首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Adipocyte membranes from diabetic (db/db) animals showed marked elevations in the levels of α-subunits for Gi-1 which were almost twice those in membranes from their normal, lean littermates. In contrast, no apparent differences were noted for levels of the α-subunits of Gi-2 and Gi-3, and 42 and 45 kDa forms of Gs and for G-protein β-subunits. Adenylate cyclase specific activity was similar in membranes from both normal and diabetic animals under basal conditions and also when stimulated by optimal concentrations of either NaF or forsckolin. In contrast, the ability of isoprenaline, glucagon and secretin to stimulate adenylate cyclase activity was greater in membranes from normal animals compared with membranes from diabetic animals. Receptor-mediated inhibition of adenylate cyclase, as assessed using PGE1 and nicotinate, was similar using membranes from both sources, but PIA (phenylisopropyladenosine) was a slightly more effective inhibitor in membranes from diabetic animals. A doubling in the expression of G1-1 thus appears to have little discernible effect upon the inhibitory regulation of adenylate cyclase.  相似文献   

2.
3.
Pretreatment of isolated rat liver plasma membranes by washing with NaHCO3 buffer or by exposure to the chelator ethyleneglycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) with or without the ionophore A23187, produced a decrease in the sensitivity of adenylate cyclase (ATP pyrophosphate-lyase (cyclizing) EC 4.6.1.1) to subsequent stimulation by NaF or guanosine 5′-(β-γ-imino)triphosphate (GPP(NH)P). Sensitivity to activation by the nucleotide could be restored by addition of the lyophilized and ashed wash or by addition of Ca2+, Mg2+ or Mn2+. The factor extracted from the membranes by these various treatments which was responsible for loss of stimulation was identified as Ca2+. Determination of the metal ion content of isolated membranes by atomic absorption spectrometry indicated that Ca2+ was the only divalent cation present in sufficient concentration to support persistent activation by either NaF or GPP(NH)P.Pretreatment of liver plasma membranes with trifluoperazine, which inhibits the action of Ca2+-dependent regulator protein in other enzyme systems, reduced GPP(NH)P activation of adenylate cyclase and caused marked depletion of membrane Ca2+. The effects of low concentrations (less than 100 μM) of the phenothiazine could be reversed totally by Ca2+ and partly by regulator protein. At higher concentrations of trifluoperazine, slight restoration of enzyme activation was seen with either agent. The hypothesis is presented that Ca+ interacts with the nucleotide (GTP or GDP) regulatory site(s) of the adenylate cyclase. This interaction may be regulator-protein-dependent and may be important in determining the sensitivity of the enzyme to nucleotide activation in vivo.  相似文献   

4.
Insulin failed to exert an effect on the basal and glucagon- and guanosine 5'-[beta, gamma-imido]-triphosphate-stimulated adenylate cyclase activities of hepatocyte membranes. In the presence of high GTP (0.1 mM) concentrations, however, insulin was shown to inhibit adenylate cyclase activity. This effect was dose-dependent, exhibiting an EC50 (median effective concentration) of 3 microM for GTP. Elevated glucagon concentrations blocked the inhibitory effect of insulin in a dose-dependent fashion, with an EC50 of 1 nM. The insulin inhibition was dose-dependent (EC50 = 90 pM). The inhibitory effects of insulin were abolished using membranes from either glucagon-desensitized hepatocytes or cholera-toxin-treated hepatocytes. If either Mn2+ replaced Mg2+ in adenylate cyclase assays or Na+ was removed from the assay mixtures then insulin failed to exert any inhibitory effect. It is suggested that insulin exerts its action on adenylate cyclase through an inhibitory guanine nucleotide protein. This is integrated with the proposal [Heyworth, Rawal & Houslay (1983) FEBS Lett. 154, 87-91; Heyworth, Wallace & Houslay (1983) Biochem. J. in the press] that insulin mediates a variety of cellular effects through a specific guanine nucleotide regulatory protein and associated protein kinase(s).  相似文献   

