首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We used sodium bisulfite mutagenesis to introduce point mutations within the early region of the simian virus 40 genome. Seventeen mutants which contained amino acid changes in the amino-terminal half of the large T antigen coding sequence were assayed for their ability to replicate viral DNA and to induce transformation in the established rodent cell line Rat-3. The mutants fell into four basic classes with respect to these two biological functions. Five mutants had wild-type replication and transformation activities, six were totally defective, three were replication deficient and transformation competent, and two were replication competent and transformation deficient. Within these classes were mutants which displayed intermediate phenotypes, such as four mutants which were not totally deficient in viral replication or cellular transformation but instead showed reduced large T antigen function relative to wild type. Three large T mutants displayed transforming activity that was greater than that of wild type and are called supertransforming mutants. Of the most interest are mutants differentially defective in replication and transformation activities. These results both support and extend previous findings that two important biological functions of large T antigen can be genetically separated.  相似文献   

2.
We developed a procedure to evaluate quantitatively the capacity of subgenomic fragments from polyomavirus and simian virus 40 (SV40) to promote the establishment of primary cells in culture. The large T antigen from both of these viruses can immortalize primary rat embryo fibroblasts. Both antigens have amino-terminal domains that retain biological activity after deletion of other parts of the polypeptide chain. However, this activity varies considerably among various mutants, presumably because of alterations in the stability or conformation of the truncated polypeptides. The polyomavirus middle T gene alone immortalizes at a low efficiency, which indicates that this oncogene can have both immortalization and transformation potentials depending on the assay system chosen. We generated deletions in the polyomavirus and SV40 large T genes to localize more precisely the functional domains of the proteins involved in the immortalization process. Our results show that the region of the SV40 large T antigen involved in immortalization is localized within the first 137 amino acid residues. This region is encoded by the first large T exon and a small portion from the second exon which includes the SV40 large T nuclear location signal. The polyomavirus sequence involved in immortalization comprises a region from the second large T exon, mapping between nucleotides 1016 and 1213, which shares no homology with SV40 and is thought to be of cellular origin. We suggest that this region of the polyomavirus large T gene functions either as a nuclear location signal or as part of the large T protein sequence involved in DNA binding.  相似文献   

3.
The simian virus 40 large T antigen is phosphorylated at eight or more sites that are clustered in an amino-terminal region and a carboxy-terminal region of the protein. Mutants carrying exchanges at these phosphorylation sites have been generated in vitro by bisulfite or oligonucleotide-directed mutagenesis and analyzed for their phosphorylation patterns. Two-dimensional phosphopeptide analyses of the mutant large T antigens confirmed most of the previously identified phosphorylation sites, namely, serine residues 106, 112, 123, 639, 677, and 679 and threonine residues 124 and 701. In addition, serine residue 120 was identified as a new site, whereas serines residues 111 and 676 were excluded. Interestingly, several of the mutants exhibited secondary effects in that a mutation in the amino-terminal region affected phosphorylation at distant and even carboxy-terminal sites and vice versa. Thus, the amino- and carboxy-terminal domains appear to be in close proximity in the three-dimensional structure of large T antigen. The possible consequences of the above findings and the role of phosphorylation are discussed.  相似文献   

4.
Base substitution of the ori region of simian virus 40 leads to plaque morphology mutants with markedly decreased DNA replication. Second-site mutations within the simian virus 40 T antigen gene suppress the plaque phenotype and replication defect of base-substituted ori mutants. Two second-site mutations have been mapped to a small segment of the T antigen gene, just beyond the distal splice junction. DNA sequence analysis revealed a single missense change in this segment of the T antigen gene of each of these second-site revertants, leading to a change in codon 157 in one case and codon 166 in the other. The mutant T antigens displayed relaxed specificity for the ori signal, i.e., they can function with several variously modified ori sequences, including those with small nucleotide deletions or insertions that are inactive for replication when coupled with wild-type T antigen. Thus a region of T antigen has been identified that appears to be intimately involved in vivo in binding to the ori sequence to initiate viral DNA replication.  相似文献   

