首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Escherichia coli contains a single periplasmic UDP-glucose hydrolase (5'-nucleotidase) encoded by ushA. Salmonella enterica , serotype Typhimurium, also contains a single UDP-glucose hydrolase but, in contrast to E. coli , it is membrane-bound and is encoded by the non-homologous ushB gene; Salmonella enterica (Typhimurium) also contains a silent allele of the ushA gene ( ushA0 ). In this report, we show that nearly all natural isolates of Salmonella contain both UDP-sugar hydrolases, i.e. they are UshA+ UshB+. The only exceptions are all from sub-group I ( S. gallinarum, S. pullorum , and most Typhimurium strains), are UshA UshB+, and several have been shown to contain an ushA0 allele. These data, together with the fact that these latter strains are closely related genetically, strongly suggests a recent silencing mutation(s). We also report the presence in E. coli K-12, and in natural isolates of E. coli , of a DNA sequence which is homologous to the ushB gene of Salmonella ; since E. coli does not contain UshB activity, we tentatively refer to this sequence as ushB0 . Since all E. coli strains investigated are UshB, we conclude that the silencing mutation(s) occured relatively eary following the divergence of Escherichia coli and Salmonella from a common ancestor that was ushA+ ushB+ .  相似文献   

2.
Tedin K  Norel F 《Journal of bacteriology》2001,183(21):6184-6196
The growth recovery of Escherichia coli K-12 and Salmonella enterica serovar Typhimurium DeltarelA mutants were compared after nutritional downshifts requiring derepression of the branched-chain amino acid pathways. Because wild-type E. coli K-12 and S. enterica serovar Typhimurium LT2 strains are defective in the expression of the genes encoding the branch point acetohydroxy acid synthetase II (ilvGM) and III (ilvIH) isozymes, respectively, DeltarelA derivatives corrected for these mutations were also examined. Results indicate that reduced expression of the known global regulatory factors involved in branched-chain amino acid biosynthesis cannot completely explain the observed growth recovery defects of the DeltarelA strains. In the E. coli K-12 MG1655 DeltarelA background, correction of the preexisting rph-1 allele which causes pyrimidine limitations resulted in complete loss of growth recovery. S. enterica serovar Typhimurium LT2 DeltarelA strains were fully complemented by elevated basal ppGpp levels in an S. enterica serovar Typhimurium LT2 DeltarelA spoT1 mutant or in a strain harboring an RNA polymerase mutation conferring a reduced RNA chain elongation rate. The results are best explained by a dependence on the basal levels of ppGpp, which are determined by relA-dependent changes in tRNA synthesis resulting from amino acid starvations. Expression of the branched-chain amino acid operons is suggested to require changes in the RNA chain elongation rate of the RNA polymerase, which can be achieved either by elevation of the basal ppGpp levels or, in the case of the E. coli K-12 MG1655 strain, through pyrimidine limitations which partially compensate for reduced ppGpp levels. Roles for ppGpp in branched-chain amino acid biosynthesis are discussed in terms of effects on the synthesis of known global regulatory proteins and current models for the control of global RNA synthesis by ppGpp.  相似文献   

3.
Salmonella enterica serovar blegdam has a restriction and modification system encoded by genes linked to serB . We have cloned these genes, putative alleles of the hsd locus of Escherichia coli  K-12, and confirmed by the sequence similarities of flanking DNA that the hsd genes of S. enterica serovar blegdam have the same chromosomal location as those of E. coli K-12 and Salmonella enterica serovar typhimurium LT2. There is, however, no obvious similarity in their nucleotide sequences, and while the gene order in S. enterica serovar blegdam is serB hsdM , S and R , that in E. coli K-12 and S. enterica serovar typhimurium LT2 is serB hsdR , M and S . The hsd genes of S. enterica serovar blegdam identify a third family of serB -linked hsd genes (type ID). The polypeptide sequence predicted from the three hsd genes show some similarities (18–50% identity) with the polypeptides of known and putative type I restriction and modification systems; the highest levels of identity are with sequences of Haemophilus influenzae Rd. The HsdM polypeptide has the motifs characteristic of adenine methyltransferases. Comparisons of the HsdR sequence with those for three other families of type I systems and three putative HsdR polypeptides identify two highly conserved regions in addition to the seven proposed DEAD-box motifs.  相似文献   

