首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The primary objective of this work was to develop an appropriate model to explain the co-pyrolysis behaviour of lignite coal-biomass blends with different proportions using a thermogravimetric analyzer. A new parallel-series kinetic model was proposed to predict the pyrolysis behaviour of biomass over the entire pyrolysis regime, while a kinetic model similar to that of Anthony and Howard [Anthony, D.B., Howard, J.B., 1976. Coal devolatilization and hydrogasification. AIChE Journal 22(4), 625-656] was used for pyrolysis of coal. Analysis of mass loss history of blends showed an absence of synergistic effect between coal and biomass. Co-pyrolysis mass-loss profiles of the blends were predicted using the estimated kinetic parameters of coal and biomass. Excellent agreement was found between the predicted and the experimental results.  相似文献   

2.
Yuan S  Chen XL  Li WF  Liu HF  Wang FC 《Bioresource technology》2011,102(21):10124-10130
Rapid pyrolysis of two types of aquatic biomass (blue-green algae and water hyacinth), and their blends with two coals (bituminous and anthracite) was carried out in a high-frequency furnace. Nitrogen conversions during rapid pyrolysis of the two biomass and the interactions between the biomass and coals on nitrogen conversions were investigated. Results show that little nitrogen retained in char after the biomass pyrolysis, and NH3 yields were higher than HCN. During co-pyrolysis of biomass and coal, interactions between biomass and coal decreased char-N yields and increased volatile-N yields, but the total yields of NH3 + HCN in volatile-N were decreased in which HCN formations were decreased consistently, while NH3 formations were only decreased in the high-temperature range but promoted in the low-temperature range. Interactions between blue-green algae and coals are stronger than those between water hyacinth and coal, and interactions between biomass and bituminous are stronger than those between biomass and anthracite.  相似文献   

3.
Sunflower is a traditional crop which can be used for the production of bioenergy and liquid biofuels. A study of the pyrolytic behaviour of sunflower residues at temperatures from 300 to 600 degrees C has been carried out. The experiments were performed in a captive sample reactor under atmospheric pressure and helium as sweeping gas. The yields of the derived pyrolysis products were determined in relation to temperature, with constant sweeping gas flow of 50 cm3 min(-1) and heating rate of 40 degrees Cs(-1). The maximum gas yield of around 53 wt.% was obtained at 500 degrees C, whereas maximum oil yield of about 21 wt.% was obtained at 400 degrees C. A simple first order kinetic model has been applied for the devolatilization of biomass. Kinetic constants have been estimated: E=78.15 kJ mol(-1); k(0)=1.03 x 10(3)s(-1).  相似文献   

4.
Terminal drought markedly reduces leaf photosynthesis of chickpea (Cicer arietinum L.) during seed filling. A study was initiated to determine whether photosynthesis and internal recycling of CO(2) by the pods can compensate for the low rate of photosynthesis in leaves under water deficits. The influence of water deficits on the rates of photosynthesis and transpiration of pods and subtending leaves in chickpea (cv. Sona) was investigated in two naturally-lit, temperature-controlled glasshouses. At values of photosynthetically active radiation (PAR) of 900 micromol m(-2) s(-1) and higher, the rate of net photosynthesis of subtending leaves of 10-d-old pods was 24 and 6 micromol m(-2) s(-1) in the well-watered (WW) and water-stressed (WS) plants when the covered-leaf water potential (Psi) was -0.6 and -1.4 MPa, respectively. Leaf photosynthesis further decreased to 4.5 and 0.5 micromol m(-2) s(-1) as Psi decreased to -2.3 and -3.3 MPa, respectively. At 900--1500 micromol m(-2) s(-1) PAR, the net photosynthetic rate of 10-d-old pods was 0.9-1.0 micromol m(-2) s(-1) in the WW plants and was -0.1 to -0.8 micromol m(-2) s(-1) in the WS plants. The photosynthetic rates of both pods and subtending leaves decreased with age, but the rate of transpiration of the pods increased with age. The rates of respiration and net photosynthesis inside the pods were estimated by measuring the changes in the internal concentration of CO(2) of covered and uncovered pods during the day. Both the WW and WS pods had similar values of internal net photosynthesis, but the WS pods showed significantly higher rates of respiration suggesting that the WS pods had higher gross photosynthetic rates than the WW pods, particularly in the late afternoon. When (13)CO(2) was injected into the gas space inside the pod, nearly 80% of the labelled carbon 24 h after injection was observed in the pod wall in both the WW and WS plants. After 144 h the proportion of (13)C in the seed had increased from 19% to 32% in both treatments. The results suggest that internal recycling of CO(2) inside the pod may assist in maintaining seed filling in water-stressed chickpea.  相似文献   

