首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In natural habitats, especially in arid areas, plants are often simultaneously exposed to multiple abiotic stresses, such as salt, osmotic and heat stresses. However, most analyses of gene expression in stress responses examine individual stresses. In this report, we compare gene expression in individual and combined stresses. We show that combined stress treatments with salt, mannitol and heat induce a unique pattern of gene expression that is not a simple merge of the individual stress responses. Under multiple stress conditions, expression of most heat and salt stress‐responsive genes increased to levels similar to or higher than those measured in single stress conditions, but osmotic stress‐responsive genes increased to lower levels. Genes up‐regulated to higher levels under multiple stress condition than single stress conditions include genes for heat shock proteins, heat shock regulators and late embryogenesis abundant proteins (LEAs), which protect other proteins from damage caused by stresses, suggesting their importance in multiple stress condition. Based on this analysis, we identify candidate genes for engineering crop plants tolerant to multiple stresses.  相似文献   

2.
盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异   总被引:32,自引:0,他引:32  
对生长在蛭石中8周龄的星星草(Puccinellia tenuiflora(Criseb.)Scribn.et Merr.)用 12.5—800mmol/L 的中性盐 NaCl或碱性盐 Na_2CO_3进行胁迫处理,测定植物日相对生长率等胁变指标。结果表明星星草的抗盐性高于抗碱性,可耐受的最高浓度分别为:中性盐NaCl 600 mmol/L、碱性盐 Na_2CO_3 200mmol/L_o NaCl胁迫下,随胁强增高,脯氨酸明显积累,柠檬酸含量则逐渐下降;Na_2CO_3胁迫下,脯氨酸仅稍有积累而柠檬酸含量却急剧升高。两种胁迫下都表现出:随胁强增大,Na~ 含量明显上升,K~ 含量下降。但是,NaCl胁迫对K~ 含量影响不大,而Na_2CO_3胁迫则导致根及茎叶中的K~ 含量明显下降。诸胁变指标中唯有叶片电解质外渗率对两种胁迫来说变化特点相似。  相似文献   

3.
为探究核黄素在水稻非生物胁迫响应中的作用,以粳稻Kitaake和籼稻T98B为试验材料,考察了核黄素对2种材料的盐、高温、渗透、碱和氧化胁迫响应的影响,重点测定了盐和高温胁迫下水稻体内核黄素合成基因的表达和相关生理指标。结果表明,(1)施加外源核黄素有效提高了2种水稻材料的盐和高温胁迫耐受性,降低了渗透胁迫耐受性,而其氧化和碱胁迫耐受性不受影响。(2)逆境胁迫均不同程度地促进了核黄素在2种水稻材料中的积累,尤其在盐和高温胁迫下促进效果最明显。(3)盐和高温胁迫均诱导了核黄素合成酶基因的表达,促进了核黄素的生物合成,改善了水稻的胁迫耐受性。研究表明,非生物逆境胁迫能促进核黄素在水稻体内的合成和积累,外源核黄素也能明显提高水稻对盐和高温胁迫的耐受性,但却降低了其对渗透胁迫的耐受性。  相似文献   

4.
Eight-week-old plants of Puccinellia tenuiflora (Griseb.) Scribn. et Merr. growing in pots filled with vermiculite were stressed by treating with 12.5–800 mmol/L solutions of neutral satt(NaC1) or basic salt(Na2CO3). Strain indexes such as relative growth rate etc. were determined. There was a significant difference between the two kinds of stresses. Maximum stress value that P. tenuiflora plants can tolerate is 60 mmol/L for the neutral salt and 200 mmol/L for the basic salt Na2CO3. Under NaCl-stress, great amount of proline accumulated, and citric acid content gradually decreased. But under Na2CO3-stress, proline content did not raise too much and citric acid content obviously increased with the increasing stress value. Under both stress conditions, Na+ content increased and K+ content decreased with the increasing stress value, but the effect of NaCl-stress on K+ content in roots and shoots was much less than that of Na2CO3-stress. In both stresses, the elevation of electrolyte leakage rate of leaf orchestrated with the change of stress value. This finding represented the only similarity among the strain indexes determined in both stresses.  相似文献   

5.
Does competition stress decrease allelopathic potential?   总被引:1,自引:0,他引:1  
In natural communities, plants compete in different ways, among them chemical interactions in the form of allelopathy. Whereas the effects of abiotic stresses (temperature, light, nutrients, etc.) on the production of allelochemicals are well known, only few studies deal with the impact of the stress induced by competition. When they do so, these studies are done under experimental conditions. The aim of this study is to evaluate the effect of intra-specific competition on the production of allelochemicals and biomass of Pinus halepensis Mill. in a natural forest using three levels of density. Phenolics and aliphatic acids were extracted from pine needles, analysed and quantified by GC-MS. Trunks, branches, needles and necromass were measured. We observed an increase in allelochemical content at low or medium level of competition and a decrease at high competition level. Moreover trees in competition allocate proportionally more biomass to the trunk and less to foliage and branches. This study provides evidence of substantial changes in allocation between the primary and the secondary metabolism.  相似文献   

