首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Base-specific hydrogen bonding between an oligonucleotide and the purines in the major groove of a DNA duplex provide an approach to selective inhibition of gene expression. Oligonucleotide-mediated triplex formation in vivo may be enhanced by a number of different chemical modifications. We have previously described an in vitro analysis of triplex formation using oligonucleotides containing internucleoside phosphate linkages modified with the cation N , N -diethyl-ethylenediamine (DEED). When compared with unmodified oligonucleotides of identical base composition, DEED-modified oligonucleotides were better able to form DNA triplexes under conditions that approximate the pH, magnesium and potassium levels found in vivo . Here we report the ability of DEED-modified oligonucleotides to inhibit the expression of plasmid DNA injected into Xenopus oocytes. Inhibition is specific to plasmids containing a triplex formation target and sensitive to sequence alteration in the triplex forming target site. Inhibition of gene expression was nearly complete when oligonucleotide and plasmid were mixed together prior to injection. Inhibition was partial when oligonucleotide was injected first and not evident when plasmid was injected and allowed to form chromatin prior to oligonucleotide injection. Thus, access to DNA is a determining factor in effective triplex inhibition of gene expression.  相似文献   

2.
Triplex-forming oligonucleotides (TFOs) have the potential to serve as gene therapeutic agents on the basis of their ability to mediate site-specific genome modification via induced recombination. However, high-affinity triplex formation is limited to polypurine/polypyrimidine sites in duplex DNA. Because of this sequence restriction, careful analysis is needed to identify suitable TFO target sites within or near genes of interest. We report here an examination of two key parameters which influence the efficiency of TFO-induced recombination: (1) binding affinity of the TFO for the target site and (2) the distance between the target site and the mutation to be corrected. To test the influence of binding affinity, we compared induced recombination in human cell-free extracts by a series of G-rich oligonucleotides with an identical base composition and an increasing number of mismatches in the third strand binding code. As the number of mismatches increased and, therefore, binding affinity decreased, induced recombination frequency also dropped. There was an apparent threshold at an equilibrium dissociation constant (K(d)) of 1 x 10(-)(7) M. In addition, TFO chemical modification with N,N-diethylethylenediamine (DEED) internucleoside linkages to confer improved binding was found to yield increased levels of induced recombination. To test the ability of triplex formation to induce recombination at a distance, episomal targets with informative reporter genes were constructed to contain polypurine TFO target sites at varying distances from the mutations to be corrected. TFO-induced recombination in mammalian cells between a plasmid vector and a donor oligonucleotide was detected at distances ranging from 24 to 750 bp. Together, these results indicate that TFO-induced recombination requires high-affinity binding but can affect sites hundreds of base pairs away from the position of triplex formation.  相似文献   

3.
4.
5.
Triplex-forming oligonucleotides (TFOs) bind specifically to duplex DNA and provide a strategy for site-directed modification of genomic DNA. Recently we demonstrated TFO-mediated targeted gene knockout following systemic administration in animals. However, a limitation to this approach is the requirement for a polypurine tract (typically 15-30 base pairs (bp)) in the target DNA to afford high affinity third strand binding, thus restricting the number of sites available for effective targeting. To overcome this limitation, we have investigated the ability of chemically modified TFOs to target a short (10 bp) site in a chromosomal locus in mouse cells and induce site-specific mutations. We report that replacement of the phosphodiester backbone with cationic phosphoramidate linkages, either N,N-diethylethylenediamine or N,N-dimethylaminopropylamine, in a 10-nucleotide, psoralen-conjugated TFO confers substantial increases in binding affinity in vitro and is required to achieve targeted modification of a chromosomal reporter gene in mammalian cells. The triplex-directed, site-specific induction of mutagenesis in the chromosomal target was charge- and modification-dependent, with the activity of N,N-diethylethylenediamine > N,N-dimethylaminopropylamine phosphodiester, resulting in 10-, 6-, and <2-fold induction of target gene mutagenesis, respectively. Similarly, N,N-diethylethylenediamine and N,N-dimethylaminopropylamine TFOs were found to enhance targeting at a 16-bp G:C bp-rich target site in a chromatinized episomal target in monkey COS cells, although this longer site was also targetable by a phosphodiester TFO. These results indicate that replacement of phosphodiester bonds with positively charged N,N-diethylethylenediamine linkages enhances intracellular activity and allows targeting of relatively short polypurine sites, thereby substantially expanding the number of potential triplex target sites in the genome.  相似文献   