5.
Lei H  Ren S  Wang L  Bu Q  Julson J  Holladay J  Ruan R 《Bioresource technology》2011,102(10):6208-6213
Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to find out the effect of process variables on the biofuel (bio-oil and syngas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5-50.3 wt.% of the biomass. Biochar yields were 23.5-62.2% depending on the pyrolysis conditions. The energy content of DDGS bio-oils was 28 MJ/kg obtained at the 650 °C and 8 min, which was about 66.7% of the heating value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline.  相似文献   

6.
C. Kaya  D. Higgs  H. Kirnak  I. Tas 《Plant and Soil》2003,253(2):287-292
The effect of arbuscular mycorrhizal (AM) colonisation by Glomus clarum on fruit yield and water use efficiency (WUE) was evaluated in watermelon (Citrullus lanatus) cv. Crimson Sweet F1 under field conditions. Treatments were: (1) well-watered plants without mycorrhizae (WW-M), (2) well-watered plants with mycorrhizae (WW+M), (3) water- stressed plants without mycorrhizae (WS-M) and (4) water-stressed plants with mycorrhizae (WS+M). When soil water tension readings reached –20 and –50 kPa for well-watered (WW) and water-stressed (WS) treatments, respectively, irrigation was initiated to restore the top soil to near field capacity. Water stress reduced watermelon shoot and root dry matter, fruit yield, water use efficiency but not total soluble solids (TSS) in the fruit, compared with the non-stressed treatments. Mycorrhizal plants had significantly higher biomass and fruit yield compared to nonmycorrhizal plants, whether plants were water stressed or not. AM colonisation increased WUE in both WW and WS plants. Macro- (N, P, K, Ca and Mg) and micro- (Zn, Fe and Mn) nutrient concentrations in the leaves were significantly reduced by water stress. Mycorrhizal colonisation of WS plants restored leaf nutrient concentrations to levels in WW plants in most cases. This is the first report of the mitigation of the adverse effect of water stress on yield and quality of a fruit crop.  相似文献   

7.
With the application of induction-heating, the pyrolytic experiments have been carried out for three sewage sludges from the food processing factories in an externally heated fixed-bed reactor. The thermochemical characteristics of sludge samples were first analyzed. The results indicated that the calorific value had about 15 MJ/kg on an average, suggesting that it had a potential for biomass energy source. However, its nitrogen concentration was relatively high. From the thermogravimetric analysis (TGA) curves, it showed that the pyrolysis reaction can be almost finished in the temperature range of 450-750 degrees C. The yields of resulting liquid and char products from the pyrolysis of sewage sludge were discussed for examining the effects of pyrolysis temperature (500-800 degrees C), heating rate (200-500 degrees C/min), and holding time (1-8 min). Overall, the variation of yield was not so significant in the experimental conditions for three sewage sludges. All results of the resulting liquid products analyzed by elemental analyzer, pH meter, Karl-Fischer moisture titrator and bomb calorimeter were in consistence with those analyses by FTIR spectroscopy. Furthermore, the pyrolysis liquid products contained large amounts of water (>73% by weight) mostly derived from the bound water in the biosludge feedstocks and the condensation reactions during the pyrolysis reaction, and fewer contents of oxygenated hydrocarbons composing of carbonyl and nitrogen-containing groups, resulting in low pH and low calorific values.  相似文献   