6.
7.
Silicon has been widely reported to have a beneficial effect on improving plant tolerance to biotic and abiotic stresses. However, the mechanisms of silicon in mediating stress responses are still poorly understood. Sorghum is classified as a silicon accumulator and is relatively sensitive to salt stress. In this study, we investigated the short-term application of silicon on growth, osmotic adjustment and ion accumulation in sorghum (Sorghum bicolor L. Moench) under salt stress. The application of silicon alone had no effects upon sorghum growth, while it partly reversed the salt-induced reduction in plant growth and photosynthesis. Meanwhile, the osmotic potential was lower and the turgor pressure was higher than that without silicon application under salt stress. The osmolytes, the sucrose and fructose levels, but not the proline, were significantly increased, as well as Na+ concentration was decreased in silicon-treated plants under salt stress. These results suggest that the beneficial effects of silicon on improving salt tolerance under short-term treatment are attributed to the alleviating of salt-induced osmotic stress and as well as ionic stress simultaneously.  相似文献   

8.
9.
10.
11.
In plants, excess reactive oxygen species are toxic molecules induced under environmental stresses, including pathogen invasions and abiotic stresses. Many anti-oxidant defense systems have been reported to require NADPH as an important reducing energy equivalent. However, the sources of NADPH and the molecular mechanisms of maintaining cytoplasmic redox balance are unclear. Here, we report the biological function of a putative cytoplasmic NADH kinase (NADK3) in several abiotic stress responses in Arabidopsis. We found that cytoplasmic NADPH is provided mostly by the product of the NADK3 gene in Arabidopsis. Expression of he NADK3 gene is responsive to abscisic acid (ABA) and abiotic stress conditions, including methyl violgen (MV), high salinity and osmotic shock. An NADK3 null mutant showed hypersensitivity to oxidative stress in both seed germination and seedling growth. Seed germination of the mutant plants also showed increased sensitivity to ABA, salt and mannitol. Furthermore, stress-related target genes were identified as upregulated in the mutant by mannitol and MV. Our study indicates that this cytoplasmic NADH kinase, a key source of the cellular reductant NADPH, is required for various abiotic stress responses.  相似文献   

12.
Longan species (Dimocarpus longan Lour.) exhibit a high agronomic potential in many subtropical regions worldwide; however, little is known about its responses to abiotic stress conditions. Drought and salinity are the most environmental factors inducing negative effects on plant growth and development. In order to elucidate the responses of longan to drought and salinity, seedlings were grown under conditions of drought and salt stresses. Drought was imposed by suspending water supply leading to progressive soil dehydration, and salinity was induced using two concentrations of NaCl, 100 and 150 mM in water solution, for 64 days. Data showed that salt concentrations increased foliar abscisic acid (ABA) and only 150 mM NaCl reduced indole-3-acetic acid (IAA) and increased proline levels. NaCl treatments also increased Na+ and Cl? content in plant organs proportionally to salt concentration. Drought increased leaf ABA but did not change IAA concentrations, and also increased proline synthesis. In addition, drought and salt stresses reduced the photosynthesis performance; however, only drought decreased leaf growth and relative leaf water content. Overall, data indicate that under severe salt stress, high ABA accumulation was accompanied by a reduction of IAA levels; however, drought strongly increased ABA but did not change IAA concentrations. Moreover, drought and high salinity similarly increased (or maintained) ion levels and proline synthesis. Data also suggest that ABA accumulation may mitigate the impact of salt stress through inducing stomatal closure and delaying water loss, but did not mediate the effects of long-term drought conditions probably because leaves reached a strong dehydration and the role of ABA at this stage was not effective to detain leaf injuries.  相似文献   

13.
MicroRNAs (miRNAs) are tiny non-coding regulatory molecules that modulate plant’s gene expression either by cleaving or repressing their mRNA targets. To unravel the plant actions in response to various environmental factors, identification of stress related miRNAs is essential. For understanding the regulatory behaviour of various abiotic stresses and miRNAs in wheat genotype C-306, we examined expression profile of selected conserved miRNAs viz. miR159, miR164, miR168, miR172, miR393, miR397, miR529 and miR1029 tangled in adapting osmotic, salt and cold stresses. The investigation revealed that two miRNAs (miR168, miR397) were down-regulated and miR172 was up-regulated under all the stress conditions. However, miR164 and miR1029 were up-regulated under cold and osmotic stresses in contrast to salt stress. miR529 responded to cold alone and does not change under osmotic and salt stress. miR393 showed up-regulation under osmotic and salt, and down-regulation under cold stress indicating auxin based differential cold response. Variation in expression level of studied miRNAs in presence of target genes delivers a likely elucidation of miRNAs based abiotic stress regulation. In addition, we reported new stress induced miRNAs Ta-miR855 using computational approach. Results revealed first documentation that miR855 is regulated by salinity stress in wheat. These findings indicate that diverse miRNAs were responsive to osmotic, salt and cold stress and could function in wheat response to abiotic stresses.  相似文献   

