首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High mobility group box 1 (HMGB1), an important inflammatory mediator, is actively secreted by immune cells and some non‐immune cells or passively released by necrotic cells. HMGB1 has been implicated in many inflammatory diseases. Our previous published data demonstrated that HMGB1 was up‐regulated in heart tissue or serum in experimental autoimmune myocarditis (EAM); HMGB1 blockade could ameliorate cardiac fibrosis at the last stage of EAM. And yet, until now, no data directly showed that HMGB1 was associated with cardiac fibrosis. Therefore, the aims of the present work were to assess whether (1) up‐regulated HMGB1 could directly lead to cardiac fibrosis in EAM; (2) cardiac fibroblast/myofibroblasts could secrete HMGB1 as another source of high‐level HMGB1 in EAM; and (3) HMGB1 blockade could effectively prevent cardiac fibrosis at the last stage of EAM. Our results clearly demonstrated that HMGB1 could directly lead to cardiac collagen deposition, which was associated with PKCβ/Erk1/2 signalling pathway; furthermore, cardiac fibroblast/myofibroblasts could actively secrete HMGB1 under external stress; and HMGB1 secreted by cardiac fibroblasts/myofibroblasts led to cardiac fibrosis via PKCβ activation by autocrine means; HMGB1 blockade could efficiently ameliorate cardiac fibrosis in EAM mice.  相似文献   

2.
In order to test the hypothesis that treatment with quercetin at a dose of 10 mg/kg protects from the progression of experimental autoimmune myocarditis (EAM) to dilated cardiomyopathy (DCM), we have used the rat model of EAM induced by porcine cardiac myosin. Our results identified that the post-myocarditis rats suffered from elevated endoplasmic reticulum (ER) stress and adverse cardiac remodelling in the form of myocardial fibrosis, whereas the rats treated with quercetin have been protected from these changes as evidenced by the decreased myocardial levels of ER stress and fibrosis markers when compared with the vehicle-treated DCM rats. In addition, the myocardial dimensions and cardiac function were preserved significantly in the quercetin-treated rats in comparison with the DCM rats treated with vehicle alone. Interestingly, the rats treated with quercetin showed significant suppression of the myocardial endothelin-1 and also the mitogen activated protein kinases (MAPK) suggesting that the protection offered by quercetin treatment against progression of EAM involves the modulation of MAPK signalling cascade. Collectively, the present study provides data to support the role of quercetin in protecting the hearts of the rats with post myocarditis DCM.  相似文献   

3.
Extracellular ATP, released at sites of inflammation or tissue damage, activates the P2X(7) receptor, which in turn triggers a range of responses also including cell proliferation. In this study the ability of the human cathelicidin LL-37 to stimulate fibroblast growth was inhibited by commonly used P2X(7) blockers. We investigated the structural requirements of the growth-promoting activity of LL-37 and found that it did not depend on helix sense (the all-d analog was active) but did require a strong helix-forming propensity in aqueous solution (a scrambled analog and primate LL-37 orthologs devoid of this property were inactive). The involvement of P2X(7) was analyzed using P2X(7)-expressing HEK293 cells. LL-37 induced proliferation of these cells, triggered Ca(2+) influx, promoted ethidium bromide uptake, and synergized with benzoyl ATP to enhance the pore and channel functions of P2X(7). The activity of LL-37 had an absolute requirement for P2X(7) expression as it was blocked by the P2X(7) inhibitor KN-62, was absent in cells lacking P2X(7), and was restored by P2X(7) transfection. Of particular interest, LL-37 led to pore-forming activity in cells expressing a truncated P2X(7) receptor unable to generate the non-selective pore typical of the full-length receptor. Our results indicate that P2X(7) is involved in the proliferative cell response to LL-37 and that the structural/aggregational properties of LL-37 determine its capacity to modulate the activation state of P2X(7).  相似文献   

