首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cat eye syndrome (CES) is a developmental disorder with multiple organ involvement, associated with the duplication of a 2-Mb region of 22q11.2. Using exon trapping and genomic sequence analysis, we have isolated and characterized a gene, CECR1, that maps to this critical region. The protein encoded by CECR1 is similar to previously identified novel growth factors: IDGF from Sarcophaga peregrina (flesh fly) and MDGF from Aplysia californica (sea hare). The CECR1 gene is alternatively spliced and expressed in numerous tissues, with most abundant expression in human adult heart, lung, lymphoblasts, and placenta as well as fetal lung, liver, and kidney. In situ hybridization of a human embryo shows specific expression in the outflow tract and atrium of the developing heart, the VII/VIII cranial nerve ganglion, and the notochord. The location of this gene in the CES critical region and its embryonic expression suggest that the overexpression of CECR1 may be responsible for at least some features of CES, particularly the heart defects.  相似文献   

2.
We present prenatal diagnosis of mosaicism for a small supernumerary marker chromosome (sSMC) derived from chromosome 22 associated with cat eye syndrome (CES) using cultured amniocytes in a pregnancy with fetal microcephaly, intrauterine growth restriction, left renal hypoplasia, total anomalous pulmonary venous return with dominant right heart and right ear deformity. The sSMC was bisatellited and dicentric, and was characterized by multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (aCGH). The SALSA MLPA P250-B1 DiGeorge Probemix showed duplication of gene dosage in the CES region. aCGH showed a 1.26-Mb duplication at 22q11.1–q11.21 encompassing CECR1CECR7. The sSMC was likely inv dup(22) (q11.21). Prenatal diagnosis of an sSMC(22) at amniocentesis should alert CES. MLPA, aCGH and fetal ultrasound are useful for rapid diagnosis of CES in case of prenatally detected sSMC(22).  相似文献   

3.
4.
Cat eye syndrome is a rare developmental defect associated with duplication of chromosome 22q11. The patients demonstrate specific abnormalities of heart, kidney, and eye. Here we attempted to produce a model for this defect by expressing CECR1 adenosine deaminase, a gene duplicated in cat eye syndrome patients, in mice. The transgenic mice expressed CECR1 under the control of either β-actin promoter for ubiquitous expression or myosin heavy chain for heart-specific expression. The transgenics expressing CECR1 in the heart demonstrated high rate of embryonic and neonatal lethality. The mice from all the lines examined showed enlargement of the heart. Abnormalities of the kidney and eye were also detected in mice expressing CECR1 under control of the actin promoter.  相似文献   

5.
Rini D  Calabi F 《Gene》2001,267(1):13-22
Adenosine deaminase (ADA) catalyzes the hydrolysis of adenosine to inosine. Its lack determines severe combined immunodeficiency in mammals, possibly due to accumulation of extracellular adenosine, which induces apoptosis in lymphocytes (Franco et al., 1998). Thus, presence of normal levels of ADA leads to normal growth and proliferation of lymphocytes. Several vertebrate and microbial ADA amino-acid sequences are known, with substantial similarity to each other. On the other hand, there are invertebrate growth factors as well as a candidate gene for the human cat eye syndrome (CECR1) (Riazi et al., 2000. Genomics 64, 277-285), which share substantial similarity to each other, and also to ADA. In this study, we report the expression and ADA enzymatic activity of a cDNA from the salivary glands of Lutzomyia longipalpis, a blood-sucking insect, with substantial similarity to insect growth factors and to human CECR1. We also demonstrate the existence of a subfamily of the adenosine deaminase family characterized by their unique amino-terminal region. Both Drosophila melanogaster and humans have both types of adenosine deaminases. Results indicate that these invertebrate proteins previously annotated as growth factors, as well as the human CECR1 gene product, may exert their actions through adenosine depletion. The different roles played by each type of adenosine deaminase in humans and Drosophila remains to be fully investigated.  相似文献   

6.

