首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Structural Proteins of Pichinde Virus   总被引:10,自引:9,他引:1       下载免费PDF全文
Pichinde virus, a member of the arenovirus group, was found to have four polypeptides by polyacrylamide gel electrophoresis. Two components, V(I) and V(II), had molecular weights of about 72,000, whereas V(III) had a molecular weight of 34,000. A minor component, V(IV), had a molecular weight of about 12,000. Glucosamine was incorporated into V(II) and V(III), suggesting that these components were glycopeptides whereas V(I) and V(IV) were polypeptides. Treatment of the virus with Nonidet P-40 removed V(III), but V(I) and V(II) remained associated with the virus nucleic acid. This suggests a functional role of a ribonucleoprotein for V(I) and an envelope glycoprotein for V(III). V(II), the major glycopeptide, could function both as a membrane component and as a nucleoprotein.  相似文献   

4.
The Pichinde virus RNA did not possess the following characteristics of eucaryotic mRNA: polyadenylic acid sequence, capped methylated structure, and ability to direct protein synthesis in vitro. Polysomal RNA extracted from cells infected with Pichinde virus reannealed with 32P-labeled virus RNA, protecting about 60% of the latter against RNase degestion. The polyadenylic acid-containing polysomal RNA also reannealed to the 32P-labeled virus RNA to approximately the same extent. These indicate that the major part of the genomic RNA of Pichinde virus is negative stranded.  相似文献   

5.
6.
Antigens detected by the complement-fixation (CF) test were prepared from BHK-21 cells infected with Pichinde virus.The preparations contained two antigens demonstrable by immunodiffusion. The antigen present in abundance was heat stable, Pronase resistant, and had a molecular weight of 20,000 to 30,000 as estimated by gel filtration. Polyacrylamide gel electrophoresis of purified antigen demonstrated two low-molecular-weight polypeptides. An identical antigenic determinant was found by disrupting purified virus with Nonidet P-40; however, none of the viral polypeptides co-migrated with the polypeptides derived from purified CF antigen. Pronase digestion of disrupted virus did not alter antigenicity but degraded the viral peptides to sizes similar to those associated with the major CF antigen. These observations suggest that the major CF antigen of Pichnide virus is a cleavage product of the structural proteins of the virus.  相似文献   

7.
Structural components of influenza C virions.   总被引:4,自引:7,他引:4       下载免费PDF全文
The genome RNA species of influenza type C virions were analyzed by polyacrylamide gel electrophoresis. The pattern obtained was found to resemble those of other influenza viruses. Six RNA species were resolved, with estimated sizes ranging from 0.37 X 10(6) to 1.25 X 10(6) daltons. The internal ribonucleoproteins of influenza C virions were found to sediment heterogeneously in glycerol velocity gradients as demonstrated previously with influenza A/WSN virus. The ribonucleoproteins possessed diameters of 12 to 15 nm, with lengths ranging from 30 to 100 nm. Of the three major virion polypeptides (molecular weights, 88,000, 66,000, and 26,000), only the largest is glycosylated. Similar polypeptide species were present in influenza C virions of five different strains. All three major proteins of influenza C virions possess electrophoretic mobilities distinguishable from those of the major polypeptides of influenza A/WSN. The 66,000-dalton protein is associated with the ribonucleoprotein components. Two additional glycosylated polypeptides, with estimated molecular weights of 65,000 and 30,000, were detected in virions grown in embryonated eggs, but not in virus particles obtained from chicken embryo fibroblasts.  相似文献   

8.
1. By transmission electron microscopy, the eggshell of Haemonchus contortus was seen to be similar to previously studied nematodes, with an outer vitelline layer bounded by a trilaminate membrane, a broad medial region, containing chitin, and an electron dense basal region, containing lipid and protein. 2. Exposure of Haemonchus contortus eggs to proteases resulted in disruption of the shell with removal of components of the outer, medial and basal regions. Exposure to chitinase depleted fibrillar components of the medial region of the shell, while collagenase had no effect. 3. Chloroform/methanol extraction of fresh eggshells caused a minor condensation of the outer, vitelline layer and some depletion of the basal layer. 4. After normal hatching, shells appeared similar to those treated with protease and chitinase, but also lacked the basal, lipid layer. 5. Extracts of isolated unhatched eggshells and hatched eggshells, and extracts of biotin-labelled whole fresh eggs showed three major protein bands when run on sodium dodecyl sulphate-polyacrylamide gels indicating that these three proteins are most likely structural in nature and do not participate in the release of the larva from the eggshell. 6. Biotin-labelled protein bands were degraded by proteases and chitinase, but not collagenase or lipase.  相似文献   