4.
The aim of this study was to characterize the effects of sphingosine-1-phosphate (S1P) on cardiac ventricular fibroblasts. Impacts of S1P on fibroblast excitability, cell migration, proliferation and secretion were characterized. The patch-clamp technique in the whole-cell configuration was used to study the S1P-induced current from mouse ventricular fibroblasts. The expression level of the S1P receptor during cell culture duration was evaluated by western-blot. Fibroblast proliferation and migration were quantified using the methylene blue assay and the Boyden chamber technique, respectively. Finally, fibroblast secretion properties were estimated by quantification of the IL-6 and collagen levels using ELISA and SIRCOL collagen assays, respectively. We found that S1P activated SUR2/Kir6.1 channel and that this effect was sensitive to specific inhibition of the S1P receptor of type 3 (S1P3R). In contrast, S1P1R receptor inhibition had no effect. Moreover, the S1P-induced current increased with cell culture duration whereas S1P3R expression level remained constant. The activation of SUR2/Kir6.1 channel by S1P via S1P3R stimulated cell proliferation and decreased IL-6 and collagen secretions. S1P also stimulated fibroblast migration via S1P3R but independently from SUR2/Kir6.1 channel activation. This study demonstrates that S1P, via S1P3R, affects cardiac ventricular fibroblasts function independently or through activation of SUR2/Kir6.1 channel. The latter effect occurs after fibroblasts differentiate into myofibroblasts, opening a new potential therapeutic strategy to modulate fibrosis after cardiac physiopathological injury.  相似文献   

5.
Connective tissue growth factor (CTGF, CCN2) is overexpressed in lung fibroblasts isolated from patients with interstitial lung disease (ILD) and systemic sclerosis (SSc, scleroderma) and is considered to be a molecular marker of fibrosis. To understand the significance of elevated CTGF, we investigated the changes in lung fibroblast proteome in response to CTGF overexpression. Using 2-dimensional gel electrophoresis followed by in-gel proteolytic digestion and mass spectrometric analysis, we identified 13 proteins affected by CTGF. Several of the CTGF-induced proteins, such as pro-alpha (I) collagen and cytoskeletal proteins vinculin, moesin, and ezrin, are known to be elevated in pulmonary fibrosis, whereas 9 of 13 proteins have not been studied in pulmonary fibrosis and are, therefore, novel CTGF-responsive molecules that may have important roles in ILD. Our study demonstrates that 1 of the novel CTGF-induced proteins, IQ motif containing GTPase activating protein (IQGAP) 1, is elevated in lung fibroblasts isolated from scleroderma patients with ILD. IQGAP1 is a scaffold protein that plays a pivotal role in regulating migration of endothelial and epithelial cells. Scleroderma lung fibroblasts and normal lung fibroblasts treated with CTGF demonstrated increased rate of migration in a wound healing assay. Depletion of IQGAP1 expression by small interfering RNA inhibited CTGF-induced migration and MAPK ERK1/2 phosphorylation in lung fibroblasts. MAPK inhibitor U0126 decreased CTGF-induced cell migration and did not interfere with CTGF-induced IQGAP1 expression, suggesting that MAPK pathway is downstream of IQGAP1. These findings further implicate the importance of CTGF in lung tissue repair and fibrosis and propose that CTGF-induced migration of lung fibroblasts to the damaged tissue is mediated via IQGAP1 and MAPK signaling pathways.  相似文献   

6.
Excessive production of reactive oxygen species (ROS) and P2X7R activation induced by high glucose increases NLRP3 inflammasome activation, which contributes to the pathogenesis of diabetic cardiomyopathy. Although H3 relaxin has been shown to inhibit cardiac fibrosis induced by isoproterenol, the mechanism has not been well studied. Here, we demonstrated that high glucose (HG) induced the collagen synthesis by activation of the NLRP3 inflammasome, leading to caspase‐1 activation, interleukin‐1β (IL‐1β) and IL‐18 secretion in neonatal rat cardiac fibroblasts. Moreover, we used a high‐glucose model with neonatal rat cardiac fibroblasts and showed that the activation of ROS and P2X7R was augmented and that ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation was critical for the collagen synthesis. Inhibition of ROS and P2X7R decreased NLRP3 inflammasome‐mediated collagen synthesis, similar to the effects of H3 relaxin. Furthermore, H3 relaxin reduced the collagen synthesis via ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation in response to HG. These results provide a mechanism by which H3 relaxin alleviates NLRP3 inflammasome‐mediated collagen synthesis through the inhibition of ROS and P2X7R under HG conditions and suggest that H3 relaxin represents a potential drug for alleviating cardiac fibrosis in diabetic cardiomyopathy.  相似文献   

