首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deamination of glutamine is a crucial step in the production of enzymatically hydrolyzed plant proteins to reach high glutamic acid yields. The required glutaminase activity usually is provided by addition of technical enzymes or by in situ generation from fungi, yeast or bacteria (i.e. Aspergillus oryzae in soy sauce production). We screened food-grade Lactobacilli for potential glutaminase activity and selected the enzyme found in Lactobacillus rhamnosus for further characterization. Glutaminase from L. rhamnosus was induced by growing the microorganism on hydrolyzed wheat gluten, a glutamine-rich protein source. Glutamine deaminating activity (glutaminase, EC 3.5.1.2) was found to be membrane-bound and lost its activity gradually upon solubilization. Functional studies of the glutaminase showed an optimal working pH of 7.0 and maximum activity at 50 °C. High salt-tolerance of the enzyme was observed, i.e. the presence of 5% (w/v) salt increased glutaminase activity almost two-fold and 90% of the initial activity still remained at 15% (w/v) salt. The glutaminase activity showed typical Michaelis–Menten behavior with an affinity constant Km of 4.8±0.4 mM for glutamine and a Vmax of 101±2 U/l.  相似文献   

2.
Glutaminase is widely distributed in microorganisms including bacteria, yeast and fungi. The enzyme mainly catalyzes the hydrolysis of γ-amido bond of -glutamine. In addition, some enzymes also catalyze γ-glutamyl transfer reaction. A highly savory amino acid, -glutamic acid and a taste-enhancing amino acid of infused green tea, theanine can be synthesized by employing hydrolytic or transfer reaction catalyzed by glutaminase. Therefore, glutaminase is one of the most important flavor-enhancing enzymes in food industries. In this review, subsequent to a discussion on the definition of glutaminase, the enzymatic properties, applications of glutaminase in the food industry, and occurrence and distribution of the enzyme are described. We then illustrate the gene cloning, primary structure, and 3D-structure of glutaminase. Finally, to facilitate the future applications of glutaminase in food fermentations, the mechanisms of action of salt-tolerant glutaminase are briefly discussed.  相似文献   

3.
《遗传学报》2020,47(7):389-395
Many cancer types reprogram their metabolism to become addicted to glutamine. One of the critical enzymes in the utilization of glutamine in these cells is glutaminase. CB-839 (telaglenastat) is a drug that targets glutaminase that is currently being evaluated in many clinical trials for efficacy in various cancer types that are known to be driven by glutamine metabolism. Despite its use, there are limited assays available for testing the pharmacodynamic on-target effects of CB-839 on the limited, small-volume patient samples that are obtained in early-phase clinical trials. Thus, we developed an assay based on the cellular thermal shift assay technique using AlphaLISA technology to show that CB-839 specifically engages glutaminase in colon cancer cell lines in vitro and in minute quantities of mouse xenograft tumors. Notably, we show that this assay detects CB-839 binding to glutaminase in platelets of patients collected while receiving CB-839 on a clinical trial. This assay may be used to study the pharmacodynamic profile of CB-839 in very small tissue samples obtained from patients on a clinical trial and may be useful in future studies designed to screen other inhibitors of glutaminase.  相似文献   

4.
High intracellular glutamine levels have been implicated in promoting net protein synthesis and accretion in mammalian skeletal muscle. Little is known regarding glutamine metabolism in uricotelic species but chicken breast muscle exhibits high rates of protein accretion and would be predicted to maintain high glutamine levels. However, chicken breast muscle expresses high glutaminase activity and here we report that chicken breast muscle also expresses low glutamine synthetase activity (0.07±0.01 U/g) when compared to leg muscle (0.50±0.04 U/g). Free glutamine levels were 1.38±0.09 and 9.69±0.12 nmol/mg wet weight in breast and leg muscles of fed chickens, respectively. Glutamine levels were also lower in dove breast muscle (4.82±0.35 nmol/mg wet weight) when compared to leg muscle (16.2±1.0 nmol/mg wet weight) and much lower (1.80±0.46 nmol/mg wet weight) in lizard leg muscle. In fed chickens, rates of fractional protein synthesis were higher in leg than in breast muscle, and starvation (48 h) resulted in a decrease in both glutamine content and rate of protein synthesis in leg muscle. Thus, although tissue-specific glutamine metabolism in uricotelic species differs markedly from that in ureotelic animals, differences in rates of skeletal muscle protein synthesis are associated with corresponding differences in intramuscular glutamine content.  相似文献   

