首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a panel of monoclonal antibodies, it has previously been demonstrated that the cytosol of nucleated red cells (trout and turkey) contains a protein similar to arrestin, a soluble protein found so far only in the photosensitive cells and which, by binding to photoexcited rhodopsin, inhibits the phototransduction process. The role of this arrestin-like protein in non-photosensitive cells is questionable. In this report we present evidence that partially purified red blood cell arrestin (RBC arrestin) behaves functionally like bovine retinal arrestin: it binds to phosphorylated bovine rhodopsin only when this receptor has been photoactivated. Thus RBC arrestin and bovine retinal arrestin are closely related both structurally and functionally. By analogy with the function of retinal arrestin, it is proposed that RBC arrestin is involved in desensitization of membrane transport proteins and/or adrenergic receptors.  相似文献   

2.
Small ubiquitin like modifier (SUMO) conjugation or SUMOylation of βarrestin2 promotes its association with the clathrin adaptor protein AP2 and facilitates rapid β2 adrenergic receptor (β2AR) internalization. However, disruption of the consensus SUMOylation site in βarrestin2, did not prevent βarrestin2's association with activated β2ARs, dopamine D2 receptors (D2Rs), angiotensin type 1a receptors (AT1aRs) and V2 vasopressin receptors (V2Rs). To address the role of SUMOylation in the trafficking of βarrestin and GPCR complexes, we generated and characterized a yellow fluorescent protein (YFP) tagged βarrestin2-SUMO1 chimeric protein, which is resistant to de-SUMOylation. In HEK-293 cells, YFP-SUMO1 predominantly localized in the nucleus, whereas YFP-βarrestin2 is cytoplasmic. YFP-βarrestin2-SUMO1 in addition to being cytoplasmic, is localized at the nuclear membrane. Nonetheless, βarrestin2-SUMO1 associated robustly with agonist-activated β2ARs as evaluated by co-immunoprecipitation, confocal microscopy and bioluminescence resonance energy transfer (BRET). βarrestin2-SUMO1 associated strongly with the D2R, which forms transient complexes with βarrestin2. But, βarrestin2-SUMO1 and βarrestin2 showed equivalent binding with the V2R, which forms stable complexes with βarrestin2. βarrestin2 expression level directly correlated with the steady state levels of the unmodified form of RanGAP1, which upon SUMOylation associates with nuclear membrane. On the other hand, βarrestin2-SUMO1 not only localized at the nuclear membrane, but also formed a macromolecular complex with RanGAP1. Taken together, our data suggest that SUMOylation of βarrestin2 promotes its protein interactions at both cell and nuclear membranes. Furthermore, βarrestin2-SUMO1 presents as a useful tool to characterize βarrestin2 recruitment to GPCRs, which form transient and unstable complex with βarrestin2.  相似文献   

3.
Recently we found that visual arrestin binds microtubules and that this interaction plays an important role in arrestin localization in photoreceptor cells. Here we use site-directed mutagenesis and spin labeling to explore the molecular mechanism of this novel regulatory interaction. The microtubule binding site maps to the concave sides of the two arrestin domains, overlapping with the rhodopsin binding site, which makes arrestin interactions with rhodopsin and microtubules mutually exclusive. Arrestin interaction with microtubules is enhanced by several "activating mutations" and involves multiple positive charges and hydrophobic elements. The comparable affinity of visual arrestin for microtubules and unpolymerized tubulin (K(D) > 40 mum and >65 mum, respectively) suggests that the arrestin binding site is largely localized on the individual alphabeta-dimer. The changes in the spin-spin interaction of a double-labeled arrestin indicate that the conformation of microtubule-bound arrestin differs from that of free arrestin in solution. In sharp contrast to rhodopsin, where tight binding requires an extended interdomain hinge, arrestin binding to microtubules is enhanced by deletions in this region, suggesting that in the process of microtubule binding the domains may move in the opposite direction. Thus, microtubule and rhodopsin binding induce different conformational changes in arrestin, suggesting that arrestin assumes three distinct conformations in the cell, likely with different functional properties.  相似文献   