5.
Adenylate cyclase (ATP pyrophosphate-lyase, EC 4.6.1.1) in plasma membranes from human thyroid was highly responsive to thyrotropin. Pretreatment of thyroid plasma membranes with 5′-guanylylimidodiphosphate (Gpp(NH)p) in the presence of Mg2+ led to a temperature-dependent activation, which was seen neither in the absence of Mg2+ nor at 4 °C. By contrast, thyrotropin bound to its receptors regardless of the temperature and produced its maximal effect after 2 min of preincubation in the absence or presence of Mg2+. Furthermore, activation was seen after treatment with thyrotropin and Gpp(NH)p even carried out in the absence of Mg2+ or at 4 °C. However, the full activation by Gpp(NH)p required Mg2+, hormone, and elevated temperature. These observations suggest that there appears to be two types of nucleotide interaction responsible for the Gpp(NH)p activation in human thyroid membrane; one type seen in the absence of hormone may represent the system uncoupled from hormone receptor, while the fully coupled hormone-sensitive adenylate cyclase accounts for the second type of interaction which requires the presence of hormone.  相似文献   

6.
Forskolin, a novel diterpene activator of adenylate cyclase in membranes and intact cells, activates the enzyme in membranes from mutant cyc-S49 murine lymphoma cells and the soluble enzyme from rat testes. Each of these enzymes consists only of the catalytic subunit and does not have a functional guanine nucleotide-binding protein. In both cases forskolin converts the manganese-dependent enzymes to a form which does not require manganese for activity. Forskolin can also stimulate a detergent-solubilized preparation of adenylate cyclase from rat cerebral cortex. Activation of adenylate cyclase by forskolin is therefore not dependent on a perturbation of membrane structure nor does it require a functional guanine nucleotide-binding subunit.  相似文献   

7.
The effect of pertussis toxin treatment was studied on the inhibitory effect of atrial natriuretic factor (ANF) on adenylate cyclase activity in rat aorta. The incubation of rat aorta washed particles with pertussis toxin and [alpha-32P]NAD resulted in the ADP-ribosylation of a single 40-kDa protein. In addition, pertussis toxin treatment enhanced guanosine 5'-O-(thiotriphosphate) and isoproterenol-stimulated adenylate cyclase activities and attenuated the ANF-mediated inhibition of basal, isoproterenol-, and forskolin-stimulated adenylate cyclase activities. These data suggest that ANF receptors are coupled to adenylate cyclase through inhibitory guanine nucleotide regulatory protein.  相似文献   

8.
Hormonal inhibition of adenylate cyclase is mediated by a guanine nucleotide regulatory protein (Ni) which is different from the one which mediates hormonal stimulation. There is substantial evidence that the active component of Ni (termed alpha i can be ADP-ribosylated by a toxin from Bordetella pertussis. We have found that in bovine cerebral cortex there are three proteins of similar molecular weight (39,000-41,000) which are modified by pertussis toxin. We have purified these proteins and have resolved the 41,000-dalton protein from the 40,000/39,000-dalton doublet. All three forms of pertussis toxin substrate can be isolated in free form or together with a 36,000 beta component. We have also purified this beta component. ADP-ribosylation of the three pertussis toxin substrates is greatly enhanced by the addition of the purified beta component. This makes possible an assay of beta subunit activity based on its interaction with alpha i. The three forms of pertussis toxin substrate which we have purified differ in two functions: susceptibility to ADP-ribosylation and GTPase activity. The 41,000-dalton protein is more readily ADP-ribosylated by pertussis toxin than the smaller forms. The 39,000-dalton protein has GTPase activity with a low Km (0.3 microM) for GTP. The GTPase activity can be doubled by phospholipids. The GTPase activity of the 41,000-dalton protein is almost undetectable. It is not yet known what the relationship of the forms is to each other. The smaller forms may be derived from the larger by proteolysis or it may be intrinsically different. It remains to be shown whether one of the forms represents a different type of regulatory protein which transmits a hormonal signal to effectors other than adenylate cyclase.  相似文献   

