首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
The involvement of Ral and its downstream molecules in receptor-mediated endocytosis was examined. Expression of either RalG23V or RalS28N, which are known to be constitutively active and dominantnegative forms, respectively, in A431 cells blocked internalization of epidermal growth factor (EGF). Stable expression of RalG23V or RalS28N in CHO-IR cells also inhibited internalization of insulin. Internalization of EGF and insulin was not affected by full-length RalBP1 which is an effector protein of Ral, but was inhibited by its C-terminal region which binds directly to Ral and POB1. POB1 is a binding protein of RalBP1 and has the Eps15 homology (EH) domain. Deletion mutants of POB1 inhibited internalization of EGF and insulin. However, internalization of transferrin was unaffected by Ral, RalBP1, POB1 and their mutants. Epsin and Eps15 have been reported to be involved in the regulation of endocytosis of the receptors for EGF and transferrin. The EH domain of POB1 bound directly to Epsin and Eps15. Taken together with the observation that EGF and insulin activate Ral, these results suggest that Ral, RalBP1 and POB1 transmit the signal from the receptors to Epsin and Eps15, thereby regulating ligand-dependent receptor-mediated endocytosis.  相似文献   

3.
POB1 was previously identified as a RalBP1-binding protein. POB1 and RalBP1 function downstream of small G protein Ral and regulate receptor-mediated endocytosis. To look for additional functions of POB1, we screened for POB1-binding proteins using a yeast two-hybrid method and found that POB1 interacts with mouse ASAP1, which is a human PAG2 homolog. PAG2 is a paxillin-associated protein with ADP-ribosylation factor GTPase-activating protein activity. POB1 formed a complex with PAG2 in intact cells. The carboxyl-terminal region containing the proline-rich motifs of POB1 directly bound to the carboxyl-terminal region including the SH3 domain of PAG2. Substitutions of Pro(423) and Pro(426) with Ala (POB1(PA)) impaired the binding of POB1 to PAG2. Expression of PAG2 inhibited fibronectin-dependent migration and paxillin recruitment to focal contacts of CHO-IR cells. Co-expression with POB1 but not with POB1(PA) suppressed the inhibitory action of PAG2 on cell migration and paxillin localization. These results suggest that POB1 interacts with PAG2 through its proline-rich motif, thereby regulating cell migration.  相似文献   

4.
Ral proteins constitute a distinct family of Ras-related GTPases. Although similar to Ras in amino acid sequence, Ral proteins are activated by a unique nucleotide exchange factor and inactivated by a distinct GTPase-activating protein. Unlike Ras, they fail to promote transformed foci when activated versions are expressed in cells. To identify downstream targets that might mediate a Ral-specific function, we used a Saccharomyces cerevisiae-based interaction assay to clone a novel cDNA that encodes a Ral-binding protein (RalBP1). RalBP1 binds specifically to the active GTP-bound form of RalA and not to a mutant Ral with a point mutation in its putative effector domain. In addition to a Ral-binding domain, RalBP1 also contains a Rho-GTPase-activating protein domain that interacts preferentially with Rho family member CDC42. Since CDC42 has been implicated in bud site selection in S. cerevisiae and filopodium formation in mammalian cells, Ral may function to modulate the actin cytoskeleton through its interactions with RalBP1.  相似文献   

5.

Background

The FGF/Ras/Ral/RLIP pathway is required for the gastrulation process during the early development of vertebrates. The Ral Interacting Protein (RLIP also known as RalBP1) interacts with GTP-bound Ral proteins. RLIP/RalBP1 is a modular protein capable of participating in many cellular functions.

Methodology/Principal Findings

To investigate the role of RLIP in early development, a two-hybrid screening using a library of maternal cDNAs of the amphibian Xenopus laevis was performed. Xreps1 was isolated as a partner of RLIP/RalBP1 and its function was studied. The mutual interacting domains of Xreps1 and Xenopus RLIP (XRLIP) were identified. Xreps1 expressed in vivo, or synthesized in vitro, interacts with in vitro expressed XRLIP. Interestingly, targeting of Xreps1 or the Xreps1-binding domain of XRLIP (XRLIP(469–636)) to the plasma membrane through their fusion to the CAAX sequence induces a hyperpigmentation phenotype of the embryo. This hyperpigmented phenotype induced by XRLIP(469–636)-CAAX can be rescued by co-expression of a deletion mutant of Xreps1 restricted to the RLIP-binding domain (Xreps1(RLIP-BD)) but not by co-expression of a cDNA coding for a longer form of Xreps1.