9.
Polymerase Activity of Pichinde Virus   总被引:5,自引:5,他引:0       下载免费PDF全文
Pichinde virus, a member of the arenavirus group, was examined for polymerase activity. Purified virus was found to contain RNA-dependent RNA polymerase but not RNA-dependent DNA polymerase activity. Since RNase but neither DNase nor actinomycin D inhibited the endogenous polymerase reaction, RNA of the virus appeared to be used as the template. The divalent cations Mg(2+) and Mn(2+) were required for optimal reactivity. The RNA product was partially resistant to RNase and the resistant portion had a sedimentation coefficient of 22 to 26S in sucrose gradients.  相似文献   

10.
11.
High-frequency recombination was obtained with temperature-sensitive, conditionally lethal mutants of the arenavirus Pichinde.  相似文献   

12.
Pichinde virus L and S RNAs contain unique sequences.   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

13.
Structural components of chikungunya virus   总被引:5,自引:0,他引:5  
  相似文献   

14.
Cilia are organelles found on most eukaryotic cells, where they serve important functions in motility, sensory reception, and signaling. Recent advances in electron tomography have facilitated a number of ultrastructural studies of ciliary components that have significantly improved our knowledge of cilium architecture. These studies have produced nanometer-resolution structures of axonemal dynein complexes, microtubule doublets and triplets, basal bodies, radial spokes, and nexin complexes. In addition to these electron tomography studies, several recently published crystal structures provide insights into the architecture and mechanism of dynein as well as the centriolar protein SAS-6, important for establishing the 9-fold symmetry of centrioles. Ciliary assembly requires intraflagellar transport (IFT), a process that moves macromolecules between the tip of the cilium and the cell body. IFT relies on a large 20-subunit protein complex that is thought to mediate the contacts between ciliary motor and cargo proteins. Structural investigations of IFT complexes are starting to emerge, including the first three-dimensional models of IFT material in situ, revealing how IFT particles organize into larger train-like arrays, and the high-resolution structure of the IFT25/27 subcomplex. In this review, we cover recent advances in the structural and mechanistic understanding of ciliary components and IFT complexes.  相似文献   

15.
Three-dimensional cytoskeletal organization of detergent-treated epithelial African green monkey kidney cells (BSC-1) and chick embryo fibroblasts was studied in whole-mount preparations visualized in a high voltage electron microscope. Stereo images are generated at both low and high magnification to reveal both overall cytoskeletal morphology and details of the structural continuity of different filament types. By the use of an improved extraction procedure in combination with heavy meromyosin subfragment 1 decoration of actin filaments, several new features of filament organization are revealed that suggest that the cytoskeleton is a highly interconnected structural unit. In addition to actin filaments, intermediate filaments, and microtubules, a new class of filaments of 2- to 3-nm diameter and 30- to 300-nm length that do not bind heavy merymyosin is demonstrated. They form end-to-side contacts with other cytoskeletal filaments, thereby acting as linkers between various fibers, both like (e.g., actin- actin) and unlike (e.g., actin-intermediate filament, intermediate filament-microtubule). Their nature is unknown. In addition to 2- to 3-nm filaments, actin filaments are demonstrated to form end-to-side contacts with other filaments. Y-shaped actin filament “branches” are observed both in the cell periphery close to ruffles and in more central cell areas also populated by abundant intermediate filaments and microtubules. Arrowhead complexes formed by subfragment 1 decoration of actin filaments point towards the contact site. Actin filaments also form end-to-side contacts with microtubules and intermediate filaments. Careful inspection of numerous actin-microtubule contacts shows that microtubules frequently change their course at sites of contact. A variety of experimentally induced modifications of the frequency of actin-microtubule contacts can be shown to influence the course of microtubules. We conclude that bends in microtubules are imposed by structural interactions with other cytoskeletal elements. A structural and biochemical comparison of whole cells and cytoskeletons demonstrates that the former show a more inticate three-dimensional network and a more complex biochemical composition than the latter. An analysis of the time course of detergent extraction strongly suggests that the cytoskeleton forms a structural backbone with which a large number of proteins of the cytoplasmic ground substance associate in an ordered fashion to form the characteristic image of the “microtrabecular network” (J.J. Wolosewick and K.R. Porter. 1979. J. Cell Biol. 82: 114-139).  相似文献   

