首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Utilizing genome sequence data from bacterial and fungal pathogens for the discovery of new antimicrobial agents has received considerable attention, both practical and critical, from the pharmaceutical and biotechnological communities. Although no new drugs derived from genomics-based discovery have been reported to be in a development pipeline, the utilization of genomics has revolutionized many aspects of drug discovery. The application, utility, opportunity, and challenges afforded by many of these new approaches are discussed.  相似文献   

3.
A variety of alkaloids, most of which occur or are structurally related to alkaloids that occur in skin glands of dendrobatid poison frogs, were assayed for antimicrobial activity against the Gram-positive bacterium Bacillus subtilis, the Gram-negative bacterium Escherichia coli and the fungus Candida albicans. Certain pyrrolidines, piperidines and decahydroquinolines, perhydro-histrionicotoxin, and a synthetic pumiliotoxin were active against B. subtilis. Only 2-n-nonylpiperidine was active against E. coli. One pyrrolidine, two piperidines, two decahydroquinolines, and the synthetic pumiliotoxin were active against the fungus C. albicans. The results suggest that certain of the skin alkaloids of poison frogs, in addition to being noxious to predators, may also benefit the frog through protection against skin infections.  相似文献   

4.
Amyloids, protein, and peptide assemblies in various organisms are crucial in physiological and pathological processes. Their intricate structures, however, present significant challenges, limiting our understanding of their functions, regulatory mechanisms, and potential applications in biomedicine and technology. This study evaluated the AlphaFold2 ColabFold method's structure predictions for antimicrobial amyloids, using eight antimicrobial peptides (AMPs), including those with experimentally determined structures and AMPs known for their distinct amyloidogenic morphological features. Additionally, two well-known human amyloids, amyloid-β and islet amyloid polypeptide, were included in the analysis due to their disease relevance, short sequences, and antimicrobial properties. Amyloids typically exhibit tightly mated β-strand sheets forming a cross-β configuration. However, certain amphipathic α-helical subunits can also form amyloid fibrils adopting a cross-α structure. Some AMPs in the study exhibited a combination of cross-α and cross-β amyloid fibrils, adding complexity to structure prediction. The results showed that the AlphaFold2 ColabFold models favored α-helical structures in the tested amyloids, successfully predicting the presence of α-helical mated sheets and a hydrophobic core resembling the cross-α configuration. This implies that the AI-based algorithms prefer assemblies of the monomeric state, which was frequently predicted as helical, or capture an α-helical membrane-active form of toxic peptides, which is triggered upon interaction with lipid membranes.  相似文献   

5.
How do bacteria resist human antimicrobial peptides?   总被引:26,自引:0,他引:26  
Cationic antimicrobial peptides (CAMPs), such as defensins, cathelicidins and thrombocidins, are an important human defense mechanism, protecting skin and epithelia against invading microorganisms and assisting neutrophils and platelets. Staphylococcus aureus, Salmonella enterica and other bacterial pathogens have evolved countermeasures to limit the effectiveness of CAMPs, including the repulsion of CAMPs by reducing the net negative charge of the bacterial cell envelope through covalent modification of anionic molecules (e.g. teichoic acids, phospholipids and lipid A); expelling CAMPs through energy-dependent pumps; altering membrane fluidity; and cleaving CAMPs with proteases. Mutants susceptible to CAMPs are more efficiently inactivated by phagocytes and are virulence-attenuated, indicating that CAMP resistance plays a key role in bacterial infections.  相似文献   

6.
Defensins are antimicrobial peptides that are important in the innate immune defense of mammals. Upon stimulation by bacterial antigens, enteric α-defensins are secreted into the intestinal lumen where they have potent microbicidal activities. Cryptdin-4 (Crp4) is an α-defensin expressed in Paneth cells of the mouse small intestine and the most bactericidal of the known cryptdin isoforms. The structure of Crp4 consists of a triple-stranded antiparallel β-sheet but lacks three amino acids between the fourth and fifth cysteine residues, making them distinct from other α-defensins. The structure also reveals that the α-amino and C-terminal carboxylic groups are in the proximity of each other (d ≈ 3 ?) in the folded structure. We present here the biosynthesis of backbone-cyclized Crp4 using a modified protein splicing unit or intein. Our data show that cyclized Crp4 can be biosynthesized by using this approach both in vitro and in vivo, although the expression yield was significantly lower when the protein was produced inside the cell. The resulting cyclic defensins retained the native α-defensin fold and showed equivalent or better microbicidal activities against several Gram-positive and Gram-negative bacteria when compared to native Crp4. No detectable hemolytic activity against human red blood cells was observed for either native Crp4 or its cyclized variants. Moreover, both forms of Crp4 also showed high stability to degradation when incubated with human serum. Altogether, these results indicate the potential for backbone-cyclized defensins in the development of novel peptide-based antimicrobial compounds.  相似文献   