9.
Activation of adenylate cyclase by guanine nucleotide and catecholamines was examined in plasma membranes prepared from rabbit skeletal muscle. The GTP analog, 5'-guanylyl imidodiphosphate caused a time and temperature-dependent activation of the enzyme which was persistent, the Ka was 0.05 microM. 5'-Guanylyl imidodiphosphate binding to the membranes was time and temperature dependent, KD 0.07 microM. Beta adrenergic amines accelerated the rate of 5'-guanylyl imidodiphosphate activation of the enzyme with an order of potency isoproterenol approximately soterenol approximately salbutamol greater than epinephrine greater than norephrine. Catecholamine activation was antagonized by propranolol and the beta2 antagonist butoxamine; the beta1 antagonist practolol was inactive. [3H]Dihydroalprenolol bound to the membranes and binding was antagonized by beta adrenergic agonists with an order of potency similar to the activation of adenylate cyclase and was antagonized by butoxamine but not by practolol. The data are consistent with the idea that adenylate cyclase in skeletal muscle plasma membranes is coupled to adrenergic receptors of the beta2 type.  相似文献   

10.
This study probes the structure and mutual interactions of the components of adenylate cyclase. We use a complementation assay which involves the addition of an adenylate cyclase-related guanine nucleotide-binding protein component to a membrane lacking this component to measure guanine nucleotide-stimulated-adenylate cyclase. Instead of using detergent extracts we were able to achieve full complementation by mixing intact membrane preparations in the presence of the nucleotide component. Of particular interest was the human erythrocyte membrane which contains very low amounts of catalytic activity and no measurable beta-adrenergic receptor but has normal amounts of the nucleotide component. This component appears to be the same, by several criteria, as components found in pigeon and turkey erythrocytes and in rat liver plasma membrane. The component confers Gpp(NH)p, fluoride, and GTP stimulation of adenylate cyclase along a single reconstitution curve. It is labeled with NAD by cholera toxin, and has an apparent molecular weight of 39 000 upon sodium dodecyl sulfate gel electrophoresis. The presence of the nucleotide unit in the virtual absence of the active catalytic unit allowed us to determine those properties intrinsic to each unit and those conferred by the association of the units. The nucleotide component binds guanine nucleotides weakly in the human erythrocyte membrane, yet produces persistent activation of adenylate cyclase and tight binding (of Gpp(NH)p) upon combination with the catalytic unit. Treatment of the human erythrocyte membrane with N-ethylmaleimide causes a simultaneous diminution in both Gpp(NH)p and fluoride stimulation in reconstituted activities, suggesting that both activities are conferred by the same component.  相似文献   

11.
The effect of amiloride on the hormonal regulation of adenylate cyclase was studied in the rat anterior pituitary. The diuretic did not alter basal adenylate cyclase but augmented the enzyme activity in an irreversible manner in the presence of guanosine 5'-O-(thiotriphosphate) (GTP gamma S) stimulated adenylate cyclase at lower concentrations and inhibited at higher concentrations. Amiloride treatment enhanced the stimulatory and abolished the inhibitory phase of GTP gamma S action. In addition, amiloride also attenuated the inhibitory effects of atrial natriuretic factor (ANF 99-126) and angiotensin II on cAMP levels and adenylate cyclase activity. On the other hand, amiloride showed an additive effect on the stimulation exerted by corticotropin-releasing factor and vasoactive intestinal peptide on adenylate cyclase in anterior pituitary and on isoproterenol-stimulated cAMP levels in cultured vascular smooth muscle cells. Pertussis toxin, in the presence of [alpha-32 P]NAD, catalyzed the ADP-ribosylation of two protein bands of Mr 41,000 and 39,000, referred to as Gi and Go, respectively, in the anterior pituitary, and 40,000-Da protein in the aorta, referred to as Gi. Amiloride treatment inhibited the labeling of all these bands in a concentration- and time-dependent manner. Similarly, the pertussis toxin-catalyzed ADP-ribosylation of purified Gi from bovine brain was also inhibited by amiloride treatment. However, amiloride had no significant effect on the cholera toxin-catalyzed ADP-ribosylation of Gs. These data suggest that amiloride interacts with the guanine nucleotide regulatory proteins Gi and Go. Modification of Gi results in the attenuation of hormone-induced adenylate cyclase and cAMP inhibition. However, the interaction between amiloride and Go and the consequent Ca2+ mobilization and phosphatidylinositol turnover have to be investigated.  相似文献   