6.
A systematic investigation of a series of triplex forming oligonucleotides (TFOs) containing alpha-, and beta-thymidine, alpha- and beta-N7-hypoxanthine, and alpha- and beta-N7 and N9 aminopurine nucleosides, designed to bind to T-A inversion sites in DNA target sequences was performed. Data obtained from gel mobility assays indicate that T-A recognition in the antiparallel triple-helical binding motif is possible if the nucleoside alpha N9-aminopurine is used opposite to the inversion site in the TFO.  相似文献   

7.
Triplex forming oligonucleotides (TFOs) are the most commonly used approach for site-specific targeting of double stranded DNA (dsDNA). Important parameters describing triplex formation include equilibrium binding constants (K(eq)) and association/dissociation rate constants (k(on) and k(off)). The 'fluorescent intercalator displacement replacement' (FIDR) assay is introduced herein as an operationally simple approach toward determination of these parameters for triplexes involving TC-motif TFOs. Briefly described, relative rate constants are determined from fluorescence intensity changes upon: (i) TFO-mediated displacement of pre-intercalated and fluorescent ethidium from dsDNA targets (triplex association) and (ii) Watson-Crick complement-mediated displacement of the TFO and replacement with ethidium (triplex dissociation). The assay is used to characterize triplexes between purine-rich dsDNA targets and TC-motif TFOs modified with six different locked nucleic acid (LNA) monomers, i.e. conventional and C5-alkynyl-functionalized LNA and α-L-LNA pyrimidine monomers. All of the studied monomers increase triplex stability by decreasing the triplex dissociation rate. LNA-modified TFOs form more stable triplexes than α-L-LNA-modified counterparts owing to slower triplex dissociation. Triplexes modified with C5-(3-aminopropyn-1-yl)-LNA-U monomer Z are particularly stable. The study demonstrates that three affinity-enhancing features can be combined into one high-affinity TFO monomer: conformational restriction of the sugar ring, expansion of the pyrimidine π-stacking surface and introduction of an exocyclic amine.  相似文献   

8.
9.
10.
A systematic investigation of a series of triplex forming oligonucleotides (TFOs) containing α-, and β- thymidine, α- and β-N7-hypoxanthine, and α- and β- N7 and N9 aminopurine nucleosides, designed to bind to T-A inversion sites in DNA target sequences was performed. Data obtained from gel mobility assays indicate that T-A recognition in the antiparallel triple-helical binding motif is possible if the nucleoside αN9-aminopurine is used opposite to the inversion site in the TFO.  相似文献   

11.
12.
13.
14.
The formation of triplex DNA using unmodified, purine-rich oligonucleotides (ODNs) is inhibited by physiologic levels of potassium. Changing negative phosphodiester bonds in a triplex forming oligonucleotide (TFO) to neutral linkages causes a small increase in triplex formation. When phosphodiester bonds in a TFO are converted to positively-charged linkages the formation of triplex DNA increases dramatically. In the absence of KCl, a 17mer TFO containing 11 positively-charged linkages at a concentration of 0.2 microM converts essentially all of a 30 bp target duplex to a triplex. Less than 15% of the target duplex is shifted by 2 microMolar of the unmodified TFO. In 130 mM KCl, triplex formation is undetectable using the unmodified TFO, while triplex formation is nearly complete with 2 microM positively-charged TFO. With increasing potassium, TFOs containing a higher proportion of modified linkages show enhanced triplex formation compared with those less modified. In contrast with unmodified TFOs, triplex formation with more heavily modified TFOs can occur in the absence of divalent cations. We conclude that replacement of phosphodiester bonds with positively-charged phosphoramidate linkages results in more efficient triplex formation, suggesting that these compounds may prove useful for in vivo applications.  相似文献   

15.
The triplex forming ability of oligonucleotides containing 2'-O-methyl-2-thiouridine (s2Um) and 2-thiothymidine (s2T) was studied. The UV melting experiments revealed that triplex forming oligonucleotides (TFOs) containing both s2Um or s2T stabilized significantly parallel triplexes. The main reason for stabilization of triplexes was due to the stacking effect of the 2-thiocarbonyl group. Moreover, it turned out that these modified TFOs had a high selectivity in recognition of a matched Hoogsteen base from a mismatched one.  相似文献   

