共查询到20条相似文献,搜索用时 15 毫秒
1.
Chandrasekaran R Giacometti A Arnott S 《Journal of biomolecular structure & dynamics》2000,17(6):1035-1045
The molecular structure of poly (I).poly (A).poly (I) has been determined and refined using the continuous intensity data on layer lines in the x-ray diffraction pattern obtained from an oriented fiber of this polymorphic RNA complex. The polymer forms a 12-fold right-handed triple-helix of pitch 39.7A and each base-triplet is stabilized by quasi Crick-Watson-Hoogsteen hydrogen bonds. The ribose rings in all the three strands have C3'-endo conformations. The final R-value for this best structure is 0.24 and the x-ray fit is significantly superior to all the alternative structures where the different chains might have different furanose conformations. This all-purine triple-helix, counter-intuitively, has a diameter roughly 3A shorter than that of DNA and RNA triple-helices containing a homopurine and two complementary homopyrimidine strands. Its compact, grooveless cylindrical shape is consistent with the lack of lateral organization. 相似文献
2.
The fixation of trans-(NH3)2Cl2 Pt(II) to poly(I)·poly(C) at low rb (< 0.05) leads to the formation of two complexed species. The major species (ca. 82% of bound platinum) involves coordination of platinum to a single hypoxanthine base, while the other species involves coordination of two hypoxanthine bases, which are either far apart on the same strand or on separate poly(I) strands, to the platinum. These same two species are found after reaction with poly(I), as are two other species throughout the entire rb range studied (rb = 0–0.30). The latter two species are assigned to trans-Pt bound to two bases on a poly(I) strand with (a) one or (b) two free bases between the two bound bases. These two species, (a) and (b), account for ca. 35% of the bound platinum, although the 1:1 species remains dominant (ca. 55%). These two additional species are observed at high rb (>0.075) after reaction with poly(I)·poly(C) but as very minor species. They are formed by reaction with melted poly(I) loops. Also at high rb, we have observed a shifted cytidine H5 resonance arising from interaction of trans-Pt with a melted loop of poly(C). Most probably, this arises from an intramolecular poly(I) to poly(C) crosslink. Results from the reaction of trans-Pt with poly(C) are presented for comparison. 相似文献
3.
Chandrasekaran R Giacometti A Arnott S 《Journal of biomolecular structure & dynamics》2000,17(6):1023-1034
The molecular structure of poly (U).poly (A).poly (U) has been determined and refined using the continuous x-ray intensity data on layer lines in the diffraction pattern obtained from an oriented fiber of the RNA. The final R-value for the preferred structure is 0.24, far lower than that for the plausible alternatives. The polymer forms an 11-fold right-handed triple-helix of pitch 33.5A and each base triplet is stabilized by Crick-Watson-Hoogsteen hydrogen bonds. The ribose rings in the three strands have C3'-endo, C2'-endo and C2'-endo conformations, respectively. The helix derives additional stability through systematic interchain hydrogen bonds involving ribose hydroxyls and uracil bases. The relatively grooveless cylindrical shape of the triple-helix is consistent with the lack of lateral organization. 相似文献
4.
5.
T M Sokolova N A Radomskaia F I Ershov 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1987,(1):32-36
The possible pathways for realization of antiviral activity of interferon inducer poly (I).poly(C) have been studied. The stimulating effect of interferon inducer on the net protein synthesis in human M19 fibroblasts has been demonstrated. Compositions of the specific proteins induced by poly(I).poly(C) or interferon in human M19 fibroblasts and in monkey cells 4647 have been analyzed by electrophoresis technique. The data obtained suggest the existence of common gene products for interferon and ds-inducer. The ds-inducer requires the synthesis of lesser amounts of proteins for realization of its biological activity as compared with interferon. 相似文献
6.
The covalent binding of cis-Pt(NH3)2Cl2 on the double stranded poly(I) . poly(C) induced an irreversible dissociation of the two strands. This dissociation was evidenced mainly by poly(I)-Agarose affinity chromatography which allowed to recover free strands of cis-Pt(NH3)2Cl2-poly(I) from a cis-Pt(NH3)2Cl2-poly(I) . poly(C) complex, by density equilibrium centrifugation where free poly(C) could be isolated, and by acid titrations of the metal-poly(I) . poly(C) complexes. The separation of the two strands of the polyribonucleotide upon cis-Pt(NH3)2Cl2 fixation was shown not to exceed 90--95%. A dissociation curve of the polynucleotide double helix as a function of the amount of bound cis-Pt(NH3)2Cl2 was determined and was shown to be of a characteristic cooperative effect. The fixation of the paltinum compound to poly(I) . poly(C) seemed also to be cooperative. 相似文献
7.