8.
Batch experiments were performed to study biomass growth rate, nutrient removal and carbon dioxide bio-fixation of the marine microalgae Chlorella stigmatophora. Four different cultures at different salinities were tested: wastewater (WW), synthetic wastewater (SWW), seawater (SW) and diluted seawater (DSW). Experimental results showed that Chlorella stigmatophora grew satisfactorily in all culture media, except in SWW where inhibition occurred. In all cases, biomass experimental data were fitted to the Verlhust Logistic model (R2 > 0.982, p < or = 0.05). Maximum biomass productivity (P(bmax)) and CO2 biofixation (P(vCO2)) were reached in the WW medium, 1.146g SSL(-1)day(-1) and 2.324g CO2L(-1)day(-1) respectively. The order of maximum specific growth rates (micro max) was WW >DSW>SW. In order to compare nitrogen and phosphorous removal kinetics, an estimation of the time required to reach the most restrictive concentration of total N and P in effluents as defined in the Directive 98/1565/CE (10 mg sigmaNL(-1) (T10(N)) and 1 mg sigmaPL(-1) (T1(p)) was performed. In the WW test T10(N) and T1(p) needed were of 45.15 and 32.27 hours respectively and at the end of the experimental the removal was in both 100%.  相似文献   

9.
Pyrolysis and combustion behaviour of coal-MBM blends   总被引:1,自引:0,他引:1  
In the present work, thermogravimetric analysis was employed in order to investigate the behaviour of MBM and their blends with Greek brown coal, under pyrolysis and combustion conditions. MBM presented enhanced pyrolysis rates reflecting its high volatile and low ash contents compared to Greek brown coal. Increased conversion rates were observed when MBM was added in the brown coal sample. Significant interactions were detected between the two fuel blend components leading to significant deviations from the expected behaviour. The catalytic effect of mineral matter on the pyrolysis of MBM resulted in reaction rate decrease and DTG curve shift to lower temperatures for the demineralised MBM. Alterations in the combustion process due to the mineral matter were minimal when testing the blends. Interactions maintained during combustion and lower reactivity of MBM was achieved due to the reduced oxygen content.  相似文献   

10.
The kinetics of biomass pyrolysis was studied via a sequential method including two stages. Stage one is to analyze the kinetics of biomass pyrolysis and starts with the determination of unreacted fraction of sample at the maximum reaction rate, (1-α)(m). Stage two provides a way to simulate the reaction rate profile and to verify the appropriateness of kinetic parameters calculated in the previous stage. Filter paper, xylan, and alkali lignin were used as representatives of cellulose, hemicellulose, and lignin whose pyrolysis was analyzed with the assumption of the orders of reaction being 1, 2, and 3, respectively. For most of the biomass pyrolysis, kinetic parameters were properly determined and reaction rate profiles were adequately simulated by regarding the order of reaction as 1. This new method should be applicable to most of the biomass pyrolysis and similar reactions whose (1-α)(m) is acquirable, representative, and reliable.  相似文献   

11.
Veveris M  Koch E  Chatterjee SS 《Life sciences》2004,74(15):1945-1955
In Germany, hydroalcoholic extracts from hawthorn (Crataegus spp.) leaves with flowers are approved drugs for the treatment of mild forms of heart insufficiency. Besides cardiotonic effects these herbal remedies have been shown to possess cardioprotective properties. We now evaluated if treatment of rats with the Crataegus special extract WS 1442 also improves cardiac function and prevents myocardial infarction during prolonged ischemia and reperfusion lasting for 240 and 15 min, respectively. Oral administration of WS 1442 (10 or 100 mg x kg(-1) x day(-1)) for 7 days before ligation of the left coronary artery dose-dependently suppressed the decrease of the pressure rate product. WS 1442 treatment also attenuated the elevation of the ST-segment in the ECG, diminished the incidence of ventricular fibrillations (control: 67%; 10 mg x kg(-1): 64%; 100 mg x kg(-1): 27%) and reduced the mortality rate (control: 47%; 10 mg.kg(-1): 27%; 100 mg x kg(-1): 9%). Furthermore, the area of myocardial infarction within the ischemic zone was significantly smaller in treated rats (10 mg x kg(-1): 64.3 +/- 5.1%; 100 mg x kg(-1): 42.8 +/- 4.1%) when compared with controls (78.4 +/- 2.6%). It is suggested that these pharmacological effects are accounted for by the combined antioxidative, leukocyte elastase inhibiting and endothelial nitric oxide (NO) synthesis enhancing properties of WS 1442.  相似文献   