5.
Simian virus 40 origin DNA-binding domain on large T antigen.   总被引:37,自引:29,他引:8       下载免费PDF全文
Fifty variant forms of simian virus 40 (SV40) large T antigen bearing point, multiple point, deletion, or termination mutations within a region of the protein thought to be involved in DNA binding were tested for their ability to bind to SV40 origin DNA. A number of the mutant large T species including some with point mutations were unable to bind, whereas many were wild type in this activity. The clustering of the mutations that are defective in origin DNA binding both reported here and by others suggests a DNA-binding domain on large T maps between residues 139 and approximately 220, with a particularly sensitive sequence between amino acids 147 and 166. The results indicate that the domain is involved in binding to both site I and site II on SV40 DNA, but it remains unclear whether it is responsible for binding to cellular DNA. Since all the mutants retain the ability to transform Rat-1 cells, we conclude that the ability of large T to bind to SV40 origin DNA is not a prerequisite for its transforming activity.  相似文献   

6.
A K Arthur  A Hss    E Fanning 《Journal of virology》1988,62(6):1999-2006
The genomic coding sequence of the large T antigen of simian virus 40 (SV40) was cloned into an Escherichia coli expression vector by joining new restriction sites, BglII and BamHI, introduced at the intron boundaries of the gene. Full-length large T antigen, as well as deletion and amino acid substitution mutants, were inducibly expressed from the lac promoter of pUC9, albeit with different efficiencies and protein stabilities. Specific interaction with SV40 origin DNA was detected for full-length T antigen and certain mutants. Deletion mutants lacking T-antigen residues 1 to 130 and 260 to 708 retained specific origin-binding activity, demonstrating that the region between residues 131 and 259 must carry the essential binding domain for DNA-binding sites I and II. A sequence between residues 302 and 320 homologous to a metal-binding "finger" motif is therefore not required for origin-specific binding. However, substitution of serine for either of two cysteine residues in this motif caused a dramatic decrease in origin DNA-binding activity. This region, as well as other regions of the full-length protein, may thus be involved in stabilizing the DNA-binding domain and altering its preference for binding to site I or site II DNA.  相似文献   

7.
Simian virus 40 (SV40) DNA replication begins after two large T-antigen hexamers assemble on the viral minimal origin of replication and locally unwind the template DNA. The activity of T antigen in this reaction is regulated by its phosphorylation state. A form of casein kinase I purified from HeLa nuclear extracts (T-antigen kinase) phosphorylates T antigen on physiologic sites and inhibits its activity in the unwinding reaction (A. Cegielska and D. M. Virshup, Mol. Cell. Biol. 13:1202-1211, 1993). Using a series of mutant T antigens expressed by recombinant baculoviruses in Sf9 cells, we find that the origin unwinding activities of both TS677-->A and TS677,679-->A are inhibited by the T-antigen kinase, as is wild-type T antigen. In contrast, mutants TS120-->A and TS123,679-->A are resistant to inhibition by the kinase. Thus, phosphorylation of serines 120 and 123 is necessary for inhibition of T-antigen activity. Previous studies of casein kinase I substrate specificity have suggested that acidic residues or a phosphorylated amino acid amino terminal to the target residue are required to create a casein kinase I recognition site. However, we find that the T-antigen kinase can add more than 3 mol of Pi per mol to full-length bacterially produced T antigen and that it inhibits the unwinding activity of p34cdc2-activated bacterially produced T antigen. Since no prior phosphorylation is present in this bacterially produced T antigen, and no acidic residues are present immediately amino terminal to serines 120 and 123, other structural elements of T antigen must contribute to the recognition signals for T-antigen kinase. In support of this conclusion, we find that while T-antigen kinase phosphorylates amino-terminal residues in bacterially produced full-length T antigen, it cannot phosphorylate bacterially produced truncated T antigen containing amino acids 1 to 259, a 17-kDa amino-terminal tryptic fragment of T antigen, nor can it phosphorylate denatured T antigen. These findings strongly suggest that the carboxy-terminal domain of T antigen is an important modifier of the recognition signals for phosphorylation of the critical amino-terminal sites by the T-antigen kinase. This conclusion is consistent with previous studies suggesting close apposition of amino- and carboxy-terminal domains of T antigen in the native protein. The three-dimensional conformation of the substrate appears to make a significant contribution to T-antigen kinase substrate specificity.  相似文献   