12.
Activation of adenylate cyclase by guanine nucleotide and catecholamines was examined in plasma membranes prepared from rabbit skeletal muscle. The GTP analog, 5′-guanylyl imidodiphosphate caused a time and temperature-dependent activation of the enzyme which was persistent, the Ka was 0.05 μM. 5′-Guanylyl imidodiphosphate binding to the membranes was time and temperature dependent, KD 0.07 μM. Beta adrenergic amines accelerated the rate of 5′-guanylyl imidodiphosphate activation of the enzyme with an order of potency isoproterenol ≈ soterenol ≈ salbutamol > epinephrine ? norepinephrine. Catecholamine activation was antagonized by propranolol and the β2 antagonist butoxamine; the β1 antagonist practolol was inactive. [3H]Dihydroalprenolol bound to the membranes and binding was antagonized by β adrenergic agonists with an order of potency similar to the activation of adenylate cyclase and was antagonized by butoxamine but not by practolol. The data are consistent with the idea that adenylate cyclase in skeletal muscle plasma membranes is coupled to adrenergic receptors of the β2 type.  相似文献   

13.
Fluoride ion, presumably an Al3+-F- complex, has been proposed to activate the guanine nucleotide regulatory protein (G-protein) of the visual system, transducin, by associating with GDP at the nucleotide-binding site and thus mimicking the effects of non-hydrolysable GTP analogues [Bigay, Deterre, Pfister & Chabre (1985) FEBS Lett. 191, 181-85]. We have examined this proposed model by using the adenylate cyclase complexes of frog erythrocytes, S49 lymphoma cells and human platelets. Preincubation of plasma membranes from frog erythrocytes and S49 cells with 20 mM-fluoride for 20 min at 30 degrees C strongly stimulated adenylate cyclase activity. In contrast, the preactivated membranes were still able to bind beta-adrenergic agonist with high affinity, as determined by radioligand-binding techniques. Moreover, high-affinity agonist binding in fluoride-treated membranes was fully sensitive to guanine nucleotide, which decreased beta-adrenergic-receptor affinity for agonist. Very similar results were obtained for [3H]prostaglandin E1 binding to S49 membranes pretreated with fluoride. Incubation of human platelet membranes with increasing concentrations of fluoride (1-50 mM) resulted in biphasic regulation of adenylate cyclase activity, with inhibition observed at concentrations greater than 10 mM. Preincubation of platelet membranes with 20 mM-fluoride did not affect agonist high-affinity binding to alpha 2-adrenergic receptors, nor receptor regulation by guanine nucleotide. These results suggest that the model developed from the study of transducin may not be generally applicable to the G-proteins of the adenylate cyclase system.  相似文献   