Conclusion/Significance

We demonstrate here that RLIP/RalBP1, an effector of Ral involved in receptor-mediated endocytosis and in the regulation of actin dynamics during embryonic development, also interacts with Reps1. Although these two proteins are present early during embryonic development, they are active only at the end of gastrulation. Our results suggest that the interaction between RLIP and Reps1 is negatively controlled during the cleavage stage of development, which is characterized by rapid mitosis. Later in development, Reps1 is required for the normal function of the ectodermic cell, and its targeting into the plasma membrane affects the stability of the ectoderm.  相似文献   

6.
The Ral signaling pathway is critically involved in Ras-dependent oncogenesis. One of its key actors, RLIP/RalBP1, which participates in receptor endocytosis during interphase, is also involved in mitotic processes when endocytosis is switched off. During mitosis, RLIP76 is located on the duplicated centrosomes and is required for their proper separation and movement to the poles. We have looked for actors that associate with RLIP during mitosis. We show here that RLIP/RalBP1 interacts with an active p34cdc2.cyclinB1 (cdk1) enzyme and that this interaction is crucial for the mitotic phosphorylation of Epsin that, once phosphorylated, is no longer competent for endocytosis. We show also that this latter phosphorylation is dependent on Ral signaling. We propose that RLIP/RalBP1 is used as a platform by the mitotic cdk1 to facilitate the phosphorylation of Epsin, which makes Epsin incompetent for endocytosis during mitosis, when endocytosis is switched off.  相似文献   

7.
Na(+)/H(+) exchanger regulatory factor (NHERF) is an adapter protein that is responsible for organizing a number of cell receptors and channels. NHERF contains two amino-terminal PDZ (postsynaptic density 95/disk-large/zonula occluden-1) domains that bind to the cytoplasmic domains of a number of membrane channels or receptors. The carboxyl terminus of NHERF interacts with the FERM domain (a domain shared by protein 4.1, ezrin, radixin, and moesin) of a family of actin-binding proteins, ezrin-radixin-moesin. NHERF was shown previously to be capable of enhancing the channel activities of cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that binding of the FERM domain of ezrin to NHERF regulates the cooperative binding of NHERF to bring two cytoplasmic tails of CFTR into spatial proximity to each other. We find that ezrin binding activates the second PDZ domain of NHERF to interact with the cytoplasmic tails of CFTR (C-CFTR), so as to form a specific 2:1:1 (C-CFTR)(2).NHERF.ezrin ternary complex. Without ezrin binding, the cytoplasmic tail of CFTR only interacts strongly with the first amino-terminal PDZ domain to form a 1:1 C-CFTR.NHERF complex. Immunoprecipitation and immunoblotting confirm the specific interactions of NHERF with the full-length CFTR and with ezrin in vivo. Because of the concentrated distribution of ezrin and NHERF in the apical membrane regions of epithelial cells and the diverse binding partners for the NHERF PDZ domains, the regulation of NHERF by ezrin may be employed as a general mechanism to assemble channels and receptors in the membrane cytoskeleton.  相似文献   

8.
RalBP1 and POB1, the downstream molecules of small GTP-binding protein Ral, are involved in receptor-mediated endocytosis together with Epsin and Eps15. The regulation of assembly of the complex of these proteins was examined. RalBP1, POB1, Epsin, and Eps15 formed a complex with alpha-adaptin of AP-2 in Chinese hamster ovary cells, but the formation was reduced in mitotic phase. RalBP1, POB1, Epsin, and Eps15 were all phosphorylated in mitotic phase. The phosphorylated forms of POB1 and Epsin were recognized by the antibody MPM2, which is known to detect mitotic phosphoproteins. POB1 and Epsin were phosphorylated by p34(cdc2) kinase in vitro. Their phosphorylation sites (Ser(411) of POB1 and Ser(357) of Epsin) were determined. Phosphorylated Epsin and Epsin(S357D) formed a complex with alpha-adaptin less efficiently than wild type Epsin. Although the EH domain of POB1 bound directly to Epsin, phosphorylation of Epsin inhibited the binding. Furthermore, Epsin(S357D) but not Epsin(S357A) lost the effect of Epsin on the insulin-dependent endocytosis. These results suggest that phosphorylation of Epsin in mitotic phase inhibits receptor-mediated endocytosis by disassembly of its complex with POB1 and alpha-adaptin.  相似文献   