16.
Targeting DNA damage by triplex-forming oligonucleotides (TFOs) represents a way of modifying gene expression and structure and a possible approach to gene therapy. We have determined that this approach can deliver damage with great specificity to sites in the human gene for the G-protein-linked receptor rhodopsin, mutations of which can lead to the genetic disorder autosomal dominant retinitis pigmentosa. We have introduced DNA monoadducts and interstrand cross-links at multiple target sites within the gene using TFOs with a photoactivatable psoralen group at the 5'-end. The extent of formation of photoadducts (i.e., monoadducts and cross-links) was measured at target sites with a 5'-ApT sequence at the triplex-duplex junction and at a target site with 5'-ApT and 5'-TpA sequences located four and seven nucleotides away, respectively. To improve psoralen reactivity at more distant sites, psoralen moieties were attached to TFOs with nucleotide "linkers" from two to nine nucleotides in length. High-affinity binding was maintained with linkers of up to 10 nucleotides, but affinities tended to decrease somewhat with increasing linker length due to faster dissociation kinetics. DNase I footprinting indicated little, if any, interaction between linkers and the duplex. Psoralen-TFO conjugates formed DNA cross-links with high efficiency (56-65%) at 5'-ApT sequences located at triplex junctions. At a 5'-ApT site four nucleotides away, the efficiency varied with linker length; a four-nucleotide linker gave the highest efficiency. Duplexes with 5'-TpA and 5'-ApT sites two nucleotides away, in otherwise identical sequences, were cross-linked with efficiencies of 56 and 38%, respectively. These results indicate that TFO-linker-psoralen conjugates allow simultaneous, efficient targeting of multiple sites in the human rhodopsin gene.  相似文献   

17.
Triple helix forming oligonucleotides (TFOs) that bind chromosomal targets in living cells may become tools for genome manipulation, including gene knockout, conversion, or recombination. However, triplex formation by DNA third strands, particularly those in the pyrimidine motif, requires nonphysiological pH and Mg(2+) concentration, and this limits their development as gene-targeting reagents. Recent advances in oligonucleotide chemistry promise to solve these problems. For this study TFOs containing 2'-O-methoxy (2'-OMe) and 2'-O-(2-aminoethyl) (2'-AE) ribose substitutions in varying proportion have been constructed. The TFOs were linked to psoralen and designed to target and mutagenize a site in the hamster HPRT gene. T(m) analyses showed that triplexes formed by these TFOs were more stable than the underlying duplex, regardless of 2'-OMe/2'-AE ratio. However, TFOs with 2'-AE residues were more stable in physiological pH than those with only 2'-OMe sugars, as a simple function of 2'-AE content. In contrast, gene knockout assays revealed a threshold requirement--TFOs with three or four 2'-AE residues were at least 10-fold more active than the TFO with two 2'-AE residues. The HPRT knockout frequencies with the most active TFOs were 300-400-fold above the background, whereas there was no activity against the APRT gene, a monitor of nonspecific mutagenesis.  相似文献   

18.
Triple helix formation by purine-rich oligonucleotides in the anti-parallel motif is inhibited by physiological concentrations of potassium. Substitution with 7-deazaxanthine (c7X) has been suggested as a strategy to overcome this effect. We have tested this by examining triple helix formation both in vitro and in vivo by a series of triple helix-forming oligonucleotides (TFOs) containing guanine plus either adenine, thymine, or c7X. The TFOs were conjugated to psoralen at the 5'end and were designed to bind to a portion of the supF mutation reporter gene. Using in vitro gel mobility shift assays, we found that triplex formation by the c7X-substituted TFOs was relatively resistant to the presence of 140 mM K+. The c7X-containing TFOs were also superior in gene targeting experiments in mammalian cells, yielding 4- to 5-fold higher mutation frequencies in a shuttle vector-based mutagenesis assay designed to detect mutations induced by third strand-directed psoralen adducts. When the phosphodiester backbone was replaced by a phosphorothioate one, the in vitro binding of the c7X-TFOs was not affected, but the efficiency of in vivo triple helix formation was reduced. These results indicate the utility of the c7X substitution for in vivo gene targeting experiments, and they show that the feasibility of the triplex anti-gene strategy can be significantly enhanced by advances in nucleotide chemistry.  相似文献   

19.
The ability to selectively target mammalian genes and disrupt or restore their function would represent an important advance in gene therapy. Mutation of a single nucleotide can often result in a non-functional gene product. Reversion of defective genes to their correct sequences could lead to permanent cures for patients with many genetic diseases. Molecules such as triplex forming oligonucleotides (TFOs) and peptide nucleic acids (PNAs) are currently being employed to bind to double-stranded DNA. Efficient targeting of genomic DNA with these molecules will be the initial step in gene modification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号