4.
Partial sequencing of the rfa cluster of Salmonella typhimurium LT2 indicated a region of 336 bp between rfaP and rfaB in the site occupied by the rfaS gene in Escherichia coli K-12. This region does not contain a functional rfaS gene, although DNA analysis suggests that the region may have contained an ancestral gene. This conclusion that S. typhimurium LT2 lacks rfaS is supported by its lipopolysaccharide (LPS) gel phenotype, since LT2 does not make the lipooligosaccharide band characteristic of LPS from smooth strains of E. coli K-12.  相似文献   

5.
Nearly all of 62 strains of Salmonella paratyphi B were sensitive to colicin M and phage T5 but resistant to phages T1 and ES18 and to colicin B. All tested S. typhimurium strains were resistant to colicin M and phage T5, and many were sensitive to phage ES18. A rough S. typhimurium LT2 strain given the tonA region of Escherichia coli or S. paratyphi B became sensitive to colicin M and phage T5. We infer that the tonA allele of S. paratyphi B, like that of E. coli, determines an outer membrane protein that adsorbs T5 and colicin M but not phage ES18, whereas the S. typhimurium allele determines a protein able to adsorb only ES18. The partial T1 sensitivity of a rough LT2 strain with a tonA allele from E. coli or S. paratyphi B and also the tonB(+) phentotype of an E. coli B trp-tonB Delta mutant carrying an F' trp of LT2 origin showed that S. typhimurium LT2 has a tonB allele like that of E. coli with respect to determination of sensitivity to colicins and phage T1. Rough S. paratyphi B, although T5 sensitive, remained resistant to T1 even when given F' tonB(+) of E. coli origin. Classes of Salmonella mutants selected as resistant to colicin M included: T5-resistant mutants, probably tonA(-); mutants unchanged except for M resistance, perhaps tolerant; and Exb(+) mutants, producing a colicin inhibitor (presumably enterochelin). Some Exb(+) mutants were resistant to a bacteriocin inactive on E. coli but active on all tested S. paratyphi B and S. typhimurium strains (and on nearly all other tested Salmonella). A survey showed sensitivity to colicin M in several other species of Salmonella.  相似文献   

6.
May EE  Vouk MA  Bitzer DL  Rosnick DI 《Bio Systems》2004,76(1-3):249-260
Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the E. coli based coding models on 5' untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to E. coli including: Salmonella typhimurium LT2, Bacillus subtilis, and Staphylococcus aureus Mu50. The model identified regions on the 5' untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine-Dalgarno domain and the non-random domain. Applying the EC coding-based models to B. subtilis, and S. aureus Mu50 yielded results similar to those for E. coli K-12. Contrary to our expectations, the behavior of S. typhimurium LT2, the more taxonomically related to E. coli, resembled that of the non-translated sequence group.  相似文献   

7.
Gene ilvY of Salmonella typhimurium.   总被引:7,自引:6,他引:1       下载免费PDF全文
Evidence is presented for the existence in Salmonella typhimurium LT2 of the regulatory gene ilv Y. The Escherichia coli K-12 ilvY gene product is shown to complement a S. typhimurium ilvY mutation in vivo.  相似文献   