9.
Tamalin is a scaffold protein that comprises multiple protein-interacting domains, including a 95-kDa postsynaptic density protein (PSD-95)/discs-large/ZO-1 (PDZ) domain, a leucine-zipper region, and a carboxyl-terminal PDZ binding motif. Tamalin forms a complex with metabotropic glutamate receptors and guanine nucleotide exchange factor cytohesins and promotes intracellular trafficking and cell surface expression of group 1 metabotropic glutamate receptors. In the present study, using several different approaches we have shown that tamalin interacts with multiple neuronal proteins through its distinct protein-binding domains. The PDZ domain of tamalin binds to the PDZ binding motifs of SAP90/PSD-95-associated protein and tamalin itself, whereas the PDZ binding motif of tamalin is capable of interacting with the PDZ domain of S-SCAM. In addition, tamalin forms a complex with PSD-95 and Mint2/X11beta/X11L by mechanisms different from the PDZ-mediated interaction. Tamalin has the ability to assemble with these proteins in vivo; their protein complex with tamalin was verified by coimmunoprecipitation of rat brain lysates. Interestingly, the distinct protein-interacting domains of tamalin are evolutionarily conserved, and mRNA expression is developmentally up-regulated at the postnatal period. The results indicate that tamalin exists as a key element that forms a protein complex with multiple postsynaptic and protein-trafficking scaffold proteins.  相似文献   

10.
The synaptic scaffolding molecule (S-SCAM) has been identified as a protein interacting with SAP90/PSD-95-associated protein (SAPAP) (also called guanylate kinase-associated protein/hDLG-associated protein). S-SCAM has six PDZ (we have numbered them PDZ-0 to -5), two WW, and one guanylate kinase (GK) domains and interacts with N-methyl-D-aspartate (NMDA) receptor via PDZ-5 and SAPAP via the GK domain. We have identified here shorter isoforms of S-SCAM that start at the 164th or 224th methionine, and we renamed the original one, S-SCAMalpha, the middle one, S-SCAMbeta, and the shortest one, S-SCAM-gamma. S-SCAMbeta and -gamma have five PDZ (PDZ-1 to -5), two WW, and one GK domains. S-SCAMalpha interacted with S-SCAMbeta and -gamma through the region containing PDZ-4 and -5. The region containing both of PDZ-4 and -5 is sufficient for the clustering of NMDA receptors and forms a dimer in gel filtration, suggesting that S-SCAM forms multimers via the interaction between the C-terminal PDZ domains and assembles NMDA receptors into clusters. S-SCAMbeta and -gamma also interacted with SAPAP, suggesting that the N-terminal region of the GK domain is not necessary for the interaction. Finally, we have identified the interaction of the PDZ domains of S-SCAM with the GK domain of PSD-95/SAP90. S-SCAM, PSD-95/SAP90, and SAPAP are colocalized at least in some part in brain. Therefore, S-SCAM, PSD-95/SAP90, and SAPAP may form a complex in vivo.  相似文献   

11.
12.
13.
The ERBB receptors have a crucial role in morphogenesis and oncogenesis. We have identified a new PDZ protein we named ERBIN (ERBB2 interacting protein) that acts as an adaptor for the receptor ERBB2/HER2 in epithelia. ERBIN contains 16 leucine-rich repeats (LRRs) in its amino terminus and a PDZ (PSD-95/DLG/ZO-1) domain at its carboxy terminus, and belongs to a new PDZ protein family. The PDZ domain directly and specifically interacts with ERBB2/HER2. ERBIN and ERBB2/HER2 colocalize to the lateral membrane of human intestinal epithelial cells. The ERBIN-binding site in ERBB2/HER2 has a critical role in restricting this receptor to the basolateral membrane of epithelial cells, as mutation of the ERBIN-binding site leads to the mislocalization of the receptor in these cells. We suggest that ERBIN acts in the localization and signalling of ERBB2/HER2 in epithelia.  相似文献   