7.
实验选用清洁级F344/NSIc大鼠,腹腔内注射甲状腺素(10μg/100g体重),观察甲状腺素对肌球蛋白诱导的实验性自体免疫心肌炎的作用,并用免疫荧光技术结合流式细胞仪分析甲状腺素对免疫反应的影响。结果显示,甲状腺素对肌球蛋白免疫所致的心肌坏死,炎性细胞浸润和纤维化没有明显的改善作用;甲状腺素可诱导外周血B淋巴细胞比例升高。但对辅助T细胞和抑制T细胞比例。辅助T细胞/抑制T细胞比率没有影响。  相似文献   

8.
Myocarditis is a critical inflammatory disorder which causes life-threatening conditions. No specific or effective treatment has been established. DPP-4 inhibitors have salutary effects not only on type 2 diabetes but also on certain cardiovascular diseases. However, the role of a DPP-4 inhibitor on myocarditis has not been investigated. To clarify the effects of a DPP-4 inhibitor on myocarditis, we used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. EAM mice were assigned to the following groups: EAM mice group treated with a DPP-4 inhibitor (linagliptin) (n = 19) and those untreated (n = 22). Pathological analysis revealed that the myocardial fibrosis area ratio in the treated group was significantly lower than in the untreated group. RT-PCR analysis demonstrated that the levels of mRNA expression of IL-2, TNF-α, IL-1β and IL-6 were significantly lower in the treated group than in the untreated group. Lymphocyte proliferation assay showed that treatment with the DPP-4 inhibitor had no effect on antigen-induced spleen cell proliferation. Administration of the DPP-4 inhibitor remarkably suppressed cardiac fibrosis and reduced inflammatory cytokine gene expression in EAM mice. Thus, the agents present in DPP-4 inhibitors may be useful to treat and/or prevent clinical myocarditis.  相似文献   

9.
Studies have demonstrated that angiotensin II has been involved in immune and inflammatory responses which might contribute to the pathogenesis of immune-mediated diseases. Recent evidence suggests that oxidative stress may play a role in myocarditis. Here, we investigated whether olmesartan, an AT(1)R antagonist protects against experimental autoimmune myocarditis (EAM) by suppression of oxidative stress, endoplasmic reticulum (ER) stress and inflammatory cytokines. EAM was induced in Lewis rats by immunization with porcine cardiac myosin, were divided into two groups and treated with either olmesartan (10 mg/kg/day) or vehicle for a period of 21 days. Myocardial functional parameters measured by hemodynamic and echocardiographic analyses were significantly improved by the treatment with olmesartan compared with those of vehicle-treated rats. Treatment with olmesartan attenuated the myocardial mRNA expressions of proinflammatory cytokines, [Interleukin (IL)-1β, monocyte chemoattractant protein-1, tumor necrosis factor-α and interferon-γ)] and the protein expression of tumor necrosis factor-α compared with that of vehicle-treated rats. Myocardial protein expressions of AT(1)R, NADPH oxidase subunits (p47phox, p67phox, gp91phox) and the expression of markers of oxidative stress (3-nitrotyrosine and 4-hydroxy-2-nonenal), and the cardiac apoptosis were also significantly decreased by the treatment with olmesartan compared with those of vehicle-treated rats. Furthermore, olmesartan treatment down-regulated the myocardial expressions of glucose regulated protein-78, growth arrest and DNA damage-inducible gene, caspase-12, phospho-p38 mitogen-activated protein kinase (MAPK) and phospho-JNK. These findings suggest that olmesartan protects against EAM in rats, at least in part via suppression of oxidative stress, ER stress and inflammatory cytokines.  相似文献   