12.
Upgrading of liquid fuel from the pyrolysis of biomass   总被引:28,自引:0,他引:28  
Zhang S  Yan Y  Li T  Ren Z 《Bioresource technology》2005,96(5):545-550
Pyrolysis of biomass was carried out in a fluidized bed unit (5 kg/h) with the objective of maximizing liquid yield. Liquid product formed in pyrolysis was separated into two phases: water phase and oil phase. The oil phase was upgraded by sulfided Co-Mo-P catalyst in an autoclave. Effects of reaction conditions on the product distribution were investigated, and optimal conditions were therefore concluded. Comparison was made by analysis between the raw oil phase and the upgraded liquid fuel. The significant difference between the raw pyrolytic oil and the upgraded oil was that the former was methanol-soluble while the latter was oil-soluble.  相似文献   

13.
Shen DK  Gu S  Jin B  Fang MX 《Bioresource technology》2011,102(2):2047-2052
The pyrolytic behavior of wood is investigated under inert and oxidative conditions. The TGA experiment is given a temperature variation from 323 to 1173 K by setting the heating rate between 5 and 40 K/min. The results of DTG curves show that the hemicellulose shoulder peak for birch is more visible under inert atmosphere due to the higher content of reactive xylan-based hemicellulose (mannan-based for pine). When oxygen presents, thermal reactivity of biomass (especially the cellulose) is greatly enhanced due to the acceleration of mass loss in the first stage, and complex reactions occur simultaneously in the second stage when char and lignin oxidize. A new kinetic model is employed for biomass pyrolysis, namely the distributed activation energy model (DAEM). Under inert atmosphere, the distributed activation energy for the two species is found to be increased from 180 to 220 kJ/mol at the solid conversion of 10-85% with the high correlation coefficient. Under oxidative atmosphere, the distributed activation energy is about 175-235 kJ/mol at the solid conversion of 10-65% and 300-770 kJ/mol at the solid conversion of 70-95% with the low correlation coefficient (below 0.90). Comparatively, the activation energy obtained from established global kinetic model is correspondingly lower than that from DAEM under both inert and oxidative environments, giving relatively higher correlation coefficient (more than 0.96). The results imply that the DAEM is not suitable for oxidative pyrolysis of biomass (especially for the second mass loss stage in air), but it could represent the intrinsic mechanism of thermal decomposition of wood under nitrogen better than global kinetic model when it is applicable.  相似文献   

14.
The aim of this study was to evaluate chemical and biochemical changes of organic matter in fertilized (ammonium nitrate) and amended (vermicompost and manure) soils using pyrolysis and metabolic indices. The metabolic potential [dehydrogenase (DH-ase)/water soluble organic carbon (WSOC)], the metabolic quotient (qCO2) and the microbial quotient (Cmic:Corg) were calculated as indices of soil organic matter evolution. Pyrolysis-gas chromatography (Py-GC) was used to study structural changes in the organic matter. Carbon forms and microbial biomass have been measured by dichromate oxidation and fumigation-extraction methods, respectively. Dehydrogenase activity has been tested using INT (p-Iodonitrotetrazolium violet) as substrate. The results showed that organic amendment increased soil microbial biomass and its activity which were strictly related to pyrolytic mineralization and humification indices (N/O, B/E3). Mineral fertilization caused a greater alteration of native soil organic matter than the organic amendments, in that a high release of WSOC and relatively large amounts of aliphatic pyrolytic products, were observed. Therefore, the pyrolysis and metabolic indices provided similar and complementary information on soil organic matter changes after mineral and organic fertilization.  相似文献   