14.
NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase family protein, is known to bind to C-terminal ends of N-methyl-D-aspartate receptor 2B (NR2B) through its PDZ (PSD-95/Dlg/ZO-1) domains. NE-dlg/SAP102 and NR2B colocalize at synaptic sites in cultured rat hippocampal neurons, and their expressions increase in parallel with the onset of synaptogenesis. We have identified that NE-dlg/SAP102 interacts with calmodulin in a Ca2+-dependent manner. The binding site for calmodulin has been determined to lie at the putative basic alpha-helix region located around the src homology 3 (SH3) domain of NE-dlg/SAP102. Using a surface plasmon resonance measurement system, we detected specific binding of recombinant NE-dlg/SAP102 to the immobilized calmodulin with a Kd value of 44 nM. However, the binding of Ca2+/calmodulin to NE-dlg/SAP102 did not modulate the interaction between PDZ domains of NE-dlg/SAP102 and the C-terminal end of rat NR2B. We have also identified that the region near the calmodulin binding site of NE-dlg/SAP102 interacts with the GUK-like domain of PSD-95/SAP90 by two-hybrid screening. Pull down assay revealed that NE-dlg/SAP102 can interact with PSD-95/SAP90 in the presence of both Ca2+ and calmodulin. These findings suggest that the Ca2+/calmodulin modulates interaction of neuronal membrane-associated guanylate kinase proteins and regulates clustering of neurotransmitter receptors at central synapses.  相似文献   

15.
Since its discovery in the late 1990s as a signaling molecule in the Ras/Ral pathway, Reps2 has emerged as an important player in receptor-mediated endocytosis. Reps2 contains Eps15 homology (EH) domains, proline-rich regions, and a coiled-coil domain that engage in several protein-protein interactions to coordinate the internalization of various receptors with molecular signaling. Reps2 has clinical importance as it suppresses the ability of its binding partner RalBP1 to transport chemotherapeutic drugs, such as doxorubicin, out of a cell. Reps2 is also dysregulated during the progression of prostate cancer and is a potential biomarker for breast and prostate cancer.  相似文献   

16.
Molecular sorting of G protein-coupled receptors (GPCRs) between divergent recycling and lysosomal pathways determines the functional consequences of agonist-induced endocytosis. The carboxyl-terminal cytoplasmic domain of the beta2 adrenergic receptor (beta2AR) mediates both PDZ binding to Na+/H+ exchanger regulatory factor/ezrin/radixin/moesin-binding phosphoprotein of 50 kDa (NHERF/EBP50) family proteins and non-PDZ binding to the N-ethylmaleimide-sensitive factor (NSF). We have investigated whether PDZ interaction(s) are actually sufficient to promote rapid recycling of endocytosed receptors and, if so, whether PDZ-mediated sorting is restricted to the beta2AR tail or to sequences that bind NHERF/EBP50. The trafficking effects of short (10 residue) sequences differing in PDZ and NSF binding properties were examined using chimeric mutant receptors. The recycling activity of the beta2AR-derived tail sequence was not blocked by a point mutation that selectively disrupts binding to NSF, and naturally occurring PDZ ligand sequences were identified that do not bind detectably to NSF yet function as strong recycling signals. The carboxyl-terminal cytoplasmic domain of the beta1-adrenergic receptor, which does not bind either to NSF or NHERF/EBP50 and interacts selectively with a distinct group of PDZ proteins, promoted rapid recycling of chimeric mutant receptors with efficiency similarly high as that of the beta2AR tail. These results indicate that PDZ domain-mediated protein interactions are sufficient to promote rapid recycling of GPCRs, independent of binding to NSF. They also suggest that PDZ-directed recycling is a rather general mechanism of GPCR regulation, which is not restricted to a single GPCR, and may involve additional PDZ domain-containing protein(s) besides NHERF/EBP50.  相似文献   

17.
The transduction pathways that branch out of fibroblast growth factor signaling are essential for the induction of the mesoderm and the specification of the vertebrate body plan. One of these pathways is thought to control remodeling of the actin cytoskeleton through the Ral binding protein (RLIP also known as RalBP1), an effector of the small G protein Ral. RLIP contains a region of homology with the GTPase-activating protein (GAP) domain involved in the regulation of GTPases of the Rho family. We demonstrate here that the GAP domain of RLIP is responsible for the stability of the actin cytoskeleton in Xenopus laevis embryos. We also demonstrate that the complete N-terminal domain of RLIP containing the μ2 binding domain (μ2BD) and the GAP domain induces disruption of the actin cytoskeleton when targeted to the plasma membrane. Neither domain, however, has any effect on the actin cytoskeleton when individually targeted to the plasma membrane. We also determined that Cdc42-GDP, but neither Rac-GDP nor Rho-GDP, rescues the effect of expression of the membrane-localized Xenopus RLIP on the actin cytoskeleton. We show that the GAP domain of RLIP interacts in vivo with Cdc42-GTP and Cdc42-GDP. Finally, a single mutation (K244A) in the GAP sequence prevented embryos from gastrulating. These results demonstrate that to participate in the control of the actin cytoskeleton, RLIP needs its complete N-terminal region coding for the μ2BD and the GAP domain. We suggest that RLIP, by coordinating two complementary mechanisms, the endocytosis of clathrin-coated pits and the remodeling of cortical actin, participates in the gastrulation process.  相似文献   