8.
Salmonella typhimurium causes systemic and fatal infection in inbred mice, while the related serotype Salmonella typhi is avirulent for mammals other than humans. In order to identify genes from the virulent strain S. typhimurium ATCC 14028 that are absent in S. typhi Ty2, and therefore might be involved in S. typhimurium mouse virulence, a PCR-supported genomic subtractive hybridization procedure was employed. We have identified a novel putative fimbrial operon, stfACDEFG, located at centisome 5 of the S. typhimurium chromosome, which is absent in S. typhi, Salmonella arizonae, and Salmonella bongori but was detected in several other Salmonella serotypes. The fimbrial genes represent a genomic insertion in S. typhimurium compared to the respective region between fhuB and hemL in Escherichia coli K-12. In addition, the subtraction procedure yielded F plasmid-related sequences from the S. typhimurium virulence plasmid, a number of DNA fragments representing parts of lambdoid prophages and putative sugar transporters, and several fragments with unknown sequences. The majority of subtracted chromosomal sequences map to three distinct locations, around centisomes 5, 27, and 57.  相似文献   

9.
Comparisons of the genetic maps of Escherichia coli K-12 and Salmonella typhimurium LT2 suggest that the size and organization of bacterial chromosomes are highly conserved. Employing pulsed-field gel electrophoresis, we have estimated the extent of variation in genome size among 14 natural isolates of E. coli. The BlnI and NotI restriction fragment patterns were highly variable among isolates, and genome sizes ranged from 4,660 to 5,300 kb, which is several hundred kilobases larger than the variation detected between enteric species. Genome size differences increase with the evolutionary genetic distance between lineages of E. coli, and there are differences in genome size among the major subgroups of E. coli. In general, the genomes of natural isolates are larger than those of laboratory strains, largely because of the fact that laboratory strains were derived from the subgroup of E. coli with the smallest genomes.  相似文献   

10.
The stationary-phase-inducible sigma factor, sigma(S) (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella: We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the sigma(S) protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of sigma(S), showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease.  相似文献   

11.
12.
IlvHI locus of Salmonella typhimurium.   总被引:8,自引:5,他引:3       下载免费PDF全文
In Escherichia coli K-12, the ilvHI locus codes for one of two acetohydroxy acid synthase isoenzymes. A region of the Salmonella typhimurium genome adjacent to the leucine operon was cloned on plasmid pBR322, yielding plasmids pCV47 and pCV49 (a shortened version of pCV47). This region contains DNA homologous to the E. coli ilvHI locus, as judged by hybridization experiments. Plasmid pCV47 did not confer isoleucine-valine prototrophy upon either E. coli or S. typhimurium strains lacking acetohydroxy acid synthase activity, suggesting that S. typhimurium lacks a functional ilvHI locus. However, isoleucine-valine prototrophs were readily isolated from such strains after mutagenesis with nitrosoguanidine. In one case we found that the Ilv+ phenotype resulted from an alteration in bacterial DNA on the plasmid (new plasmid designated pCV50). Furthermore, a new acetohydroxy acid synthase activity was observed in Ilv+ revertants; this enzyme was similar to E. coli acetohydroxy acid synthase III in its lack of activity at low pH. This new activity was correlated with the appearance in minicells of a new polypeptide having an approximate molecular weight of 61,000. Strains carrying either pCV49 or pCV50 produced a substantial amount of ilvHI-specific mRNA. These results, together with results from other laboratories, suggest that S. typhimurium has functional ilvB and ilvG genes and a cryptic ilvHI locus. E. coli K-12, on the other hand, has functional ilvB and ilvHI genes and a cryptic ilvG locus.  相似文献   

13.
The imp operon is carried on a transmissible plasmid, ColIa, in original isolates of Salmonella typhimurium LT7. LT2 strain recipients of F' factors from LT7 strains harboring ColIa can acquire ColIa and imp under nonselective conditions. Thus, S. typhimurium LT2 strains that have received plasmids by conjugal transfer from LT7 strains might be inadvertently harboring ColI factors.  相似文献   