10.
Diabetic foot ulcers (DFU) are one of the most common diabetes-related cause of hospitalization and often lead to severe infections and poor healing. It has been recently reported that patients with DFU have lower levels of antimicrobial peptides (AMPs) at the lesion area, which contributes with the impairment of wound healing. The aim of this study was to determine whether 1,25-dihydroxyvitamin D3 (1,25 (OH)2 D3) and L-isoleucine induced HBD-2 and LL-37 in primary cultures from DFU. We developed primary cell cultures from skin biopsies from 15 patients with DFU and 15 from healthy donors. Cultures were treated with 1,25 (OH)2D3 or L-isoleucine for 18 h. Keratinocytes phenotype was identified by western blot and flow cytometry. Real time qPCR for DEFB4, CAMP and VDR gene expression was performed as well as an ELISA to measure HBD-2 and LL-37 in supernatant. Antimicrobial activity, in vitro, wound healing and proliferation assays were performed with conditioned supernatant. The results show that primary culture from DFU treated with 1,25(OH)2D3, increased DEFB4 and CAMP gene expression and increased the production of HBD-2 and LL-37 in the culture supernatant. These supernatants had antimicrobial activity over E. coli and induced remarkable keratinocyte migration. In conclusion the 1,25(OH)2D3 restored the production of AMPs in primary cell from DFU which were capable to improve the in vitro wound healing assays, suggesting their potential therapeutic use on the treatment of DFU.  相似文献   

11.
The insulin-like growth factor 1 receptor (IGF-1R) signaling in cardiomyocytes is implicated in physiological hypertrophy and myocardial aging. Although fibroblasts account for a small amount of the heart, they are activated when the heart is damaged to promote cardiac remodeling. However, the role of IGF-1R signaling in cardiac fibroblasts is still unknown. In this study, we investigated the roles of IGF-1 signaling during agonist-induced cardiac fibrosis and evaluated the molecular mechanisms in cultured cardiac fibroblasts. Using an experimental model of cardiac fibrosis with angiotensin II/phenylephrine (AngII/PE) infusion, we found severe interstitial fibrosis in the AngII/PE infused myofibroblast-specific IGF-1R knockout mice compared to the wild-type mice. In contrast, low-dose IGF-1 infusion markedly attenuated AngII-induced cardiac fibrosis by inhibiting fibroblast proliferation and differentiation. Mechanistically, we demonstrated that IGF-1-attenuated AngII-induced cardiac fibrosis through the Akt pathway and through suppression of rho-associated coiled-coil containing kinases (ROCK)2-mediated α-smooth muscle actin (αSMA) expression. Our study highlights a novel function of the IGF-1/IGF-1R signaling in agonist-induced cardiac fibrosis. We propose that low-dose IGF-1 may be an efficacious therapeutic avenue against cardiac fibrosis.Subject terms: Heart failure, Heart failure  相似文献   

12.
Cardiotrophin-1 (CT-1), a member of the IL-6 family of cytokines, has been shown to be elevated in the serum of patients with ischemic heart disease and valvular heart disease, and induces cardiomyocyte hypertrophy in vitro. We investigated expression of CT-1 in post-MI rat heart and the effect of CT-1 on cultured primary adult rat cardiac fibroblasts. Elevated CT-1 expression was observed in the infarct zone at 24 h and continued through 2, 4 and 8 weeks post-MI, compared to sham-operated animals. CT-1 induced rapid phosphorylation of Jak1, Jak2, STAT1, STAT3, p42/44 MAPK and Akt in cultured adult cardiac fibroblasts. CT-1 induced cardiac fibroblast protein synthesis and proliferation. Protein and DNA synthesis were dependent on activation of Jak/STAT, MEK1/2, PI3K and Src pathways as evidenced by decreased 3H-leucine and 3H-thymidine incorporation after pretreatment with AG490, PD98059, LY294002 and genistein respectively. Furthermore, CT-1 treatment increased procollagen-1-carboxypropeptide (P1CP) synthesis, a marker of mature collagen synthesis. CT-1 induced cell migration of rat cardiac fibroblasts. Our results suggest that CT-1, as expressed in post-MI heart, may play an important role in infarct scar formation and ongoing remodeling of the scar. CT-1 was able to initiate each of the processes considered important in the formation of infarct scar including cardiac fibroblast migration as well as fibroblast proliferation and collagen synthesis. Further work is required to determine factors that induce CT-1 expression and interplay with other mediators of cardiac infarct wound healing in the setting of acute cardiac ischemia and chronic post-MI heart failure.  相似文献   