4.
Less is known about the connection between the malfunction of βarrestins and developmental defects as the mice with either of two βarrestin isoforms knockout appear normal. In order to address the biological function of βarrestins during developmental process, we generate βarrestin1/2 double knockout mice. We found that βarrestin1/2 dual-null mice developed respiratory distress and atelectasis that subsequently caused neonatal death. Morphological examination revealed type II pneumocyte immaturity. Our results indicate that not only βarrestin1/2 double knockout lung tissue show disturbances in cell proliferation but βarrestin1 and βarrestin2 contribute to pulmonary surfactant complex generation during pulmonary maturation. Intra-amniotic delivery of recombinant adenovirus expressing βarrestin1 or βarrestin2 enhances surfactant-associated proteins synthesis in vivo. Our mRNA microarray data further reveal that βarrestin1/2 double knockout results in downregulation of a significant proportion of genes involved in several lung morphogenesis processes. Together, our study demonstrates that βarrestin1 and βarrestin2 collaborate in embryonic development processes for epithelial pneumocyte differentiation and lung maturation.  相似文献   

5.
Arrestins selectively bind to phosphorylated activated forms of their cognate G protein-coupled receptors. Arrestin binding prevents further G protein activation and often redirects signaling to other pathways. The comparison of the high-resolution crystal structures of arrestin2, visual arrestin, and rhodopsin as well as earlier mutagenesis and peptide inhibition data collectively suggest that the elements on the concave sides of both arrestin domains most likely participate in receptor binding directly, thereby dictating its receptor preference. Using comparative binding of visual arrestin/arrestin2 chimeras to the preferred target of visual arrestin, light-activated phosphorylated rhodopsin (PRh*), and to the arrestin2 target, phosphorylated activated m2 muscarinic receptor (P-m2 mAChR*), we identified the elements that determine the receptor specificity of arrestins. We found that residues 49-90 (beta-strands V and VI and adjacent loops in the N-domain) and 237-268 (beta-strands XV and XVI in the C-domain) in visual arrestin and homologous regions in arrestin2 are largely responsible for their receptor preference. Only 35 amino acids (22 of which are nonconservative substitutions) in the two elements are different. Simultaneous exchange of both elements between visual arrestin and arrestin2 fully reverses their receptor specificity, demonstrating that these two elements in the two domains of arrestin are necessary and sufficient to determine their preferred receptor targets.  相似文献   

6.
Arrestins and G protein-coupled receptor kinases (GRKs) are key players in homologous desensitization of G protein-coupled receptors. Two non-visual arrestins, arrestin2 and 3, and five GRKs (GRK2, 3, 4, 5 and 6) are involved in desensitization of many receptors. Here, we demonstrate a steady increase in arrestin2 expression during prenatal development. The density of arrestin2 mRNA is higher in differentiated areas as compared with proliferative zones, whereas arrestin3 mRNA shows the opposite distribution. At embryonic day 14, concentrations of arrestin proteins are similar (32-34 nM). Later in development, arrestin2 expression rises, leading to a fourfold excess of arrestin2 over arrestin3 at birth (48 vs. 11 ng/mg protein or 102 vs. 25 nM). Among GRKs, only GRK5 increased with embryonic age from 124 nm at E14 to 359 nM at birth. Similarly, in vitro differentiation of cultured precursor cells, neurospheres, leads to a significant up-regulation of arrestin2 resulting in > 20-fold excess of arrestin2 (160 vs. 7 nM). GRK5 is the only subtype increased with neurosphere differentiation, although the change is only about twofold. The data demonstrate selective increases in the expression of arrestin2 associated with neural development and suggest specific yet unappreciated roles for arrestin2 in neural differentiation.  相似文献   

7.
In rod photoreceptors, arrestin localizes to the outer segment (OS) in the light and to the inner segment (IS) in the dark. Here, we demonstrate that redistribution of arrestin between these compartments can proceed in ATP-depleted photoreceptors. Translocation of transducin from the IS to the OS also does not require energy, but depletion of ATP or GTP inhibits its reverse movement. A sustained presence of activated rhodopsin is required for sequestering arrestin in the OS, and the rate of arrestin relocalization to the OS is determined by the amount and the phosphorylation status of photolyzed rhodopsin. Interaction of arrestin with microtubules is increased in the dark. Mutations that enhance arrestin-microtubule binding attenuate arrestin translocation to the OS. These results indicate that the distribution of arrestin in rods is controlled by its dynamic interactions with rhodopsin in the OS and microtubules in the IS and that its movement occurs by simple diffusion.  相似文献   