18.
Using the yeast two hybrid system we have identified a novel protein termed somatostatin receptor interacting protein (SSTRIP) from human brain which interacts with the rat somatostatin receptor subtype 2. Interaction with the receptor C-terminus is mediated by a PSD-95/discs large/ZO-1 (PDZ) domain which exhibits high similarity to the PDZ domain of cortactin binding protein 1 (CortBP1). SSTRIP and CortBP1 define a novel family of multidomain proteins containing ankyrin repeats, SH3- and SH3 binding regions and a sterile alpha motif (SAM domain) in addition to the PDZ domain. Both SSTRIP and CortBP1 can be co-immunoprecipitated with the somatostatin receptor when co-expressed in HEK cells. Interestingly, co-localization of SSTR2 and CortBP1 at the plasma membrane is increased when SSTR2 is stimulated by agonists.  相似文献   

19.
Phospholipase C-beta isozymes that are activated by G protein-coupled receptors (GPCR) and heterotrimeric G proteins carry a PSD-95/Dlg/ZO-1 (PDZ) domain binding motif at their C terminus. Through interactions with PDZ domains, this motif may endow the PLC-beta isozyme with specific roles in GPCR signaling events that occur in compartmentalized regions of the plasma membrane. In this study, we identified the interaction of PLC-beta3 with Shank2, a PDZ domain-containing multimodular scaffold in the postsynaptic density (PSD). The C terminus of PLC-beta3, but not other PLC-beta isotypes, specifically interacts with the PDZ domain of Shank2. Homer 1b, a Shank-interacting protein that is linked to group I metabotropic glutamate receptors and IP3 receptors, forms a multiple complex with Shank2 and PLC-beta3. Importantly, microinjection of a synthetic peptide specifically mimicking the C terminus of PLC-beta3 markedly reduces the mGluR-mediated intracellular calcium response. These results demonstrate that Shank2 brings PLC-beta3 closer to Homer 1b and constitutes an efficient mGluR-coupled signaling pathway in the PSD region of neuronal synapses.  相似文献   

20.
RalA, a member of the Ras-family GTPases, regulates various cellular functions such as filopodia formation, endocytosis, and exocytosis. On epidermal growth factor (EGF) stimulation, activated Ras recruits guanine nucleotide exchange factors (GEFs) for RalA, followed by RalA activation. By using fluorescence resonance energy transfer-based probes for RalA activity, we found that the EGF-induced RalA activation in Cos7 cells was restricted at the EGF-induced nascent lamellipodia, whereas under a similar condition both Ras activation and Ras-dependent translocation of Ral GEFs occurred more diffusely at the plasma membrane. This EGF-induced RalA activation was not observed when lamellipodial protrusion was suppressed by a dominant negative mutant of Rac1, a GTPase-activating protein for Cdc42, inhibitors of phosphatidylinositol 3-kinase, or inhibitors of actin polymerization. On the other hand, EGF-induced lamellipodial protrusion was inhibited by microinjection of the RalA-binding domains of RalBP1 and Sec5. Furthermore, we found that RalA activity was high at the lamellipodia of migrating Madin-Darby canine kidney cells and that the migration of Madin-Darby canine kidney cells was perturbed by the microinjection of RalBP1-RalA-binding domain. Thus, RalA activation is required for the induction of lamellipodia, and conversely, lamellipodial protrusion seems to be required for the RalA activation, suggesting the presence of a positive feedback loop between RalA activation and lamellipodial protrusion. Our observation also demonstrates that the spatial regulation of RalA is conducted by a mechanism distinct from the temporal regulation conducted by Ras-dependent plasma membrane recruitment of Ral guanine nucleotide exchange factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号