Chandrasekaran R Giacometti A Arnott S 《Journal of biomolecular structure & dynamics》2000,17(6):1011-1022
The molecular structure of poly (dT).poly (dA).poly (dT) has been determined and refined using the continuous x-ray intensity data on layer lines in the diffraction pattern obtained from an oriented fiber of the DNA. The final R-value for the preferred structure is 0.29 significantly lower than that for plausible alternatives. The molecule forms a 12-fold right-handed triple-helix of pitch 38.4 A and each base triplet is stabilized by a set of four Crick-Watson-Hoogsteen hydrogen bonds. The deoxyribose rings in all the three strands have C2'-endo conformations. The grooveless cylindrical shape of the triple-helix is consistent with the lack of lateral organization in the fiber. 相似文献
8.
Nucleosome reconstitution of core-length poly(dG).poly(dC) and poly(rG-dC).poly(rG-dC) 总被引:1,自引:0,他引:1
The double-stranded polypurine.polypyrimidines poly(dG).poly(dC) and poly[d(A-G)].poly[d(T-C)] and the mixed ribose-deoxyribose polynucleotide poly(rG-dC).poly(rG-dC) have been successfully reconstituted into nucleosomes. The radioactively labeled particles comigrate in gel electrophoresis and sucrose density gradient experiments with authentic nucleosomes derived from chicken erythrocyte chromatin. These results show that nucleosomes are able to accommodate a wider variety of polynucleotides than was previously believed. 相似文献
9.
The rabbit antiserum against poly(I).poly(C) purified by hydroxyapatite column chromatography contained three distinct antibodies. They were fractionated into three antibody populations by a series of precipitations (with poly(A).poly(U), poly(I), and poly(I).poly(C)) and their specificities were examined by quantitative complement fixation, double diffusion tests and radioimmunoassay. The first population was common to the double helical structure of double-stranded RNAs. The second was specific for poly(I) and the third was specific for poly(I).poly(C). These studies demonstrated that specific antibodies exclusively reactive with poly(I).poly(C) existed in the rabbit antiserum against poly(I).poly(C). 相似文献
10.
Proton exchange of poly(rA).poly(rU) and poly(rI).poly(rC) has been studied by nuclear magnetic resonance line broadening and saturation transfer from H2O. Five exchangeable peaks are observed. They are assigned to the imino, amino and 2'-OH ribose protons. The aromatic spectrum is also assigned. Contrary to previous observations, we find that the exchange of the imino proton is strongly buffer sensitive. This property is used to derive the base-pair lifetime, which is in the range of milliseconds at 27 degrees C, 100 times smaller than published values. The enthalpy for the base-opening reaction (-86 kJ/mol) and the insensitivity of the reaction to magnesium suggest that the open state involves a small number of base-pairs. The similarities in the exchange from the two duplexes indicate that the same open state is responsible for exchange of purine and pyrimidine imino protons. For the lifetime of the open state and for the base-pair dissociation constant, we obtain only lower limits. At 27 degrees C they are three microseconds and 10(-3), respectively. The analysis that yields the much larger values published previously is based on the assumption that amino protons exchange only from open base-pairs. But theory and preliminary experiments indicate that it may occur from the closed duplex. The exchange of amino protons is slower than that of the imino protons. Exchange of the 2'-OH protons from the duplexes is much slower than from single-stranded poly(rU), and it is accelerated by magnesium. This could indicate hydrogen-bonding to backbone phosphate. Discrepancies between our results and those of previous studies are discussed. 相似文献
11.
On the basis of the x-ray data from polycrystalline and well oriented fibers of the sodium salt of poly d(A).poly d(T) (Arnott et al, Nucl. Acids Res. 11, 4141-4155 (1983), a revised B'-DNA model incorporating B-like adenine and thymine strands is shown to give a much better x-ray agreement (R = 0.25) than the previously assigned model consisting of mixed sugar conformations in the two strands. The narrowing of the minor and the widening of the major grooves are promiscuous features of B'-DNA, which are common to all poly d(purine).poly d(pyrimidine) duplexes with two hydrogen bonded base-pairs and are in marked contrast with classical B-DNA. Due to modest propeller (-15 degrees), the cross strand diagonal hydrogen bonds (0.37 nm) in this duplex are not as strong as those in A,T-rich oligonucleotide crystal structures. 相似文献
12.