8.
Dopamine D1 receptor interactions with arrestins have been characterized using heterologously expressed D1 receptor and arrestins. The purpose of this study was to investigate the interaction of the endogenous D1 receptor with endogenous arrestin2 and 3 in neostriatal neurons. Endogenous arrestin2 and 3 in striatal homogenates bound to the C-terminus of the D1 receptor in a glutathione-S-transferase (GST) pulldown assay, with arrestin3 binding more strongly. The D1 C-terminus and, to a lesser extent, the third cytoplasmic loop also bound purified arrestin2 and 3. In neostriatal neurons, 2, 5, and 20 min agonist treatment increased the colocalization of the D1 receptor and arrestin3 immunoreactivity without altering the colocalization of the D1 receptor and arrestin2. Further, agonist treatment for 5 and 20 min caused translocation of arrestin3, but not arrestin2, to the membrane. The binding of arrestin3, but not arrestin2, to the D1 receptor was increased as assessed by coimmunoprecipitation after agonist treatment for 5 and 20 min. Agonist treatment of neurons induced D1 receptor internalization (35-45%) that was maximal within 2-5 min, a time-course similar to that of the increase in colocalization of the D1 receptor with arrestin3. These data indicate that the D1 receptor preferentially interacts with arrestin3 in neostriatal neurons.  相似文献   

9.
Arrestin2 binding to the active but unphosphorylated luteinizing hormone/choriogonadotropin receptor (LH/CG R) in ovarian follicles is triggered by activation of ADP-ribosylation factor 6 (ARF6) and leads to uncoupling of this receptor from cAMP signaling. We sought to determine how arrestin2 binds to LH/CG R, if binding is of high affinity, and if the receptor also binds arrestin3. Desensitization of intact LH/CG R was equally sensitive to ectopic constructs of arrestin2 that bind other G protein-coupled receptors (GPCRs) either in a phosphorylation-independent or -dependent manner. Intact LH/CG R was not desensitized by ectopic arrestin3 constructs. Surface plasmon resonance studies showed that arrestin2 bound a synthetic third intracellular (3i) LH/CG R loop peptide with picomolar affinity; arrestin3 bound with millimolar affinity. To determine whether Asp-564 in the 3i loop mimicked the phosphorylated residue of other GPCRs, human embryonic kidney (HEK) cells were transfected with wild-type (WT) and D564G LH/CG R. An agonist-stimulated ARF6-dependent arrestin2 undocking pathway to drive desensitization of WT receptor was recapitulated in HEK cell membranes, and ectopic arrestin2 promoted desensitization of WT LH/CG R. However, D564G LH/CG R in HEK cells was not desensitized, and synthetic 3i D564G peptide did not bind arrestin2. Synthetic 3i loop peptides containing D564E, D564V, or D564N also did not bind arrestin2. We conclude that the ARF6-mediated mechanism to release a pool of membrane-delimited arrestin to bind GPCRs may be a widespread mechanism to deliver arrestin to GPCRs for receptor desensitization. Unlike other GPCRs that additionally require receptor phosphorylation, LH/CG R activation is sufficient to expose a conformation in which Asp-564 in the 3i loop confers high affinity binding selectively to arrestin2.  相似文献   

10.
Internalization of ligand bound G protein-coupled receptors, an important cellular function that mediates receptor desensitization, takes place via distinct pathways, which are often unique for each receptor. The C-C chemokine receptor (CCR7) G protein-coupled receptor is expressed on naive T cells, dendritic cells, and NK cells and has two endogenous ligands, CCL19 and CCL21. Following binding of CCL21, 21 +/- 4% of CCR7 is internalized in the HuT 78 human T cell lymphoma line, while 76 +/- 8% of CCR7 is internalized upon binding to CCL19. To determine whether arrestins mediated differential internalization of CCR7/CCL19 vs CCR7/CCL21, we used small interfering RNA (siRNA) to knock down expression of arrestin 2 or arrestin 3 in HuT 78 cells. Independent of arrestin 2 or arrestin 3 expression, CCR7/CCL21 internalized. In contrast, following depletion of arrestin 3, CCR7/CCL19 failed to internalize. To examine the consequence of complete loss of both arrestin 2 and arrestin 3 on CCL19/CCR7 internalization, we examined CCR7 internalization in arrestin 2(-/-)/arrestin 3(-/-) murine embryonic fibroblasts. Only reconstitution with arrestin 3-GFP but not arrestin 2-GFP rescued internalization of CCR7/CCL19. Loss of arrestin 2 or arrestin 3 blocked migration to CCL19 but had no effect on migration to CCL21. Using immunofluorescence microscopy, we found that arrestins do not cluster at the membrane with CCR7 following ligand binding but cap with CCR7 during receptor internalization. These are the first studies that define a role for arrestin 3 in the internalization of a chemokine receptor following binding of one but not both endogenous ligands.  相似文献   