13.
14.
We have previously reported that Chlamydia trachomatis plasmid-encoded Pgp3 is able to neutralize anti-chlamydial activity of human cathelicidin peptide LL-37 by binding to and forming stable complex with LL-37. Besides its microbicidal activity, LL-37 also modulates immune response, including inducing cytokine/chemokine production in fibroblast/epithelial cells and recruitment of inflammatory cells. We now report that LL-37 was significantly induced in the genital tracts of women diagnosed positive for C. trachomatis. Both the LL-37-stimulated IL-6/8 production in human endometrial epithelial cells and the LL-37-induced neutrophil chemotaxis were blocked by Pgp3. Interestingly, although Pgp3 itself alone could not induce cytokines in epithelial cell cells, it did so in neutrophils. Importantly, the Pgp3 proinflammatory activity in neutrophils was significantly enhanced by forming complex with LL-37 although LL-37 alone failed to induce cytokine production in neutrophils. Thus, we have demonstrated that Pgp3 can modulate the proinflammatory activities of LL-37 on epithelial cells by forming stable complex with LL-37 but the Pgp3's own proinflammatory activity on myeloid cells is enhanced by forming the same complex. We hypothesize that Chlamydia may use Pgp3 to both block detrimental inflammation for improving its own fitness in the genital tract epithelial tissue and activate myeloid cell-mediated inflammation for potentially promoting spreading between the hosts, the latter of which may inevitably contribute to the development of inflammatory sequelae such as tubal fibrosis.  相似文献   

15.
The production of antimicrobial peptides and proteins is essential for defense against infection. Many of the known human antimicrobial peptides are multifunctional, with stimulatory activities such as chemotaxis while simultaneously acting as natural antibiotics. In humans, eccrine appendages express DCD and CAMP, genes encoding proteins processed into the antimicrobial peptides dermcidin and LL-37. In this study we show that after secretion onto the skin surface, the CAMP gene product is processed by a serine protease-dependent mechanism into multiple novel antimicrobial peptides distinct from the cathelicidin LL-37. These peptides show enhanced antimicrobial action, acquiring the ability to kill skin pathogens such as Staphylococcus aureus and Candida albicans. Furthermore, although LL-37 may influence the host inflammatory response by stimulating IL-8 release from keratinocytes, this activity is lost in subsequently processed peptides. Thus, a single gene product encoding an important defense molecule alters structure and function in the topical environment to shift the balance of activity toward direct inhibition of microbial colonization.  相似文献   

16.
Fibroblasts are the primary regulator of cardiac extracellular matrix (ECM). In response to disease stimuli cardiac fibroblasts undergo cell state transitions to a myofibroblast phenotype, which underlies the fibrotic response in the heart and other organs. Identifying regulators of fibroblast state transitions would inform which pathways could be therapeutically modulated to tactically control maladaptive extracellular matrix remodeling. Indeed, a deeper understanding of fibroblast cell state and plasticity is necessary for controlling its fate for therapeutic benefit. p38 mitogen activated protein kinase (MAPK), which is part of the noncanonical transforming growth factor β (TGFβ) pathway, is a central regulator of fibroblast to myofibroblast cell state transitions that is activated by chemical and mechanical stress signals. Fibroblast intrinsic signaling, local and global cardiac mechanics, and multicellular interactions individually and synergistically impact these state transitions and hence the ECM, which will be reviewed here in the context of cardiac fibrosis.  相似文献   