Background  

Carboxylesterases (CES) perform diverse metabolic roles in mammalian organisms in the detoxification of a broad range of drugs and xenobiotics and may also serve in specific roles in lipid, cholesterol, pheromone and lung surfactant metabolism. Five CES families have been reported in mammals with human CES1 and CES2 the most extensively studied. Here we describe the genetics, expression and phylogeny of CES isozymes in the opossum and report on the sequences and locations of CES1, CES2 and CES6 'like' genes within two gene clusters on chromosome one. We also discuss the likely sequence of gene duplication events generating multiple CES genes during vertebrate evolution.  相似文献   

7.
Cat eye syndrome (CES) is associated with a duplication of a segment of human chromosome 22q11.2. Only one gene,ATP6E, has been previously mapped to this duplicated region. We now report the mapping of the human homologue of the apoptotic agonistBidto human chromosome 22 near locus D22S57 in the CES region. Dosage analysis demonstrated thatBIDis located just distal to the CES region critical for the majority of malformations associated with the syndrome (CESCR), as previously defined by a single patient with an unusual supernumerary chromosome. However,BIDremains a good candidate for involvement in CES-related mental impairment, and its overexpression may subtly add to the phenotype of CES patients. Our mapping of murineBidconfirms that the synteny of the CESCR and the 22q11 deletion syndrome critical region immediately telomeric on human chromosome 22 is not conserved in mice.Bidand adjacent geneAtp6ewere found to map to mousechromosome 6, while the region homologous to the DGSCR is known to map to mouse chromosome 16.  相似文献   

8.
Funke B  Pandita RK  Morrow BE 《Genomics》2001,73(3):264-271
Three congenital disorders, cat-eye syndrome (CES), der(22) syndrome, and velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), result from tetrasomy, trisomy, and monosomy, respectively, of part of 22q11. They share a 1.5-Mb region of overlap, which contains 24 known genes. Although the region has been sequenced and extensively analyzed, it is expected to contain additional genes, which have thus far escaped identification. To understand completely the molecular etiology of VCFS/DGS, der(22) syndrome, and CES, it is essential to isolate all genes in the interval. We have identified and characterized a novel human gene, located within the 1.5-Mb region deleted in VCFS/DGS, trisomic in der(22) syndrome and tetrasomic in CES. The deduced amino acid sequence of the human gene and its mouse homologue contain several WD40 repeats, but lack homology to known proteins. We termed this gene WDR14 (WD40 repeat-containing gene deleted in VCFS). It is expressed in a variety of human and mouse adult and fetal tissues with substantial expression levels in the adult thymus, an organ hypoplastic in VCFS/DGS.  相似文献   

9.
10.
11.
It is challenging to study regulatory genetic variants as gene expression is affected by both genetic polymorphisms and non-genetic regulators. The mRNA allele-specific expression (ASE) assay has been increasingly used for the study of cis-acting regulatory variants because cis-acting variants affect gene expression in an allele-specific manner. However, poor correlations between mRNA and protein expressions were observed for many genes, highlighting the importance of studying gene expression regulation at the protein level. In the present study, we conducted a proof-of-concept study to utilize a recently developed allele-specific protein expression (ASPE) assay to identify the cis-acting regulatory variants of CES1 using a large set of human liver samples. The CES1 gene encodes for carboxylesterase 1 (CES1), the most abundant hepatic hydrolase in humans. Two cis-acting regulatory variants were found to be significantly associated with CES1 ASPE, CES1 protein expression, and its catalytic activity on enalapril hydrolysis in human livers. Compared to conventional gene expression-based approaches, ASPE demonstrated an improved statistical power to detect regulatory variants with small effect sizes since allelic protein expression ratios are less prone to the influence of non-genetic regulators (e.g., diseases and inducers). This study suggests that the ASPE approach is a powerful tool for identifying cis-regulatory variants.  相似文献   