Structure of the beta-form of poly d(A).poly d(U) 总被引:1,自引:0,他引:1
R Chandrasekaran A Radha H S Park S Arnott 《Journal of biomolecular structure & dynamics》1989,6(6):1203-1215
The crystalline beta-form of the sodium salt of poly d(A).poly d(U) trapped in oriented fibers forms a Watson-Crick base-paired, 10(1) double-helix of pitch 3.2 nm. Two molecules are present in a monoclinic unit cell apparently isomorphous with beta-poly d(A).poly d(T). The two chains in each molecule both carry C2'-endo puckered furanose rings but are conformationally not identical. The orientations of the A:U base-pairs relative to the helix-axis are distinctly different from those in classical B-DNA and the overall morphology of the duplex in which they reside resembles that of the alpha-forms of poly (purine).poly (pyrimidine) DNA duplexes previously reported. 相似文献
13.
The interaction of cis-dichloro-(1,2 diethyl-3-aminopyrrolidine)platinum(II) (Ptpyrr) with the polynucleotides poly(I), poly(C) and poly(I) x poly(C) acids was studied by circular dichroism, molecular fluorescence and (1)H NMR spectroscopies. Multivariate Curve Resolution, a factor analysis method, was applied for the analysis and interpretation of spectroscopic data obtained in mole ratio and kinetics studies. This procedure allows the determination of the number of different interaction complexes present during the experiments and the resolution of both concentration profiles and pure spectra for all of them. Two different interaction complexes were observed at the experimental conditions studied. The first one, at low Ptpyrr:polynucleotide ratio (r(Ptpyrr:poly)) values, corresponds to the interaction of Ptpyrr with hypoxanthine bases in the poly(I) moiety. This interaction leads to the destabilization and dissociation of the double-stranded conformation. The second complex was observed at higher r(Ptpyrr:poly) values and corresponds to the interaction of Ptpyrr to cytosine bases in poly(C) moiety. The formation of both complexes showed that the interaction of Ptpyrr with hypoxanthine bases occurred at the first stages of the reaction and with cytosine bases at longer reaction times. The results obtained show the utility of the Multivariate Curve Resolution approach for the analysis of data obtained by monitoring spectroscopically the interaction equilibria of platinum compounds with nucleic acids. 相似文献
14.
Poly(dG).poly(dC) at neutral and alkaline pH: the formation of triple stranded poly(dG).poly(dG).poly(dC).
下载免费PDF全文

Alkaline titrations of different samples of poly(dG).poly(dC) and of the constituent homopolymers poly(dG) and poly(dC) have been performed in 0.15 M NaCl and their CD spectra followed. Sample I contained a slight excess of poly(dC) (52% C: 48% G) and showed a single reversible transition (pK = 11.9) due to the dissociation of double stranded poly(dG).poly(dC). Sample II, containing an excess of poly(dG) (43% C: 57% G), showed two transitions (pK1 = 11.4, PK2 = 11.9) the first one being only partially reversible. Examination of the CD spectra along the alkaline titrations indicated the presence of another hydrogen-bonded complex of higher G content. Mixing curves performed at pH 8 have confirmed the presence of a 2G: 1C complex, besides the double stranded complex. It can be formed in amounts up to 30% by mixing the two homopolymers, alkali treatment and heating. The CD spectra of the two complexes have been computed from the CD data of the mixing curves. This permitted the determination of the concentrations of both complexes and homopolymers in all samples. The ratio of triple to double stranded complex is not only dependent on the G/C ratio of the sample, but also a function of the previous physico-chemical conditions. These results explain the variability of many properties of different poly(dG).poly(dC) samples observed by other workers. 相似文献
15.
The structure of triple helical poly(U).poly(A).poly(U) studied by Raman spectroscopy 总被引:2,自引:0,他引:2
Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U).poly(A).poly(U) triple helix. We compared the Raman spectra of poly(U).poly(A).poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A).poly(U). The presence of a Raman band at 863 cm-1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3' endo; that of the second poly(U) chain may be C2' endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A).poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands. 相似文献
16.
G N Lapiashvili E A Lesnik I M Kochkina R N Maslova Ia M Varshavskii 《Molekuliarnaia biologiia》1979,13(6):1369-1376
The kinetic of 1H leads to 3H exchange between water and C(8)H-groups of the guanylic residues in poly(G) . poly(C) and poly(dG) . poly(dC) was investigated within the temperature range from 30 to 90 degrees in 0.5 M NaCl (pH 7.2). It was shown that the exchange in freshly dissolved preparations at temperatures lower than 50 degrees proceeds faster than that in the case of GMP. According to the ylide mechanism of the exchange reaction the observed acceleration of the exchange is considered as a consequence of associates formation in poly(G) . poly(c) and poly(dG) . poly(dC) solutions at temperatures lower than 50 degrees. Associates are stabilized by intermolecular hydrogen bonds in which N(7) atoms of guanylic residues take part. The increase of the temperature is accompanied by gradual disappearance of the exchange acceleration. The retardation of exchange, which is characteristic of most non-associated double-stranded polynucleotides and nucleic acids is observed at the temperatures above 60 degrees. The retardation points to thermal destruction of the associates at temperatures higher than 50 degrees. The associates which are characterized by ordered structure including several "side by side" arranged double-stranded molecules were observed by electron microscopy. The addition of EDTA to solutions as well as the increase of temperature leads to destruction of the associates whereas the addition of Mg2+ makes the associates more stable. 相似文献
17.