8.
In this report we present evidence that simian virus 40 T antigen encodes a biological activity that is functionally equivalent to the transforming activity lost by deletion of the E1A p300-binding region. T-antigen constructs from which the pRb-binding region has been deleted are virtually unable to induce foci of transformed cells in a ras cooperation assay in primary baby rat kidney cells. Nevertheless, such a construct can cooperate with an E1A N-terminal deletion mutant, itself devoid of transforming activity, to induce foci in this assay. The heterologous trans-cooperating activity observed between E1A and T-antigen deletion products is as efficient as trans cooperation between mutants expressing individual E1A domains. The cooperating function can be impaired by a deletion near the N terminus of T antigen. Such a deletion impairs neither the p53-binding function nor the activity of the pRb-binding region.  相似文献   

9.
Two independent binding sites on simian virus 40 (SV40) T antigen for topoisomerase I (topo I) were identified. One was mapped to the N-terminal domain (residues 83 to 160) by a combination of enzyme-linked immunosorbent assays (ELISAs) and glutathione S-transferase (GST) pull-down assays performed with various T antigen deletion mutants. The second was mapped to the C-terminal domain (residues 602 to 708). The region in human topo I that binds to both sites in T antigen was identified by ELISAs, GST pull-down assays, and double-hexamer binding assays with topo I deletion mutants. This region corresponds to a distinct domain on topo I known as the cap region that maps from residues 175 to 433. By combining these data with information about the structure of T-antigen double hexamers associated with origin DNA, we propose that the cap region of topo I associates specifically with both ends of the double hexamer bound to the SV40 origin to initiate DNA replication.  相似文献   

10.
We report the characterization of three mutants of simian virus 40 with mutations that delete sequences near the 3' end of the gene encoding large tumor antigen (T antigen). Two of these mutants, dl1066 and dl1140, exhibit an altered viral host range. Wild-type simian virus 40 is capable of undergoing a complete productive infection on several types of established African green monkey kidney lines, including BSC40 and CV1P. dl1066 and dl1140 grow on BSC40 cells at 37 degrees C. However, both mutants fail to form plaques on BSC40 cells at 32 degrees C or on CV1P cells at any temperature. These mutants are capable of replicating viral DNA in the nonpermissive cell type, indicating a defect in an activity of T antigen not related to its replication function. Furthermore this defect can be complemented in trans by the wild type or by a variety of DNA replication-negative T antigen mutants, so long as they produce a normal carboxyl-terminal region of the molecule. Our data are consistent with the hypothesis that the C-terminal region of T antigen constitutes a functional domain. We propose that this domain encodes an activity that is required for simian virus 40 productive infection on the CV1P cell line, but not on BSC40.  相似文献   

11.
Initiation of cell-free simian virus 40 (SV40) DNA replication requires the interaction of DNA polymerase alpha/primase with a preinitiation complex containing the viral T antigen and cellular proteins, replication protein A, and topoisomerase I or II. To further understand the molecular mechanisms of the transition from preinitiation to initiation, the intermolecular interaction between human DNA polymerase alpha and T antigen was investigated. We have demonstrated that the human DNA polymerase alpha catalytic polypeptide is able to associate with SV40 large T antigen directly under physiological conditions. A physical association between these two proteins was detected by coimmunoprecipitation with monoclonal antibodies from insect cells coinfected with recombinant baculoviruses. A domain of human polymerase alpha physically interacting with T antigen was identified within the amino-terminal region from residues 195 to 313. This domain of human polymerase alpha was able to form a nonproductive complex with T antigen, causing inhibition of the SV40 DNA replication in vitro. Kinetics of the inhibition indicated that this polymerase domain can inhibit viral replication only during the preinitiation stage. Extra molecules of T antigen could partially overcome the inhibition only prior to initiation complex formation. The data support the conclusion that initiation of SV40 DNA replication requires the physical interaction of T antigen in the preinitiation complex with the amino-terminal domain of human polymerase alpha from amino acid residues 195 to 313.  相似文献   