17.
The closure of skin wounds is essential for resistance against microbial pathogens, and keratinocyte migration is an important step in skin wound healing. Cathelicidin hCAP18/LL-37 is an innate antimicrobial peptide that is expressed in the skin and acts to eliminate microbial pathogens. Because hCAP18/LL-37 is up-regulated at skin wound sites, we hypothesized that LL-37 induces keratinocyte migration. In this study, we found that 1 microg/ml LL-37 induced the maximum level of keratinocyte migration in the Boyden chamber assay. In addition, LL-37 phosphorylated the epidermal growth factor receptor (EGFR) after 10 min, which suggests that LL-37-induced keratinocyte migration occurs via EGFR transactivation. To test this assumption, we used inhibitors that block the sequential steps of EGFR transactivation, such as OSU8-1, CRM197, anti-EGFR no. 225 Ab, and AG1478. All of these inhibitors completely blocked LL-37-induced keratinocyte migration, which indicates that migration occurs via HB-EGF-mediated EGFR transactivation. Furthermore, CRM197, anti-EGFR no. 225, and AG1478 blocked the LL-37-induced phosphorylation of STAT3, and transfection with a dominant-negative mutant of STAT3 abolished LL-37-induced keratinocyte migration, indicating the involvement of the STAT3 pathway downstream of EGFR transactivation. Finally, we tested whether the suppressor of cytokine signaling (SOCS)/cytokine-inducible Src homology 2-containing protein (CIS) family of negative regulators of STAT3 regulates LL-37-induced keratinocyte migration. Transfection with SOCS1/Jak2 binding protein or SOCS3/CIS3 almost completely abolished LL-37-induced keratinocyte migration. In conclusion, LL-37 induces keratinocyte migration via heparin-binding-EGF-mediated transactivation of EGFR, and SOCS1/Jak 2 binding and SOCS3/CIS3 negatively regulate this migration. The results of this study suggest that LL-37 closes skin wounds by the induction of keratinocyte migration.  相似文献   

18.
Peptide antibiotics possess the potent antimicrobial activities against invading microorganisms and contribute to the innate host defense. An antibacterial cathelicidin, human cationic antibacterial protein of 18 kDa/LL-37, not only exhibits potent bactericidal activities against Gram-negative and Gram-positive bacteria, but also functions as a chemoattractant for immune cells, including neutrophils. During bacterial infections, the life span of neutrophils is regulated by various pathogen- and host-derived substances. In this study, to further evaluate the role of LL-37 in innate immunity, we investigated the action of LL-37 on neutrophil apoptosis. Neutrophil apoptosis was assessed using human blood neutrophils based on the morphological changes. Of note, LL-37 dose dependently (0.01-5 microg/ml) suppressed neutrophil apoptosis, accompanied with the phosphorylation of ERK-1/2, expression of Bcl-x(L) (an antiapoptotic protein), and inhibition of caspase 3 activity. Interestingly, LL-37-induced suppression of neutrophil apoptosis was attenuated by the antagonists for formyl-peptide receptor-like 1 (FPRL1) and P2X7 nucleotide receptor. Of importance, the agonists for FPRL1 and P2X7 apparently suppressed neutrophil apoptosis. Collectively, these observations indicate that LL-37 cannot only kill bacteria, but also modulate (suppress) neutrophil apoptosis via the activation of FPRL1 and P2X7 in bacterial infections. Suppression of neutrophil apoptosis results in the prolongation of their life span, and may be advantageous for host defense against bacterial invasion.  相似文献   

19.
The pro-inflammatory cytokines interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) are elevated following acute myocardial infarction (MI) and have been implicated in the pathophysiology of cardiac disease progression. The cardiac fibroblast represents an important effector cell target for cytokine actions. In particular, cytokine-directed cardiac fibroblast migration is likely to impact both myocardial repair following acute MI and pathological myocardial remodeling in the progression to heart failure. In the present study, we examined the migratory response of neonatal rat cardiac fibroblasts to pro-inflammatory cytokines using modified Boyden chamber assays. On the basis of the knowledge of migration in other cell types, we hypothesized that members of the mitogen-activated protein kinase (MAPK) family may regulate this process. This possibility was addressed with the use of immunoblot detection of active phosphorylated MAPK species and pharmacological inhibitors for individual members of the MAPK cascades. IL-1beta stimulated robust and concentration-dependent increases in migration (maximum, 20-fold over control cells). TNF-alpha had lesser effect (fourfold increase over control). IL-6 did not induce migration. Activation of all three MAPK subfamilies (extracellular signal-regulated kinases, c-Jun NH(2)-terminal kinases, and p38) was shown to occur in response to cytokine stimulation. Fibroblast migration was attenuated by pharmacological inhibition of each MAPK subfamily. Understanding the regulation of cardiac fibroblast migration may provide insights in the search for therapies aimed at enhancing the functional nature of the remodeling process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号