15.
In this work, pyrolysis characteristics were investigated using thermogravimetric analysis (TGA) at heating rates of 5-20 degrees C/min. Most of the materials were decomposed between 330 degrees C and 370 degrees C at each heating rate. The average activation energy was 236.2 kJ/mol when the pyrolytic conversion increased from 5% to 70%. The pyrolysis kinetics of oak trees was also investigated experimentally and mathematically. The experiments were carried out in a tubing reactor at a temperature range of 330-370 degrees C with a reaction time of 2-8 min. A lump model of combined series and parallel reactions for bio-oil and gas formation was proposed. The kinetic parameters were determined by nonlinear least-squares regression from the experimental data. It was found from the reaction kinetic constants that the predominant reaction pathway from the oak trees was to bio-oil formation rather than to gas formation at the investigated temperature range.  相似文献   

16.
The effect of the arbuscular mycorrhizal (AM) fungus, Glomus versiforme, on growth and reactive oxygen metabolism of trifoliate orange (Poncirus trifoliata) seedlings was studied in potted plants under well-watered (WW) and water stressed (WS) conditions. Water stress significantly decreased root colonization. Shoot dry weight, plant height and stem diameter were higher in AM than in non-AM seedlings regardless of the water status. Inoculation with G. versiforme increased root dry weight and leaf number per plant of WW seedlings. There was less malondialdehyde (MDA) concentration in leaves and roots of AM seedlings, as well as lower hydrogen peroxide (H(2)O(2)) and superoxide anion radical (O(2)(-)) concentrations in AM roots under WW and WS conditions. AM inoculation did not affect the H(2)O(2) and O(2)(-) concentrations of WW leaves. Whether WS or not, AM symbiosis notably increased the guaiacol peroxidase (G-POD) activity of leaves, glutathione reductase (GR) activity of leaves and ascorbate peroxidase (APX) activity of roots. AM infection also markedly increased the APX activity of WS leaves. Soluble proteins and glutathione (GSH) in leaves and roots and ascorbate (ASC) in leaves were higher in WW AM than in WW non-AM seedlings. AM infection also enhanced the ASC and GSH contents of leaves and roots in WS seedlings. Cross-tolerance might occur in AM plants and be enhanced by AM symbiosis. Our results suggest that the increased concentrations of antioxidant enzymes and non-enzymatic antioxidants found in AM plants may serve to protect the organism against oxidative damage, enhancing drought tolerance.  相似文献   

17.
26 male F2 hybrids between spontaneously hypertensive (SHR) and normotensive control (WKY) rats (SHRxWKY)F2 were segregated according to their c-src genotype into SS and WW homozygous groups, corresponding to SHR or WKY and WS heterozygous group. Na, K cotransport in erythrocytes in the WW group was equal to that of WKY and differs significantly from that of WS and SS groups (the rate of Na, K cotransport in latter groups was close to that of SHR). Ca content of RBC in WW group was equal to that of WKY, lower than that of WS and SS groups which in turn was significantly lower than in SHR, indicating polygenic control of the trait. Authors conclude that the c-src locus itself or some other loci inherited in conjunction with c-src determines both the increase of Na, K cotransport and calcium content in erythrocytes of SHR.  相似文献   