12.
We have positionally cloned and characterized a new calcium channel auxiliary subunit, alpha(2)delta-2 (CACNA2D2), which shares 56% amino acid identity with the known alpha(2)delta-1 subunit. The gene maps to the critical human tumor suppressor gene region in chromosome 3p21.3, showing very frequent allele loss and occasional homozygous deletions in lung, breast, and other cancers. The tissue distribution of alpha(2)delta-2 expression is different from alpha(2)delta-1, and alpha(2)delta-2 mRNA is most abundantly expressed in lung and testis and well expressed in brain, heart, and pancreas. In contrast, alpha(2)delta-1 is expressed predominantly in brain, heart, and skeletal muscle. When co-expressed (via cRNA injections) with alpha(1B) and beta(3) subunits in Xenopus oocytes, alpha(2)delta-2 increased peak size of the N-type Ca(2+) currents 9-fold, and when co-expressed with alpha(1C) or alpha(1G) subunits in Xenopus oocytes increased peak size of L-type channels 2-fold and T-type channels 1.8-fold, respectively. Anti-peptide antibodies detect the expression of a 129-kDa alpha(2)delta-2 polypeptide in some but not all lung tumor cells. We conclude that the alpha(2)delta-2 gene encodes a functional auxiliary subunit of voltage-gated Ca(2+) channels. Because of its chromosomal location and expression patterns, CACNA2D2 needs to be explored as a potential tumor suppressor gene linking Ca(2+) signaling and lung, breast, and other cancer pathogenesis. The homologous location on mouse chromosome 9 is also the site of the mouse neurologic mutant ducky (du), and thus, CACNA2D2 is also a candidate gene for this inherited idiopathic generalized epilepsy syndrome.  相似文献   

13.
Carboxylesterases (CES) are responsible for the detoxification of a wide range of drugs and xenobiotics, and may contribute to cholesterol, fatty acid and lung surfactant metabolism. In this study, in silico methods were used to predict the amino acid sequences, secondary and tertiary structures, and gene locations for horse CES genes and encoded proteins, using data from the recently completed horse genome project. Evidence was obtained for six CES1 genes closely localised on horse chromosome 3, for which the predicted CES1 gene products are ≥ 74% identical. The horse genome also showed evidence for three other CES gene classes: CES5, located in tandem with the CES1 gene cluster; and CES2 and CES3, located more than 9 million base pairs downstream on chromosome 3. Horse CES2, CES3 and CES5 gene products shared 42–46% identity with each other, and with the CES1 protein subunits. Sequence alignments of these enzymes demonstrated key enzyme and family specific CES protein sequences reported for human CES1, CES2, CES3 and CES5. In addition, predicted secondary and tertiary structures for horse CES1, CES2, CES3 and CES5 subunits showed extensive conservation with human CES1. Phylogenetic analyses demonstrated the relationships and potential evolutionary origins of the horse CES sequences with previously reported sequences for human and other mammalian CES gene products. Several CES1 gene duplication events have apparently occurred following the appearance of the ‘dawn’ horse ~ 55 million years ago.  相似文献   