14.
15.
16.
Salicylic acid (SA) is a common, plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was therefore conducted to test whether the application of SA at various concentrations (0, 0.10, 0.50, or 1.00 mM) as a foliar spray would protect pistachio (Pistacia vera L.) seedlings subjected to salt stress (0, 30, 60, or 90 mM NaCl). SA improved growth rate of pistachio seedlings under salt stress and increased relative leaf chlorophyll content, relative water content, chlorophyll fluorescence ratio, and photosynthetic capacity as compared with the control at the end of salt stress. SA ameliorated the salt stress injuries by inhibiting increases in proline content and leaf electrolyte leakage. It appeared the best ameliorative remedies of SA obtained when pistachio seedlings were sprayed at 0.50 and 1.00 mM.  相似文献   

17.
郭倩倩  周文彬 《植物学报》1983,54(5):662-673
自然界中, 植物通常面对多重联合胁迫。在全球气候变化日益加剧的背景下, 多重联合胁迫对植物生长发育及作物产量形成的不利影响日益显著。阐明植物响应和适应联合胁迫的生理与分子机制, 对人们理解植物对自然环境的适应机理, 及培育耐受联合胁迫的新品种有重要意义。研究表明, 植物响应联合胁迫的机制是特异的, 不能简单地从单一胁迫响应叠加来推断。植物遭受联合胁迫时, 各种生理、代谢和信号途径相互作用, 使得植物响应联合胁迫非常复杂。该文综述了植物响应联合胁迫的生理与分子机理的最新进展, 并阐述了植物响应联合胁迫的研究方法。  相似文献   

18.
徐展  林良斌 《广西植物》2014,(2):248-255
OsWRKY 转录因子在水稻非生物胁迫和抗病反应中具有相当重要的调节作用。为阐明其调节作用提供依据,研究了疑似功能广泛的 OsWRKY 转录因子表达谱,采用五个 OsWRKY 转录因子基因,即 Os-WRKY7、OsWRKY11、OsWRKY30、OsWRKY70和 OsWRKY89,利用 real-time PCR 研究各种非生物胁迫和稻瘟菌胁迫诱导表达特征,以及各种激素对 OsWRKY 表达量的影响。所采用的五个基因均受到稻瘟菌胁迫的诱导,而且各种非生物胁迫也能不同程度地诱导其表达。在各个激素处理下,有些被诱导或被抑制,也有未受影响。五个 OsWRKY 基因均有可能参与稻瘟病胁迫响应。其中 OsWRKY7和 OsWRKY70可能是在JA 和 SA 相互拮抗调控下参与,OsWRKY89可能是通过非本研究涉及的其他激素途径参与。在非生物胁迫方面,OsWRKY7可能通过 ABA 途径参与干旱、高盐和极端温度胁迫;OsWRKY11有可能参与高盐胁迫;OsWRKY30有可能参与高盐和高温胁迫;OsWRKY70可能参与高盐、干旱和极端温度胁迫;OsWRKY89可能参与高温胁迫,但并不是通过本研究所涉及的四种激素途径。  相似文献   

19.
Many studies have described the response mechanisms of plants to salinity and heat applied individually; however, under field conditions some abiotic stresses often occur simultaneously. Recent studies revealed that the response of plants to a combination of two different stresses is specific and cannot be deduced from the stresses applied individually. Here, we report on the response of tomato plants to a combination of heat and salt stress. Interestingly, and in contrast to the expected negative effect of the stress combination on plant growth, our results show that the combination of heat and salinity provides a significant level of protection to tomato plants from the effects of salinity. We observed a specific response of plants to the stress combination that included accumulation of glycine betaine and trehalose. The accumulation of these compounds under the stress combination was linked to the maintenance of a high K+ concentration and thus a lower Na+/K+ ratio, with a better performance of the cell water status and photosynthesis as compared with salinity alone. Our findings unravel new and unexpected aspects of the response of plants to stress combination and provide a proposed list of enzymatic targets for improving crop tolerance to the abiotic field environment.  相似文献   

20.
植物响应联合胁迫机制的研究进展   总被引:1,自引:0,他引:1  
郭倩倩  周文彬 《植物学报》2019,54(5):662-673
自然界中, 植物通常面对多重联合胁迫。在全球气候变化日益加剧的背景下, 多重联合胁迫对植物生长发育及作物产量形成的不利影响日益显著。阐明植物响应和适应联合胁迫的生理与分子机制, 对人们理解植物对自然环境的适应机理, 及培育耐受联合胁迫的新品种有重要意义。研究表明, 植物响应联合胁迫的机制是特异的, 不能简单地从单一胁迫响应叠加来推断。植物遭受联合胁迫时, 各种生理、代谢和信号途径相互作用, 使得植物响应联合胁迫非常复杂。该文综述了植物响应联合胁迫的生理与分子机理的最新进展, 并阐述了植物响应联合胁迫的研究方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号