ferryl Mb, but not ferryl DBBF-Hb, was observed in samples analyzed at the end of treatment, which may explain the greater toxicity observed with Mb as opposed to DBBF-Hb. This model may be utilized to identify causative agent(s) associated with hemoprotein cytotoxicity and in designing strategies to suppress or control heme-mediated injury under physiologically relevant conditions.  相似文献   

16.
Ferric myoglobin undergoes a two-electron oxidation in its reaction with H(2)O(2). One oxidation equivalent is used to oxidize Fe(III) to the Fe(IV) ferryl species, while the second is associated with a protein radical but is rapidly dissipated. The ferryl species is then slowly reduced back to the ferric state by unknown mechanisms. To clarify this process, the formation and stability of the ferryl forms of the Tyr --> Phe and Trp --> Phe mutants of recombinant sperm whale myoglobin (SwMb) were investigated. Kinetic studies showed that all the mutants react normally with H(2)O(2) to give the ferryl species. However, the rapid phase of ferryl autoreduction typical of wild-type SwMb was absent in the triple Tyr --> Phe mutant and considerably reduced in the Y103F and Y151F mutants, strongly implicating these two residues as intramolecular electron donors. Replacement of Tyr146, Trp7, or Trp14 did not significantly alter the autoreduction, indicating that these residues do not contribute to ferryl reduction despite the fact that Tyr146 is closer to the iron than Tyr151 or Tyr103. Furthermore, analysis of the fast phase of autoreduction in the dimer versus recovered monomer of the Tyr --> Phe mutant K102Q/Y103F/Y146F indicates that the Tyr151-Tyr151 cross-link is a particularly effective electron donor. The presence of an additional, slow phase of reduction in the triple Tyr --> Phe mutant indicates that alternative but normally minor electron-transfer pathways exist in SwMb. These results demonstrate that internal electron transfer is governed as much by the tyrosine pK(a) and oxidation potential as by its distance from the electron accepting iron atom.  相似文献   

17.
The effect of myoglobin, free hemin and H2O2 on myosins from heart and skeletal muscle was studied. SDS-gel electrophoresis revealed that each agent caused intermolecular thiol crosslinking of both myosins dissociable by excess of beta-mercaptoethanol. In the simultaneous presence of H2O2 and myoglobin or H2O2 and free hemin, myosin formed covalent aggregates undissociable by beta-mercaptoethanol and therefore assessed to formation of non S-S inter molecular covalent bonds. The latter aggregates are suggested to result from pairing of myosin radicals formed by the H2O2 induced ferryl iron state in myoglobin, free hemin or hemo-myosin.  相似文献   

18.
The addition of ascorbate to ischemic rat hearts prevents the myocardial damage associated with reoxygenation. H2O2 oxidizes myoglobin (Mb+2) to higher oxidation states (Mb+4 and Mb+5) which are rapidly reduced by ascorbate. It is proposed that the operation of a myoglobin redox cycle, in which H2O2 causes the two-electron oxidation of myoglobin, is a critical determinant of reperfusion injury. Conversely, the reduction of myoglobin, in one-electron steps, may represent an essential protective mechanism against such injury in the heart.  相似文献   

19.
The reaction of hydrogen peroxide H(2)O(2) with horse heart metmyoglobin (HH metMb), sperm whale metmyoglobin (SW metMb) and human metHb (metHbA) was studied at pH 6-8 by low temperature (10 K) EPR spectroscopy with the emphasis on the peroxyl radicals formed during the reaction. The same type of peroxyl radical was found in both myoglobin systems, as was concluded from close similarities in the spectroscopic properties of the radicals and in their kinetic dependences. This is consistent with previous reports of the peroxyl radical being localised on the Trp14 of SW and HH myoglobins. There are two types of peroxyl radical found in the metHbA/H(2)O(2) system, one (ROO-I) having spectral parameters, kinetic and pH dependences similar to those of the peroxyl radical found in both myoglobin systems. The other peroxyl radical (ROO-II) found in metHbA treated with H(2)O(2) has slightly different, though distinguishable, spectral parameters and a significantly different kinetic dependence as compared to those of the peroxyl radical common for all three proteins studied (ROO-I). The concentration of ROO-I radical formed in the three proteins on addition of H(2)O(2) correlates with the effectiveness of incorporating molecular oxygen into styrene oxide reported before for these three proteins. It is shown that a different distance from Trp14 to haem iron in the three proteins might be the structural basis for the different yield of the peroxyl radical and the different efficiency of incorporation of molecular oxygen into styrene. The site of the peroxyl radical found only in metHbA (ROO-II) is speculated to be the Trp37 residue of the beta-subunit of HbA.  相似文献   

20.
Reflectance spectroscopy was utilized to monitor the oxidation states of myoglobin (Mb) in isolated, buffer-perfused rat hearts. Hearts were subjected to 30 min global, no-flow ischemia, followed by reperfusion under anoxic conditions. The addition of Na2S to the buffer at reperfusion permitted the detection of ferryl myoglobin (MbIV) as its sulfmyoglobin derivative. The accumulation of MbIV was prevented by addition of ascorbic acid (1 mM), ergothioneine (2mM), or desferal (1mM) to the buffer prior to ischemia. Ascorbate and other agents have been previously shown to serve as one-electron reductants of MbIV. We propose that during the early phases of ischemia, deoxymyoglobin is oxidized to MbIV by residual H2O2. It also seems reasonable that the peroxidative activity of Mb(IV), during oxygenated reperfusion, might lead to cellular damage if this hypervalent form of Mb is not reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号