14.
15.
Cholesteryl ester (CE) hydrolysis is the rate-limiting step in the removal of free cholesterol (FC) from macrophage foam cells, and several enzymes have been identified as intracellular CE hydrolases in human macrophages. We have previously reported the antiatherogenic role of a carboxylesterase [carboxylesterase 1 (CES1)], and the objective of the present study was to determine the contribution of CES1 to total CE hydrolytic activity in human macrophages. Two approaches, namely, immune depletion and short hairpin (sh)RNA-mediated knockdown, were used. Immuneprecipitation by a CES1-specific antibody resulted in a 70-80% decrease in enzyme activity, indicating that CES1 is responsible for >70% of the total CE hydrolytic activity. THP1-shRNA cells were generated by stably transfecting human THP1 cells with four different CES1-specific shRNA vectors. Despite a significant (>90%) reduction in CES1 expression both at the mRNA and protein levels, CES1 knockdown neither decreased intracellular CE hydrolysis nor decreased FC efflux. Examination of the underlying mechanisms for the observed lack of effects of CES1 knockdown revealed a compensatory increase in the expression of a novel CES, CES3, which is only expressed at <30% of the level of CES1 in human macrophages. Transient overexpression of CES3 led to an increase in CE hydrolytic activity, mobilization of intracellular lipid droplets, and a reduction in cellular CE content, establishing CES3 as a bona fide CE hydrolase. This study provides the first evidence of functional compensation whereby increased expression of CES3 restores intracellular CE hydrolytic activity and FC efflux in CES1-deficient cells. Furthermore, these data support the concept that intracellular CE hydrolysis is a multienzyme process.  相似文献   

16.
Obesity often leads non-alcoholic fatty liver disease, insulin resistance and hyperlipidemia. Expression of carboxylesterase CES1 is positively correlated with increased lipid storage and plasma lipid concentration. Here we investigated structural and metabolic consequences of a single nucleotide polymorphism in CES1 gene that results in p.Gly143Glu amino acid substitution. We generated a humanized mouse model expressing CES1WT (control), CES1G143E and catalytically dead CES1S221A (negative control) in the liver in the absence of endogenous expression of the mouse orthologous gene. We show that the CES1G143E variant exhibits only 20% of the wild-type lipolytic activity. High-fat diet fed mice expressing CES1G143E had reduced liver and plasma triacylglycerol levels. The mechanism by which decreased CES1 activity exerts this hypolipidemic phenotype was determined to include decreased very-low density lipoprotein secretion, decreased expression of hepatic lipogenic genes and increased fatty acid oxidation as determined by increased plasma ketone bodies and hepatic mitochondrial electron transport chain protein abundance. We conclude that attenuation of human CES1 activity provides a beneficial effect on hepatic lipid metabolism. These studies also suggest that CES1 is a potential therapeutic target for non-alcoholic fatty liver disease management.  相似文献   

17.
18.
19.
20.
Discovery of new human beta-defensins using a genomics-based approach   总被引:31,自引:0,他引:31  
Epithelial beta-defensins are broad-spectrum cationic antimicrobial peptides that also act as chemokines for adaptive immune cells. In the human genome, all known defensin genes cluster to a <1 Mb region of chromosome 8p22-p23. To identify new defensin genes, the DNA sequence from a contig of large-insert genomic clones from the region containing human beta-defensin-2 (HBD-2) was analyzed for the presence of defensin genes. This sequence survey identified a novel beta-defensin, termed HBD-3. The HBD-3 gene contains two exons, is located 13 kb upstream from the HBD-2 gene, and it is transcribed in the same direction. A partial HBD-3 cDNA clone was amplified from cDNA derived from IL-1beta induced fetal lung tissue. The cDNA sequence encodes for a 67 amino acid peptide that is approximately 43% identical to HBD-2 and shares the beta-defensin six cysteine motif. By PCR analysis of two commercial cDNA panels, HBD-3 expression was detected in adult heart, skeletal muscle, placenta and in fetal thymus. From RT-PCR experiments, HBD-3 expression was observed in skin, esophagus, gingival keratinocytes, placenta and trachea. Furthermore, in fetal lung explants and gingival keratinocytes, HBD-3 mRNA expression was induced by IL-1beta. Additional sequence analysis identified the HE2 (human epididymis secretory protein) gene 17 kb upstream from the HBD-3 gene. One splice variant of this gene (HE2beta1) encodes a beta-defensin consensus cysteine motif, suggesting it represents a defensin gene product. HE2beta1 mRNA expression was detected in gingival keratinocytes and bronchial epithelia using RT-PCR analysis. The discovery of these novel beta-defensin genes may allow further understanding of the role of defensins in host immunity at mucosal surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号