11.
Photoactivated rhodopsin is quenched upon its phosphorylation in the reaction catalyzed by rhodopsin kinase and the subsequent binding of a regulatory protein, arrestin. We have found that heparin and other polyanions compete with photoactivated, phosphorylated rhodopsin to bind arrestin (48-kDa protein, S-antigen). This is shown (a) by the suppression of stabilized metarhodopsin II; (b) by changes in the digestion of arrestin in the presence of heparin; and (c) by the restoration of arrestin-quenched phosphodiesterase activity. When bound to arrestin, heparin also mimics phosphorylated rhodopsin by similarly exposing arrestin to limited proteolysis. We conclude that heparin and rhodopsin have similar means of binding to arrestin, and we propose a cationic region of arrestin (beginning with Lys163 of the bovine sequence) as the interaction site. In agreement with previous kinetic data we interpret the results in terms of a binding conformation of arrestin which is stabilized by rhodopsin or heparin and is open to proteolytic attack.  相似文献   

12.
Visual arrestin plays an important role in regulating light responsiveness via its ability to specifically bind to the phosphorylated and light-activated form of rhodopsin. To further characterize rhodopsin/arrestin interactions we have utilized a rabbit reticulocyte lysate translation system to synthesize bovine visual arrestin. The translated arrestin (404 amino acids) was demonstrated to be fully functional in terms of its ability to specifically recognize and bind to phosphorylated light-activated rhodopsin (P-Rh*). Competitive binding studies revealed that the in vitro synthesized arrestin and purified bovine visual arrestin had comparable affinities for P-Rh*. In an effort to assess the functional role of different regions of the arrestin molecule, two truncated arrestin mutants were produced by cutting within the open reading frame of the bovine arrestin cDNA with selective restriction enzymes. In vitro translation of the transcribed truncated mRNAs resulted in the production of arrestins truncated from the carboxyl terminus. The ability of each of the mutant arrestins to bind to dark (Rh), light-activated (Rh*), dark phosphorylated (P-Rh), and light-activated phosphorylated rhodopsin were then compared. Arrestin lacking 39 carboxyl-terminal residues binds specifically not only to P-Rh* but also to Rh* and P-Rh. This suggests that the carboxyl-terminal domain of arrestin plays an important regulatory role in ensuring strict arrestin binding selectivity to P-Rh*. Arrestin that has only the first 191 amino-terminal residues predominately discriminates the phosphorylation state of the rhodopsin; however, it also retains some binding specificity for the activation state. These results suggest that the amino-terminal half of arrestin contains key rhodopsin recognition sites responsible for interaction with both the phosphorylated and light-activated forms of rhodopsin.  相似文献   

13.
Partitioning of cellular components is a critical mechanism by which cells can regulate their activity. In rod photoreceptors, light induces a large-scale translocation of arrestin from the inner segments to the outer segments. The purpose of this project is to elucidate the signaling pathway necessary to initiate arrestin translocation to the outer segments and the mechanism for arrestin translocation.Mouse retinal organotypic cultures and eyes from transgenic Xenopus tadpoles expressing a fusion of GFP and rod arrestin were treated with both activators and inhibitors of proteins in the phosphoinositide pathway. Confocal microscopy was used to image the effects of the pharmacological agents on arrestin translocation in rod photoreceptors. Retinas were also depleted of ATP using potassium cyanide to assess the requirement for ATP in arrestin translocation.In this study, we demonstrate that components of the G-protein-linked phospholipase C (PLC) pathway play a role in initiating arrestin translocation. Our results show that arrestin translocation can be stimulated by activators of PLC and protein kinase C (PKC), and by cholera toxin in the absence of light. Arrestin translocation to the outer segments is significantly reduced by inhibitors of PLC and PKC. Importantly, we find that treatment with potassium cyanide inhibits arrestin translocation in response to light.Collectively, our results suggest that arrestin translocation is initiated by a G-protein-coupled cascade through PLC and PKC signaling. Furthermore, our results demonstrate that at least the initiation of arrestin translocation requires energy input.  相似文献   