14.
Treatment of membranes with islet activating protein (IAP), a toxin from Bordetella pertussis, results in abolition of GTP-dependent, receptor-mediated inhibition of adenylate cyclase. This appears to result from IAP-catalyzed ADP-ribosylation of a 41,000-Da membrane-bound protein. A protein with 41,000- and 35,000-Da subunits has been purified from rabbit liver membranes as the predominant substrate for IAP. This protein has now been shown to be capable of regulating membrane-bound adenylate cyclase activity of human platelets under various conditions. The characteristics of the actions of the IAP substrate are as follows. 1) Purified 41,000/35,000-Da dimer is capable of restoring the inhibitory effects of guanine nucleotides and the alpha 2-adrenergic agonist, epinephrine, on the adenylate cyclase activity of IAP-treated membranes. 2) The subunits of the dimer dissociate in the presence of guanine nucleotide analogs or A1(3+), Mg2+, and F-. The 41,000-Da subunit has a high affinity binding site for guanine nucleotides. 3) The resolved 35,000-Da subunit of the dimer mimics guanine nucleotide- and epinephrine-induced inhibition of adenylate cyclase. 4) The resolved (unliganded) 41,000-Da subunit stimulates adenylate cyclase activity and relieves guanine nucleotide- +/- epinephrine-induced inhibition of the enzyme. In contrast, the GTP gamma S-bound form of the 41,000-Da subunit inhibits adenylate cyclase activity, although with lower apparent affinity than does the 35,000-Da subunit. 5) The 35,000-Da subunit increases the rate of deactivation of Gs, the stimulatory regulatory protein of adenylate cyclase. In contrast, the 41,000-Da subunit can interact with Gs and inhibit its deactivation. These data strongly suggest that the IAP substrate is another dimeric, guanine nucleotide-binding regulatory protein and that it is responsible for inhibitory modulation of adenylate cyclase activity.  相似文献   

15.
A guanine nucleotide-binding protein purified from turkey erythrocytes by affinity chromatography confers both F-- and guanine nucleotide-stimulation of adenylate cyclase to membranes from CYC- cells, a mutant cell line deficient in these responses. Interaction of turkey erythrocyte membranes with beta-adrenergic agonists before affinity chromatography, which is essential for binding of the guanine nucleotide regulatory protein to the affinity matrix, was also required for recovery of F--stimulation restoring activity in the affinity eluate.  相似文献   

16.
The inhibitory and stimulatory guanine nucleotide-binding regulatory components (Gi and Gs) of adenylate cyclase both have an alpha X beta subunit structure, and the beta (35,000 Da) subunits are functionally indistinguishable. Gi and Gs both dissociate in the presence of guanine nucleotide analogs or Al3+, Mg2+, and F- in detergent-containing solutions. Several characteristics of Gi- and Gs-mediated regulation of adenylate cyclase activity have been studied in human platelet membranes. The nonhydrolyzable analog of GTP, guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) mimics GTP-dependent hormonal inhibition or stimulation of adenylate cyclase under appropriate conditions. This inhibition or stimulation follows a lag period. The combined addition of epinephrine or prostaglandin E1 with GTP gamma S results in the immediate onset of steady state inhibition or activation. The effects of the GTP analog are essentially irreversible. Fluoride is also an effective inhibitor of prostaglandin E1-stimulated adenylate cyclase, while it markedly stimulates the basal activity of the enzyme. The addition of the resolved 35,000-Da subunit of Gi to membranes results in inhibition of adenylate cyclase, and the resolved 41,000-Da subunit has a stimulatory effect on enzymatic activity. The inhibitory action of the 35,000-Da subunit is almost completely abolished in membranes that have been irreversibly inhibited by GTP gamma S plus epinephrine; this irreversible inhibition is almost completely relieved by the 41,000-Da subunit. Detergent extracts of membranes that have been treated with GTP gamma S plus epinephrine contain free 35,000-Da subunit. The 41,000-Da subunit of Gi contained in such extracts has a reduced ability to be ADP-ribosylated by islet-activating protein (IAP), which implies that this subunit is in the GTP gamma S-bound form. The irreversible inhibition of adenylate cyclase caused by GTP gamma S (plus epinephrine) in membranes is highly correlated with the liberation of free 35,000-Da subunit activity and is inversely related to the 41,000-Da IAP substrate activity in detergent extracts prepared therefrom. The increase in free 35,000-Da subunit activity in extracts and the inhibition of adenylate cyclase activity in GTP gamma S (plus epinephrine)-treated membranes are both markedly inhibited by treatment with IAP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
18.
Two substances, cAMP and 2,3-dimercapto-1-propanol (BAL) are known to induce transient activation of adenylate cyclase in Dictyostelium discoideum. A frigid mutant (HC85) has a deletion in a gene for G alpha 2, a guanine nucleotide binding protein and cannot activate the cyclase in response to cAMP. We found that BAL induced activation in the frigid mutant. This result suggests that the BAL-induced activation is independent of G alpha 2 and that BAL mimics a role of activated G alpha 2. We also found that cAMP promoted the BAL-induced activation. This result suggests that cAMP plays a role in activation through a mechanism in which G alpha 2 is not involved. We lastly showed that continuous cAMP stimulation could not inhibit the BAL-induced activation in the frigid mutant. Since the cAMP-induced inhibition observed in the wild type strain (NC4) proceeds with the time course identical to the cAMP-induced adaptation (Oyama, submitted), this result suggests that G alpha 2 is involved in adaptation of adenylate cyclase.  相似文献   