Upon reduction, 2,5-diaziridinyl-1,4-benzoquinone (DZQ) can form an interstrand guanine to guanine crosslink with DNA duplexes containing a d(GC).d(GC) dinucleotide step. The reaction is enhanced by a thymine positioned 5[prime] to each guanine [i.e. in a d(TGCA). d(TGCA) duplex fragment]. Here we show that spermine can inhibit DZQ crosslink formation in duplexes of sequence d[C(N6)TGCA(M6)C]. d[G(M[prime]6)TG-CA(N[prime]6)G]. For N6= M6= GGGGGG, N6= M6= a 'random' sequence and N6= GGGGGG and M6= a 'random' sequence, spermine concentrations of 20, 1 and 3 microM, respectively, were required for 50% inhibition of the DZQ crosslink. This suggests that spermine is more strongly bound to the polyguanosine tract than the random sequence, making it less available for crosslink inhibition. When the polyguanosine tract is interrupted by N 7-deazaguanine (D) located three bases, d(CGGGDGGTGCAGGDGGGC), and four bases, d(CG-GDGGGTGCAGGGDGGC), from the d(TGCA).d(TGCA) site, 30 and 3 microM spermine, respectively, were required for 50% crosslink inhibition. We suggest that this difference is due to the relative proximity of the three-guanosine tract to the d(TGCA).d(TGCA) site. We were able to confirm these conclusions with further experiments using duplexes containing three-guanosine and two-guanosine tracts and from computer simulations of the spermine-DNA complexes. 相似文献
18.
The structure of the DNA oligomer d(G-G-G-G-C-C-C-C) has been determined at a resolution of 2.5 A by single-crystal X-ray methods. There are two strands in the asymmetric unit, and these coil about each other to form a right-handed double-helix of the A-type with Watson-Crick hydrogen bonds between base-pairs. The helix has a shallow minor groove and a deep, water-filled major groove; almost all exposed functional groups on the DNA are hydrated, and 106 ordered solvent molecules have been found. The two d(G-G-G-G).d(C-C-C-C) segments in the octamer exhibit similar and uniform structures, but there is a slight discontinuity at the GpC step between them. A recurring feature of the structure is the overlap of adjacent guanine bases in each GpG step, with the five-membered ring of one guanine stacking on the six-membered ring of its neighbour. There is little or no overlap between adjacent cytosine rings. Conformational parameters for these GpG steps are compared with those from other single-crystal X-ray analyses. In general, GpG steps exhibit high slide, low roll and variable twist. Models for poly(dG).poly(dC) were generated by applying a simple rotation and translation to each of the unmodified d(G-G-G-G).d(C-C-C-C) units. Detailed features of these models are shown to be compatible with various assays of poly(dG).poly(dC) in solution, and are useful in understanding the polymorphic behaviour of this sequence under a variety of experimental conditions. 相似文献
19.
S G Skuridin N S Badaev A T Dembo H Damaschun G B Lortkipanidze 《Molekuliarnaia biologiia》1987,21(5):1386-1391
The small-angle X-ray scattering curves, CD spectra and textures of the liquid-crystalline phase formed from poly(I).poly(C) molecules in a water-salt solutions containing poly(ethylene glycol) at different temperatures were obtained. It was found that the heating of poly(1).poly(C) liquid-crystalline phase is accompanied by two types of transitions, the first one--a "cholesteric----"compensated" structure----cholesteric", the second--a "cholesteric----isotropic state" transition. The latter transition takes place at a temperature that corresponds to that of the separation of chains of the double-stranded poly(I).poly(C) molecule. 相似文献
20.
The formation of the triple helix of poly(A).poly(U).poly(U) was studied by using antibodies specific to poly(A).poly(U).poly(U). the 10-11 base chain length for oligo(A) and the 20-30 base chain length for oligo(U) may be the minimum sizes required to maintain a stable triple helix. Double-stranded poly(A).poly(U) which was the core of triple-stranded poly(A).poly(U).poly(U) could bind poly(U) and produce an analogue of poly(A).poly(U).poly(U) reactive with the antibodies even if the poly(A) or poly(U) was brominated or acetylated to the extent of 35-55%. However, brominated or acetylated poly(U) did not produce a stable triple helix with double-stranded poly(A).poly(U). 相似文献