14.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

15.
Arrestin is one of the key proteins for the termination of G protein signaling. Activated G protein-coupled receptors (GPCRs) are specifically phosphorylated by G protein-coupled receptor kinases (GRKs) and then bind to arrestins to preclude the receptor/G protein interaction, resulting in quenching of the following signal transduction. Vertebrates possess two types of arrestin; visual arrestin expressed exclusively in photoreceptor cells in retinae and pineal organs, and beta-arrestin, which is expressed ubiquitously. Unlike visual arrestin, beta-arrestin contains the clathrin-binding domain at the C-terminus, responsible for the agonist-induced internalization of GPCRs. Here, we isolated a novel arrestin gene (Ci-arr) from the primitive chordate, the ascidian Ciona intestinalis larvae. The deduced amino acid sequence suggests that Ci-Arr be closely related to vertebrate arrestins. Interestingly, this arrestin has the feature of both visual and beta-arrestin. Whereas the expression of Ci-arr was restricted to the photoreceptors in the larvae similarly to visual arrestin, the gene product, containing the clathrin-binding domain, promoted the GPCR internalization in HEK293tsA201 cells similarly to beta-arrestin. The phylogenetic tree shows that Ci-Arr is branched from a common root of visual and beta-arrestins. Southern analysis suggests that the Ciona genome contains only one gene for the arrestin family. These results suggest that the visual and beta-arrestin genes were generated by the duplication of the prototypical arrestin gene like Ci-arr in the early evolution of vertebrates.  相似文献   

16.
A unique conformation of arrestin is crucial for its interaction with phosphorylated photolyzed rhodopsin. Conformational changes in arrestin were investigated using chemical modification and circular dichroism. We studied the kinetics of sulfhydryl modification of bovine arrestin in order to determine whether its conformation is altered by the presence of ligands or salts at different ionic strengths. We found that all three cysteines (stoichiometry was 2.7 +/- 0.06 3-carboxy-4-nitrophenyl sulfide (NbS)/arrestin) are accessible for modification by NbS2. Under pseudo-first-order conditions (30-100-fold excess of NbS2 over arrestin), the modifications of the 3 cysteines are indistinguishable. At higher concentrations of NbS2 (150-300-fold excess), the pseudo-first-order plot is not linear, and the reaction can be resolved into two processes that involve two classes of sulfhydryl groups. Addition of CaCl2, MgCl2, inorganic phosphate, MgATP, or MgGTP had little effect on the rate of modification of the cysteine residues; however, heparin and inositol hexakisphosphate, which have been shown to induce conformational changes in arrestin, block modification of one sulfhydryl group of arrestin and accelerate the modification of the remaining two. Analysis of CD spectra revealed that arrestin has virtually no alpha-helical structure, about 40% beta-structure, about 18% beta-turns, and about 40% other structure. The CD spectrum for arrestin did not change in the presence of heparin. These studies suggest that arrestin exists in equilibrium between two or more conformational states. However, it is proposed that conversion between these conformations occur without altering significantly the secondary structure of arrestin.  相似文献   

17.
Visual arrestin is converted from a 'basal' state to an 'activated' state by interaction with the phosphorylated C-terminus of photoactivated rhodopsin (R*), but the conformational changes in arrestin that lead to activation are unknown. Small-angle X-ray scattering (SAXS) was used to investigate the solution structure of arrestin and characterize changes attendant upon activation. Wild-type arrestin forms dimers with a dissociation constant of 60 micro m. Small conformational changes, consistent with local movements of loops or the mobile N- or C-termini of arrestin, were observed in the presence of a phosphopeptide corresponding to the C-terminus of rhodopsin, and with an R175Q mutant. Because both the phosphopeptide and the R175Q mutation promote binding to unphosphorylated R*, we conclude that arrestin is activated by subtle conformational changes. Most of the arrestin will be in a dimeric state in vivo. Using the arrestin structure as a guide [Hirsch, J.A., Schubert, C., Gurevich, V.V. & Sigler, P.B. (1999) Cell 97, 257-269], we have identified a model for the arrestin dimer that is consistent with our SAXS data. In this model, dimerization is mediated by the C-terminal domain of arrestin, leaving the N-terminal domains free for interaction with phosphorylated R*.  相似文献   