16.
Structural components of measles virus   总被引:16,自引:0,他引:16  
  相似文献   

17.
18.
The principal RNA species isolated from labeled preparations of the arenavirus Pichinde usually include a large viral RNA species L (apparent molecular weight = 3.2 X 10(6)), and a smaller viral RNA species S (apparent molecular weight = 1.6 X 10(6)). In addition, either little or considerable quantities of 28S rRNA as well as 18S rRNA can also be obtained in virus extracts, depending on the virus stock and growth conditions used to generate virus preparations. Similar RNA species have been identified in RNA extracted from Tacaribe and Tamiami arenavirus preparations. Oligonucleotide fingerprint analyses have confirmed the host ribosomal origin of the 28S and 18S species. Such analyses have also indicated that the Pichinde viral L and S RNA species each contain unique nucleotide sequences. Viral RNA preparations isolated by conventional phenol-sodium dodecyl sulfate extraction often have much of their L and S RNA species in the form of aggregates as visualized by either electron microscopy or oligonucleotide fingerprinting of material recovered from the top of gels (run by using undenatured RNA preparations). Circular and linear RNA forms have also been seen in electron micrographs of undenatured RNA preparations, although denatured viral RNA preparations have yielded mostly linear RNA species with few RNA aggregates or circular forms.  相似文献   

19.
The ends of arenavirus genome and antigenome RNAs are highly conserved and where determined directly, always contain a 3' G (referred to as position +1). However, primers extended to the 5' ends of Tacaribe virus genomes and antigenomes extend to position -1. When genomes and antigenomes are annealed either inter or intramolecularly and treated with RNase A or T1, there appears to be a single unpaired G at the 5' ends of the hybrids. A single extra G is also found by cloning the 5' ends of S antigenomes, and studies with capping enzyme detect (p)ppG at the 5' ends of genome and antigenome chains. A model is proposed in which genome replication initiates with pppGpC to create the nontemplated extra G. In contrast, the nontemplated bases at the 5' ends of the N mRNAs, which extend to positions -1 to -5, were found to be capped and also heterogeneous in sequence.  相似文献   

20.
The high molecular weight hemocyanin found in the hemolymph of the horseshoe crab, Limulus polyphemus, is composed of at least eight different kinds of subunits. Ion exchange chromatography at high pH in the presence of EDTA yields five major zones, hemocyanins I to V, three of which are electrophoretically heterogeneous. The subunits have similar molecular weights, 65,000 to 70,000, and their amino acid compositions are remarkably similar to each other and to other arthropod and molluscan hemocyanins. Digestion of the native subunits of Limulus hemocyanin by formic acid or trypsin shows considerable structural diversity which is supported by cyanogen bromide cleavage patterns and by peptide mapping of the tryptic peptides prepared from denatured hemocyanin subunits. The structural differentiation of the subunits is accompanied by functional differentiation, as shown in previous investigations of their O2 and CO affinities (Sullivan, B., Bonaventura, J., and Bonaventura, C. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 2558-2562; Bonaventura, C., Bonaventura, J., Sullivan, B., and Bourne, S. (1975) Biochemistry 13, 4784-4789). The subunit diversity of Limulus hemocyanin suggests that other electrophoretically heterogeneous hemocyanins may be composed of structurally distinct subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号