12.
T antigen is able to transactivate gene expression from the simian virus 40 (SV40) late promoter and from several other viral and cellular promoters. Neither the mechanisms of transactivation by T antigen nor the regions of T antigen required for this activity have been determined. To address the latter point, we have measured the ability of a set of SV40 large T antigen mutants to stimulate gene expression in CV-1 monkey kidney cells from the SV40 late promoter and Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter. Transactivation, although reduced, was retained by an N-terminal 138-amino-acid fragment of T antigen. Mutants with alterations at various locations within the N-terminal 85 amino acids transactivated the RSV LTR promoter less well than did wild-type T antigen. Most of these were also partially defective in their ability to transactivate the SV40 late promoter. Two mutants with lesions in the DNA-binding domain that were unable to bind to SV40 DNA were completely defective for transactivation of both promoter, while a third mutant with a lesion in the DNA-binding domain which retained origin-binding activity transactivated both promoters as well as did wild-type T antigen. Only a low level of transactivation was seen with mutant T antigens which had lesions in or near the zinc finger region (amino acids 300 to 350). Mutations which caused defects in ATPase activity, host range/helper function, binding to p53, binding to the retinoblastoma susceptibility protein, or nuclear localization had little or no effect on transactivation. These results suggest that N-terminal portion of T antigen possesses an activation activity. The data are consistent with the idea that the overall conformation of T antigen is important for transactivation and that mutations in other regions that reduce or eliminate transactivation do so by altering the conformation or orientation of the N-terminal region so that its ability to interact with various targets is diminished or abolished.  相似文献   

13.
J Zerrahn  F Tiemann    W Deppert 《Journal of virology》1996,70(10):6781-6789
Expression of the simian virus 40 large T antigen (large T) in F111 rat fibroblasts generated only minimal transformants (e.g., F5 cells). Interestingly, F111-derived cells expressing only an amino-terminal fragment of large T spanning amino acids 1 to 147 (e.g., FR3 cells), revealed the same minimal transformed phenotype as F111 cells expressing full-length large T. This suggested that in F5 cells the transforming domain of large T contained within the C-terminal half of the large T molecule, and spanning the p53 binding domain, was not active. Progression to a more transformed phenotype by coexpression of small t antigen (small t) could be achieved in F5 cells but not in FR3 cells. Small-t-induced progression of F5 cells correlated with metabolic stabilization of p53 in complex with large T: whereas in F5 cells the half-life of p53 in complex with large T was only slightly elevated compared with that of (uncomplexed) p53 in parental F111 cells or that in FR3 cells, coexpression of small t in F5 cells led to metabolic stabilization and to high-level accumulation of p53 complexed to large T. In contrast, coexpression of small t had no effect on p53 stabilization or accumulation in FR3 cells. This finding strongly supports the assumption that the mere physical interaction of large T with p53, and thus p53 inactivation, in F5 cells expressing large T only does not reflect the main transforming activity of the C-terminal transforming domain of large T. In contrast, we assume that the transforming potential of this domain requires activation by a cellular function(s) which is mediated by small t and correlates with metabolic stabilization of p53.  相似文献   

14.
J Zhu  P W Rice  L Gorsch  M Abate    C N Cole 《Journal of virology》1992,66(5):2780-2791
Mouse C3H 10T1/2 cells and the established rat embryo fibroblast cell line REF-52 are two cell lines widely used in studies of viral transformation. Studies have shown that transformation of 10T1/2 cells requires only the amino-terminal 121 amino acids of simian virus 40 (SV40) large T antigen, while transformation of REF-52 cells requires considerably more of large T antigen, extending from near the N terminus to beyond residue 600. The ability of a large set of linker insertion, small deletion, and point mutants of SV40 T antigen to transform these two cell lines and to bind p105Rb was determined. Transformation of 10T1/2 cells was greatly reduced by mutations within the first exon of the gene for large T antigen but was only modestly affected by mutations affecting the p105Rb binding site or the p53 binding region. All mutants defective for transformation of 10T1/2 cells were also defective for transformation of REF-52 cells. In addition, mutants whose T antigens had alterations in the Rb binding site showed a substantial reduction in transformation of REF-52 cells, and the degree of this reduction could be correlated with the ability of the mutant T antigens to bind p105Rb. There was a tight correlation between the ability of mutants to transform REF-52 cells and the ability of their T antigens to bind p53. These results demonstrate that multiple regions of large T antigen are required for full transformation by SV40.  相似文献   