18.
Plasma membrane (PM), primarily from the anterior sperm head, and outer acrosomal membrane (OAM), were isolated from ejaculated bovine spermatozoa, and the major lipid classes were characterized. Whole sperm (WS) lipids were analyzed for comparison. PM was removed by nitrogen cavitation and purified by sucrose density-gradient centrifugation. The OAM was removed by centrifugation through hyperosmotic sucrose and recovered by sucrose density-gradient centrifugation. The PM contained primarily spherical vesicles from the region overlying the OAM and was enriched 9- and 13-fold in 5'-nucleotidase and alkaline phosphatase activity, respectively, compared to the original cavitate. The OAM was recovered as caplike structures with associated ground substance. Protein, phospholipid, and cholesterol (PR, PL, and CH as micrograms/5 x 10(9) sperm) were 300, 467, and 93 for PM and 276, 111, and 25 for OAM, respectively. Corresponding values for WS (mg/5 x 10(9) sperm) were 31.4, 6.63, and 0.72. The PR/PL (w/w) and CH/PL (mol/mol) ratios were 0.66 and 0.38 for PM; 2.48 and 0.26 for OAM; and 4.39 and 0.22 for WS. Cholesterol was the only free sterol detected by gas/liquid chromatography in WS, PM, and OAM, with traces of CH sulfate present in all three preparations. Glycolipid tentatively identified as sulfogalactolipid was detected by thin-layer chromatography (TLC) in PM but not OAM. Phospholipid composition of WS and membranes was determined by TLC. Cardiolipin (3% of total PL) was present in WS only. Choline, ethanolamine, and inositol phosphoglycerides (CP, EP, PI, PIP, PIPP); sphingomyelin (SP); phosphatidylserine (PS); and lysophosphatidylcholine (LPC) were present in WS, PM, and OAM. Approximately 50% of total PL was CP in all preparations; SP was 13% of PL in PM and 17% in OAM (p less than 0.05); EP was 7% of PL in PM and 10% in OAM (p less than 0.05). The differences in composition between PM and OAM is discussed with respect to capacitation and ability of sperm to undergo the acrosome reaction.  相似文献   

19.
To understand the effect of water stress on the remobilization of prestored carbon reserves, the changes in the activities of starch hydrolytic enzymes and sucrose-phosphate synthase (SPS) in the stems of rice (Oryza sativa L.) during grain filling were investigated. Two rice cultivars, showing high lodging-resistance and slow remobilization, were grown in the field and subjected to well-watered (WW, psi(soil)=0) and water-stressed (WS, psi(soil)=-0.05 MPa) treatments 9 d after anthesis (DAA) till maturity. Leaf water potentials of both cultivars markedly decreased during the day as a result of WS treatment, but completely recovered by early morning. WS treatment accelerated the reduction of starch in the stems, promoted the reallocation of prefixed (14)C from the stems to grains, shortened the grain filling period, and increased the grain filling rate. More soluble sugars including sucrose were accumulated in the stems under WS than under WW treatments. Both alpha- and beta-amylase activities were enhanced by the WS, with the former enhanced more than the latter, and were significantly correlated with the concentrations of soluble sugars in the stems. The other two possible starch-breaking enzymes, alpha-glucosidase and starch phosphorylase, showed no significant differences in the activities between the WW and WS treatments. Water stress also increased the SPS activity that is responsible for sucrose production. Both V(limit) and V(max), the activities of the enzyme at limiting and saturating substrate concentrations, were enhanced and the activation state (V(limit)/V(max)) was also increased as a result of the more significant enhancement of V(limit). The enhanced SPS activity was closely correlated with an increase of sucrose accumulation in the stems. The results suggest that the fast hydrolysis of starch and increased carbon remobilization were attributed to the enhanced alpha-amylase activity and the high activation state of SPS when the rice was subjected to water stress.  相似文献   

20.
Catalyzed pyrolysis of cotton-seed cake was studied under different experimental conditions. Variables investigated were pyrolysis temperature, zeolite content and sweeping gas flow rate. Experiments were carried out isothermally. Liquids, gases and char were obtained as products of pyrolysis. The distributions of these products were determined for various contents (1, 5, 10, 20 wt.% of raw material) of zeolite at four different pyrolysis temperatures. The maximum liquid yield obtained was 30.84% at a pyrolysis temperature of 550 degrees C with a sweeping gas flow rate of 100 cm(3) min(-1) in the presence of clinoptilolite (20% based on raw material) as catalyst. The pyrolytic and catalytic liquid products were analysed in detail to determine the predominant chemical classes and the identities of the major compounds present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号