14.
Derepression of F factor function in Salmonella typhimurium   总被引:9,自引:0,他引:9  
In Salmonella typhimurium LT2 the F factor of Escherichia coli K-12 replicates normally but is repressed; Flac+ cells give no visible lysis on solid media with male-specific phages, low frequency transfer of Flac+ (0.001-0.007 per donor cell), few f2 infective centers (0.002-0.006 per cell), and they propagate male-specific phages to low titers. Thus they display a Fin+ (fertility inhibition) phenotype. This repression, owing to pSLT, a 60 Mdal plasmid normally resident in S. typhimurium, was circumvented by the following materials: (i) Flac+ plasmids from E. coli with mutations in finP or traO; (ii) a S. typhimurium line which had been cured of pSLT; (iii) pKZl, a KmR plasmid in the same Inc group as pSLT, which caused expulsion of pSLT and made Fin- lines; (iv) F-Fin- mutants which originated spontaneously and which are present in most Hfr strains of S. typhimurium. Strains which are derepressed for F function by the above methods give visible lysis on solid media with male-specific phages, ca. 1.0 Lac+ recombinants per donor cell in conjugal transfer, ca. 0.82 f2 infective centers per cell, over 80% of cells with visible F pili, and propagation of male-specific phages to high titer. These data confirm earlier observations that pSLT represses F by the FinOP system. In addition, it shows that there is no other mechanism which represses F function in S. typhimurium. If donor function is derepressed by one of the above methods, and if rough recipient strains are used, F-mediated conjugation in S. typhimurium LT2 is as efficient as in E. coli K-12.  相似文献   

15.
Hemin-Deficient Mutants of Salmonella typhimurium   总被引:13,自引:9,他引:4       下载免费PDF全文
Nine hemin-deficient mutants of Salmonella typhimurium LT2 were isolated as neomycin-resistant colonies. Five of these mutants could be stimulated by Delta-aminolevulinic acid (Delta-ALA), thus representing hemA mutants. Since S. typhimurium LT2 is not able to incorporate hemin, the identification of the mutants not stimulated by Delta-ALA was made on the basis of the simultaneous loss of catalase activity and cytochromes. The hemA gene was mapped by conjugation in the trp region, probably in the order purB-pyrD-hemA-trp; the episome FT(71)trp does not carry the hemA gene. Transductional intercrosses by phage P22 indicate that hemA 11, 12, 13, and 37 are at very closely linked sites, whereas hemA14 is at a more distant site in the same or an adjacent gene. No joint transduction was detected between hemA and trp or pyrF. The loci affected in the other hemin-deficient mutants were linked in conjugation to the pro(+) marker (frequency of linkage, 88 to 97%), but cotransduction of the two markers could not be obtained. The episome F lac hem purE, which originates from Escherichia coli K-12, could complement these hemin-deficient mutants of S. typhimurium LT2. As a result, the sequence of the markers on the chromosome of S. typhimurium LT2 is probably pro heme purE, analogous to the sequence found in E. coli K-12. Thus, the chromosome of S. typhimurium also possesses two hem regions, with a location similar to that described in E. coli K-12.  相似文献   

16.
The ilvGEDAY genes of Salmonella typhimurium were cloned in Escherichia coli K-12 by in vitro recombination techniques. A single species of recombinant plasmid, designated pDU1, was obtained by selecting for Valr Ampr transformants of strain SK1592. pDU1 was shown to contain a 14-kilobase EcoRI partial digestion product of the S. typhimurium chromosome inserted into the EcoRI site of the pVH2124 cloning vector. The ilvGEDAY genes were found to occupy a maximum length of 7.5 kilobases. Restriction endonuclease analysis of the S. typhimurium ilv gene cluster provided another demonstration of the gene order as well as established the location of ilv Y between ilvA and ilvC. The presence of a ribosomal ribonucleic acid operon on the pDU1 insert, about 3 kilobases from the 5' end of ilvG, was shown by Southern hybridization. The expression of the ilvGEDA operon from pDU1 was found to be elevated, reflecting the increased gene dosage of the multicopy plasmid. A polarity was observed with respect to ilvEDA expression which is discussed in terms of the possible translational effects of the two internal promoter sequences, one located proximal to ilvE and the other located proximal to ilvD.  相似文献   