7.
PST13-RK (KKKFPWWWPFKKK-NH2) is an improved derivative of tritrpticin adopting a β-turn structure. In order to investigate the effect of dimerization of PST13-RK on antimicrobial activity and mammalian cell toxicity, we designed and synthesized its Cys- and Lys-linked dimers. The dimerization of PST13-RK resulted in a 2–4 fold decreased antimicrobial activity against Gram-positive and Gram-negative bacteria. However, the dimers showed a large increase in mammalian cell toxicity against mouse NIH-3T3, human MDA-MB-361, and human A549 cells. These results suggested that PST13-RK is active as a monomer to bacterial cells but as an oligomer to mammalian cells. Since the dimeric PST13-RK is much more effective against the cancer cells than the monomer, it might be an attractive candidate for anticancer chemotherapeutic drugs.  相似文献   

8.
A short α-helical antimicrobial peptide with antibacterial selectivity   总被引:2,自引:0,他引:2  
A 13-residue alpha-helical peptide (K6L5WP), designed from Leu6-->Pro substitution of a hemolytic alpha-helical peptide (K6L6W), exhibited strong antibacterial activity (MIC: 2 to approximately 4 microM against three gram-positives and three gram-negatives) comparable to that of melittin but had no hemolytic activity. Tryptophan fluorescence studies indicated bacterial selectivity of K6L5WP is closely related to the selective interaction with negatively charged phospholipids on the surface of bacterial cells. These results suggested that the central Pro6 in K6L5WP plays an important role in its bacterial cell selectivity. In conclusion, K6L5WP with antibacterial selectivity may serve as an attractive candidate for the development of antimicrobial agents.  相似文献   

9.
A series of chalcones (3av) have been synthesized by condensation of β-ionone (1) with a variety of aldehydes (2av). The synthesized compounds have been screened for their in vitro antimicrobial activity against five bacterial and five fungal strains, using disc diffusion assay. The evaluated compounds display a wide range of activities, from completely inactive to the highly active compounds. Some of the compounds are also active against methicillin resistant staphylococcus aureus (MRSA).  相似文献   

10.
To develop novel antibiotic peptides useful as therapeutic drugs, the analogues were designed to increase not only net positive charge by Lys substitution but also hydrophobic helix region by Leu substitution from cecropin A (1–8)–magainin 2 (1–12) hybrid peptide (CA–MA). In particular, CA–MA analogue P5 (P5), designed by flexible region (GIG→P) substitution, Lys (positions 4, 8, 14, 15) and Leu (positions 5, 6, 12, 13, 16, 17, 20) substitutions, showed an enhanced antimicrobial and antitumor activity without hemolysis. Confocal microscopy showed that P5 was located in the plasma membrane. The antibacterial effects of analogues were further confirmed by using 1,6-diphenyl-1,3,5-hexatriene as a plasma membrane probe. Flow cytometric analysis revealed that P5 acted in an energy-independent manner. This interaction is also independent of the ionic environment. Furthermore, P5 causes significant morphological alterations of the bacterial surfaces as shown by scanning electron microscopy and showed strong membrane disrupting activity when examined using liposomes (phosphatidyl choline/cholesterol; 10:1, w/w). Its potent antibiotic activity suggests that P5 is an excellent candidate as a lead compound for the development of novel antiinfective agents.  相似文献   

11.
12.
Antimicrobial peptides are active against a diverse spectrum of microorganisms. Using a bioinformatics method, six potential novel antimicrobial peptides, A1, C1, A2, A3, C2 and A4, were identified in the C8α complement component. The corresponding genes were then cloned into a new vector as fusions with the self-cleavage protein Npro protein mutant EDDIE gene. The expressed or synthetic peptides, A1, A2, A3 and A4, showed antimicrobial activities against several bacteria, while peptides C1 and C2 did not. Peptides A1 to A4 showed no hemolytic activities over 3 h when at 500 μg/ml. Thus, A1, A2, A3 and A4, derived from the C8α complement system, are novel antimicrobial peptides.  相似文献   

13.
Some cationic peptides, referred to as CPPs (cell-penetrating peptides), have the ability to translocate across biological membranes in a non-disruptive way and to overcome the impermeable nature of the cell membrane. They have been successfully used for drug delivery into mammalian cells; however, there is no consensus about the mechanism of cellular uptake. Both endocytic and non-endocytic pathways are supported by experimental evidence. The observation that some AMPs (antimicrobial peptides) can enter host cells without damaging their cytoplasmic membrane, as well as kill pathogenic agents, has also attracted attention. The capacity to translocate across the cell membrane has been reported for some of these AMPs. Like CPPs, AMPs are short and cationic sequences with a high affinity for membranes. Similarities between CPPs and AMPs prompted us to question if these two classes of peptides really belong to unrelated families. In this Review, a critical comparison of the mechanisms that underlie cellular uptake is undertaken. A reflection and a new perspective about CPPs and AMPs are presented.  相似文献   