19.
Adenylate cyclase of rat adipocyte membranes exhibited dual responses in a strictly GTP-dependent manner; an activation took place in the presence of certain receptor agonists such as isoproterenol or secretin, whereas an inhibitory phase was observed with other agonists such as prostaglandin E1 or purine-modified adenosine as well as with the stimulatory agonists at higher GTP concentrations. Treatment of membrane donor cells with islet-activating protein (IAP), pertussis toxin, abolished the inhibitory phase while preserving the activatory phase. This unique action of IAP was associated with ADP-ribosylation of a membrane Mr = 41,000 protein. In contrast, the inhibitory phase was preserved in membranes from cholera toxin-treated cells. Monophasic and persistent activation of the cyclase was provoked by guanyl-5'-yl beta,gamma-imidodiphosphate. The time lag normally observed for the guanyl-5'-yl beta,gamma-imidodiphosphate activation was decreased by isoproterenol or cholera toxin but was not altered by IAP treatment. Our conclusion is that the sole site of IAP action is the guanine nucleotide regulatory protein (Ni) that is required for transmission of inhibitory signals from receptors to the catalytic unit of adenylate cyclase; the function of Ni is lost upon IAP-catalyzed ADP ribosylation of the Mr = 41,000 protein which appears to be an active subunit of Ni. A possibility is discussed that rather diverse effects of IAP so far reported with various cell types are accounted for in terms of such interference with the function of Ni.  相似文献   

20.
These studies examined the structural specificity for guanine nucleotide-facilitated hormonal activation and guanine nucleotide stabilization of cardiac adenylate cyclase. 1. The phosphonate analogues of GTP, p[CH(2)]ppG (guanosine 5'-[betagamma-methylene]-triphosphate) and pp[CH(2)]pG (guanosine 5'-[alphabeta-methylene]triphosphate), were the most effective activators of adenylate cyclase. Other nucleotides producing significant activation (P<0.01) were, in decreasing order of activation: ITP, GDP, GMP, GTP, XTP, CTP, p[NH]ppG (guanosine 5'-[betagamma-imido]triphosphate), dGTP and 2'-O-methyl-GTP. Guanosine, cyclic GMP, UTP and ppppG (guanosine tetraphosphate) had no effect, and 7-methyl-GTP caused a decrease in the activity. 2. Preincubation of membranes at 37 degrees C for 15min before assay at 24 degrees C produced an 80% decrease in adenylate cyclase activity, and preincubation with p[CH(2)]ppG and pp[CH(2)]pG protected and resulted in a net increase in activity. Other nucleotides that completely or partially preserved activity in decreasing order of effectiveness were p[NH]ppG, GDP, GTP, dGTP, ITP, ppppG, 2'-O-methyl-GTP, GMP, CTP and XTP. Several compounds had no effect, including guanosine, cyclic GMP and UTP, whereas preincubation with 7-methyl-GTP produced a further decrease (P<0.05) in activity. 3. The concentration-dependence for activation and stabilization by the naturally occurring guanine nucleotides was examined in the absence of a regenerating system and revealed GMP to have no stabilizing effect and to be less potent than either GDP or GTP in activating adenylate cyclase. 4. A significant correlation (r=0.90) was found between the properties of activation and stabilization for the compounds examined. These findings are consistent with there being a single nucleotide site through which both the activation and stabilization of adenylate cyclase are mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号