17.
The gene products of the mutL and mutS loci play essential roles in the dam-directed mismatch repair in both Salmonella typhimurium LT2 and Escherichia coli K-12. Mutations in these genes result in a spontaneous mutator phenotype. We have cloned the mutL and mutS genes from S. typhimurium by generating mutL- and mutS-specific probes from an S. typhimurium mutL::Tn10 and an mutS::Tn10 strain and using these to screen an S. typhimurium library. Both the mutL and mutS genes from S. typhimurium were able to complement E. coli mutL and mutS strains, respectively. By a combination of Tn1000 insertion mutagenesis and the maxicell technique, the products of the mutL and mutS genes were shown to have molecular weights of 70,000 and 98,000 respectively. A phi (mutL'-lacZ+) gene fusion was constructed; no change in the expression of the fusion could be detected by treatment with DNA-damaging agents. In crude extracts, the MutS protein binds single-stranded DNA, but not double-stranded DNA, with high affinity.  相似文献   

18.
Escherichia coli K-12 varkappa971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv(+) hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his(+) (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F' factor (FS400) carrying the rfb-his region of S. typhimurium to the same two ilv(+) hybrids gave similar results. LPS extracted from two ilv(+),his(+), factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his(+) hybrids obtained from varkappa971 itself by similar HfrK9 and F'FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli varkappa971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli varkappa971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli varkappa971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his(+) recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Omega8. This suggests that, although the parental E. coli K-12 strain varkappa971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units.  相似文献   

19.
U Johanson  D Hughes 《Gene》1992,120(1):93-98
The nucleotide (nt) sequences of the str operon in Escherichia coli K-12 and Salmonella typhimurium LT2 were completed and compared at the nt and amino acid (aa) level. The order of conservation at the nt and aa level is rpsL greater than tufA greater than rpsG greater than f usA. A striking difference is that the rpsG-encoded ribosomal protein, S7, in E. coli K-12 is 23 aa longer than in S. typhimurium. The very low (0.18) codon adaptation index of this part of the E. coli K-12-encoding gene and the unusual stop codon (UGA) suggest that this is a relatively recent extension. A trend towards a higher G+C content in fusA (gene encoding elongation factor (EF)-G) and tufA (gene encoding EF-Tu) in S. typhimurium is noted. In fusA, nt substitutions at all three positions in a codon occur at a much higher frequency than expected from the number of nt substitutions in the gene, assuming they are random and independent events. An analysis of substitutions in this and other genes suggests that the triple substitutions in fusA, and some other genes, are the result of the sequential accumulation of individual mutations, probably driven by selection pressure for particular codons or aa.  相似文献   

20.
When an Escherichia coli K-12 culture was starved for glucose, 50% of the cells lost viability in about 6 days. When a K-12 mutant lacking five distinct peptidase activities, CM89, was starved in the same manner, viability was lost much more rapidly; 50% of the cells lost viability in about 2 days, whereas a parent strain lacking only one peptidase activity lost 50% viability in about 4 days. Compared with the wild-type strain and with its parent strain CM17, CM89 was defective in both protein degradation and protein synthesis during carbon starvation. Similar results were obtained with glucose-starved Salmonella typhimurium LT2 and LT2-derived mutants lacking various peptidase activities. An S. typhimurium mutant lacking four peptidases, TN852, which was deficient in both protein degradation and synthesis during carbon starvation (Yen et al., J. Mol. Biol. 143:21-33, 1980), was roughly one-third as stable as the isogenic wild type. Isogenic S. typhimurium strains that lacked various combinations of three of four peptidases and that displayed protein degradation and synthesis rates intermediate between those of LT2 and TN852 (Yen et al., J. Mol. Biol. 143:21-33, 1980) displayed corresponding stabilities during carbon starvation. These results point to a role for protein degradation in the survival of bacteria during starvation for carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号