14.
Bacteria showing antimicrobial resistance (AMR) pose a significant global healthcare problem. Although many mechanisms conferring AMR are understood, the ecological processes facilitating its persistence and spread are less well characterised. Aquatic systems represent an important milieu for the environmental release, mixing, persistence and spread of AMR bacteria and resistance genes associated with horizontally transferable genetic elements. Additionally, owing to the use and discharge of antimicrobials and biocides, and the accumulation and abundance of other pollutants, mechanisms that confer AMR might evolve in aquatic systems. In this review, we hypothesise that aquatic systems have an important ecological and evolutionary role in driving the persistence, emergence and spread of AMR, which could have consequences when attempting to reduce its occurrence in clinical settings.  相似文献   

15.
Gad-1 and Gad-2 are antimicrobial peptide (AMP) sequences encoded by paralogous genes. They are rich in histidine, which suggests that their activity might be pH-dependent. We examined their structure–function relationships with a view to learning how to improve AMP therapeutic ratios. Activity assays with Gram-negative bacteria and cancer cell lines demonstrate that Gad-2 is substantially more active at slightly acidic pH than it is at neutral pH. By contrast, the activity of Gad-1 at lower pH is similar to its activity at pH 7. Circular dichroism spectra indicate that the greater functional plasticity of Gad-2 correlates with a greater structural plasticity; Gad-2's percent helicity varies dramatically with altered pH and lipid environment. Interestingly, Gad-2's highest levels of helicity do not correspond to the conditions where it is most active. High resolution solution NMR structures were determined in SDS micelles at pH 5, conditions that induce an intermediate level of helicity in the peptides. Gad-1 is more helical than Gad-2, with both peptides exhibiting the greatest helical tendencies in their central region and lowest helicity in their N-termini. The high resolution structures suggest that maximum activity relies on the appropriate balance between an N-terminal region with mixed hydrophobic/hydrophilic structure features and an amphipathic central and C-terminal region. Taken together with previous studies, our results suggest that to improve the therapeutic ratio of AMPs, consideration should be given to including sequential histidine-pairs, keeping the overall charge of the peptide modest, and retaining a degree of structural plasticity and imperfect amphipathicity.  相似文献   

16.
A set of α-quaternary 3-chloro-1-hydroxyalkylphosphonates, analogues of fosfomycin and fosfonochlorin, some of which are new compounds, was synthesized. The compounds were screened for bioactivity against several clinical and standard microbial isolates. Some were found to have moderate activity. The activity was higher with phenyl protection of the phosphoryl ester groups and α-phenyl substitution. Compound 11 was as effective or more potent than fosfomycin or chloramphenicol against several Gram-negative bacteria as well as against some Gram-positive ones.  相似文献   

17.
A major barrier to the use of antimicrobial peptides as antibiotics is the toxicity or ability to lyse eukaryotic cells. In this study, a 26-residue amphipathic α-helical antimicrobial peptide A12L/A20L (Ac-KWKSFLKTFKSLK KTVLHTLLKAISS-amide) was used as the framework to design a series of D- and L-diastereomeric peptides and study the relationships of helicity and biological activities of α-helical antimicrobial peptides. Peptide helicity was measured by circular dichroism spectroscopy and demonstrated to correlate with the hydrophobicity of peptides and the numbers of D-amino acid substitutions. Therapeutic index was used to evaluate the selectivity of peptides against prokaryotic cells. By introducing D-amino acids to replace the original L-amino acids on the non-polar face or the polar face of the helix, the hemolytic activity of peptide analogs have been significantly reduced. Compared to the parent peptide, the therapeutic indices were improved of 44-fold and 22-fold against Gram-negative and Grampositive bacteria, respectively. In addition, D- and L-diastereomeric peptides exhibited lower interaction with zwitterionic eukaryotic membrane and showed the significant membrane damaging effect to bacterial cells. Helicity was proved to play a crucial role on peptide specificity and biological activities. By simply replacing the hydrophobic or the hydrophilic amino acid residues on the non-polar or the polar face of these amphipathic derivatives of the parent peptide with D-amino acids, we demonstrated that this method could have excellent potential for the rational design of antimicrobial peptides with enhanced specificity.  相似文献   

18.
19.
20.
In this study, a novel 18-residue linear antimicrobial peptide derived from the central part of the bovine hemoglobin ??-subunit was identified. The peptide was purified by a combination of cationic exchange and reversed-phase high-performance liquid chromatography. The sequence was determined to be VNFKLLSHSLLVTLASHL. The theoretical molecular weight of this peptide was calculated to be 1992.38 Da, which is the same as that determined (1992.401 Da) by matrix-assisted laser desorption ionization mass spectrometry. Sequence analysis showed that there is a high degree of homology in this peptide among hemoglobin ??-subunits of bovine, sheep, deer, porcine, and human. In a radial-diffusion plate assay, this purified peptide exhibited antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号