15.
Stable interactions between simian virus 40 large T antigen and host proteins are believed to play a major role in the ability of the viral protein to transform cells in culture and induce tumors in vivo. Two of these host proteins, the retinoblastoma susceptibility protein (pRB) and p53, are products of tumor suppressor genes, suggesting that T antigen exerts at least a portion of its transforming activity by complexing with and inactivating the function of these proteins. While analyzing T antigen-host protein complexes in mouse cells, we noted a protein of 185 kDa (p185) which specifically coimmunoprecipitates with T antigen. Coimmunoprecipitation results from the formation of stable complexes between T antigen and p185. Complex formation is independent of the interactions of T antigen with pRB, p120, and p53. Furthermore, analysis of T-antigen mutants suggests that T antigen-p185 complex formation may be important in transformation by simian virus 40.  相似文献   

16.
To map the DNA-binding domain of polyomavirus large T antigen, we constructed a set of plasmids coding for unidirectional carboxy- or amino-terminal deletion mutations in the large T antigen. Analysis of origin-specific DNA binding by mutant proteins expressed in Cos-1 cells revealed that the C-terminal boundary of the DNA-binding domain is at or near Glu-398. Fusion proteins of large T antigen lacking the first 200 N-terminal amino acids bound specifically to polyomavirus origin DNA; however, deletions beyond this site resulted in unstable proteins which could not be tested for DNA binding. Testing of point mutants and internal deletions by others suggested that the N-terminal boundary of the DNA-binding domain lies between amino acids 282 and 286. Taken together, these results locate the DNA-binding domain of polyomavirus large T antigen to the 116-amino-acid region between residues 282 and 398.  相似文献   

17.
Mapping of phosphorylation sites in polyomavirus large T antigen.   总被引:10,自引:8,他引:2       下载免费PDF全文
The phosphorylation sites of polyomavirus large T antigen from infected or transformed cells were investigated. Tryptic digestion of large T antigen from infected, 32Pi-labeled cells revealed seven major phosphopeptides. Five of these were phosphorylated only at serine residues, and two were phosphorylated at serine and threonine residues. The overall ratio of phosphoserine to phosphothreonine was 6:1. The transformed cell line B4 expressed two polyomavirus-specific phosphoproteins: large T antigen, which was only weakly phosphorylated, and a truncated form of large T antigen of 34,000 molecular weight which was heavily phosphorylated. Both showed phosphorylation patterns similar to that of large T antigen from infected cells. Peptide analyses of large T antigens encoded by the deletion mutants dl8 and dl23 or of specific fragments of wild-type large T antigen indicated that the phosphorylation sites are located in an amino-terminal region upstream of residue 194. The amino acid composition of the phosphopeptides as revealed by differential labeling with various amino acids indicated that several phosphopeptides contain overlapping sequences and that all phosphorylation sites are located in four tryptic peptides derived from a region between Met71 and Arg191. Two of the potential phosphorylation sites were identified as Ser81 and Thr187. The possible role of this modification of large T antigen is discussed.  相似文献   

18.
19.
We mutagenized a cloned fragment of polyoma DNA encoding portions of the middle size (MT) and large T antigens. We regenerated infectious viral genomes containing the mutagenized DNA and tested their transforming ability at 32 and 39 degrees C. We isolated three nontransforming mutants and two mutants which were cold sensitive for the maintenance of cell transformation. The nontransforming mutants contained amber termination codons in the reading frame for the MT antigen. They synthesized truncated MT antigens which lacked MT-associated protein kinase activity. The cold-sensitive mutants synthesized MT antigens indistinguishable from wild type with regard to size, stability at 32 and 39 degrees C, intracellular location, and associated protein kinase activity. One of the mutants was shown by nucleotide sequence analysis to contain a single amino acid change in the MT antigen, located two residues upstream from the C-terminal hydrophobic region, and no changes in the large T antigen. The other mutant contained two amino acid changes in the MT antigen and two amino acid changes in the large T antigen.  相似文献   

20.
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号