18.
Arrestin blocks the interaction of rhodopsin with the G protein transducin (G(t)). To characterize the sites of arrestin that interact with rhodopsin, we have utilized a spectrophotometric peptide competition assay. It is based on the stabilization of the active intermediates metarhodopsin II (MII) and phosphorylated MII by G(t) and arrestin, respectively (extra MII monitor). The protocol involves native disc membranes and three sets of peptides 10-30 amino acids in length spanning the arrestin sequence. In the absence of arrestin, not one of the peptides by itself had an effect on the amount of MII formed. However, inhibition of arrestin-dependent extra MII was found for the peptides at residues 11-30 and 51-70 (IC(50) < 100 microm) and residues 231-260 (IC(50) < 200 microm). A similar pattern of inhibition by arrestin peptides was seen when arrestin was replaced by G(t) or the farnesylated G(t)gamma C-terminal peptide. Only arrestin-(11-30) inhibited MII.G(t) less (IC(50) = 300 microm) than phosphorylated MII.arrestin. We interpreted the data by competition of the arrestin peptides for interaction sites at rhodopsin, exposed in the MII conformation and specific for both arrestin and G(t). The arrestin sites are located in both the C- and N-terminal domains of the arrestin structure.  相似文献   

19.
β‐Arrestins are multifunctional adaptor proteins. Recently, some new roles of β‐arrestins in regulating intracellular signaling networks have been discovered, which regulate cell growth, proliferation, and apoptosis. Though, the role of β‐arrestins expression in the pathology of hepatic fibrosis remains unclear. In this study, the possible relationship between the expression of β‐arrestins with the experimental hepatic fibrosis and the proliferation of hepatic stellate cells (HSCs) were investigated. Porcine serum induced liver fibrosis was established in this study. At five time points, the dynamic expression of β‐arrestin1, β‐arrestin2, and α‐smooth muscle actin (α‐SMA) in rat liver tissues, was measured by immunohistochemical staining, double immunofluorescent staining, and Western blotting. This study showed that aggravation of hepatic fibrosis with gradually increasing expression of β‐arrestin2 in the hepatic tissues, but not β‐arrestin1. Further, as hepatic fibrosis worsens, β‐arrestin2‐expressing activated HSCs accounts for an increasingly larger percentage of all activated HSCs. And the expression of β‐arrestin2 had a significant positive correlation with the expression of α‐SMA, an activated HSCs marker. In vitro studies, the dynamic expression of β‐arrestin1 and β‐arrestin2 in platelet derived growth factor‐BB (PDGF‐BB) stimulated HSCs was assessed by Western blotting. The expression of β‐arrestin2 was remarkably increased in PDGF‐BB stimulated HSCs. Furthermore, the small interfering RNA (siRNA) technique was used to explore the effect of β‐arrestins on the proliferation of HSCs and the activation of ERK1/2. Transfection of siRNA targeting β‐arrestin2 mRNA (siβ‐arrestin2) into HSCs led to a 68% and 70% reduction of β‐arrestin2 mRNA and protein expression, respectively. siβ‐arrestin2 abolished the effect of PDGF‐BB on the proliferation of HSCs. In addition, siβ‐arrestin2 exerted the inhibition of the activation of ERK1/2 in HSCs. The present study provided strong evidence for the participation of the β‐arrestin2 in the pathogenesis of hepatic fibrosis. The β‐arrestin2 depletion diminishes HSCs ERK1/2 signaling and proliferation stimulated by PDGF‐BB. Selective targeting of β‐arrestin2 inhibitors to HSCs might present as a novel strategy for the treatment of hepatic fibrosis. J. Cell. Biochem. 114: 1153–1162, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
The structural and functional properties of arrestin were studied by subjecting the protein to limited proteolysis. Limited proteolysis by trypsin cleaves arrestin (48 kDa), producing 20-25-kDa fragments. Prior to this stage of proteolysis, trypsin produced 46.6-, 45.4-, and 42-kDa fragments. Structural analysis of the proteolytic fragments demonstrated major cleavage at the carboxyl terminus, indicating that the carboxyl terminus is highly exposed. We found that forms of arrestin truncated at their carboxyl terminus maintained their functional properties and bound to phosphorylated rhodopsin. Native arrestin binds only to photoexcited phosphorylated rhodopsin, whereas the truncated arrestin binds to phosphorylated rhodopsin independent of its exposure to light. The truncated forms of arrestin were separated from native arrestin by a chromatographic procedure and subsequently characterized in functional studies. The binding of the truncated forms of arrestin to phosphorylated photoexcited rhodopsin is more tight than the binding of native arrestin as determined by a direct binding assay and the phosphodiesterase assay. We suggest that the acidic carboxyl-terminal region of arrestin may act as a regulator for light-dependent binding to phosphorylated rhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号