5.
 Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28–30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76±0.78 mg·g−1 wet tissue in normal unexposed rats; 15.82±2.30 mg·g−1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure. Glutamine synthetase activity in muscle was significantly higher in the 14-day exposed group (4.32 μmol γ-glutamyl hydroxamate formed·g protein−1·min−1) in comparison to normal (1.53 μmol γ-glutamyl hydroxamate formed·g protein−1·min−1); this parameter had decreased by 40% following 21 days of exposure. These results suggest that since no dramatic changes in the levels of protein were observed in the muscle and liver, there is an alteration in glutaminase and glutamine synthetase activity in order to maintain nitrogen metabolism in the initial phase of hypoxic exposure. Received: 30 March 1998 / Revised: 18 November 1998 / Accepted: 25 November 1998  相似文献   

6.
Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest.  相似文献   

7.
Neuronal loss has often been described at post-mortem in the brain neocortex of patients suffering from AIDS. Neuroinvasive strains of HIV infect macrophages, microglial cells and multinucleated giant cells, but not neurones. Processing of the virus by cells of the myelomonocytic lineage yields viral products that, in conjunction with potentially neurotoxic molecules generated by the host, might initiate a complex network of events which lead neurones to death. In particular, the HIV-1 coat glycoprotein, gp120, has been proposed as a likely aetiologic agent of the described neuronal loss because it causes death of neurones in culture. More recently, it has been shown that brain neocortical cell death is caused in rat by intracerebroventricular injection of a recombinant gp120 coat protein, and that this occurs via apoptosis. The latter observation broadens our knowledge in the pathophysiology of the reported neuronal cell loss and opens a new lane of experimental research for the development of novel therapeutic strategies to limit damage to the brain of patients suffering from HIV-associated dementia.  相似文献   

8.
Dimeric ligands can be potent inhibitors of protein-protein or enzyme-substrate interactions. They have increased affinity and specificity toward their targets due to their ability to bind two binding sites simultaneously and are therefore attractive in drug design. However, few studies have addressed the kinetic mechanism of interaction of such bivalent ligands. We have investigated the binding interaction of a recently identified potent plasma-stable dimeric pentapeptide and PDZ1–2 of postsynaptic density protein-95 (PSD-95) using protein engineering in combination with fluorescence polarization, isothermal titration calorimetry, and stopped-flow fluorimetry. We demonstrate that binding occurs via a two-step process, where an initial binding to either one of the two PDZ domains is followed by an intramolecular step, which produces the bidentate complex. We have determined all rate constants involved in the binding reaction and found evidence for a conformational transition of the complex. Our data demonstrate the importance of a slow dissociation for a successful dimeric ligand but also highlight the possibility of optimizing the intramolecular association rate. The results may therefore aid the design of dimeric inhibitors in general.  相似文献   

9.
Trypanosoma cruzi phosphodiesterase C (TcrPDEC) is a potential new drug target for the treatment of Chagas disease but has not been well studied. This study reports the enzymatic properties of various kinetoplastid PDECs and the crystal structures of the unliganded TcrPDEC1 catalytic domain and its complex with an inhibitor. Mutations of PDEC during the course of evolution led to inactivation of PDEC in Trypanosoma brucei/Trypanosoma evansi/Trypanosoma congolense, whereas the enzyme is active in all other kinetoplastids. The TcrPDEC1 catalytic domain hydrolyzes both cAMP and cGMP with a K(m) of 23.8 μm and a k(cat) of 31 s(-1) for cAMP and a K(m) of 99.1 μm and a k(cat) of 17 s(-1) for cGMP, thus confirming its dual specificity. The crystal structures show that the N-terminal fragment wraps around the TcrPDEC catalytic domain and may thus regulate its enzymatic activity via direct interactions with the active site residues. A PDE5 selective inhibitor that has an IC(50) of 230 nm for TcrPDEC1 binds to TcrPDEC1 in an orientation opposite to that of sildenafil. This observation, together with the screen of the inhibitory potency of human PDE inhibitors against TcrPDEC, implies that the scaffold of some human PDE inhibitors might be used as the starting model for design of parasite PDE inhibitors. The structural study also identified a unique parasite pocket that neighbors the active site and may thus be valuable for the design of parasite-specific inhibitors.  相似文献   

10.
11.
A gene (ansB) encoding a class II glutaminase/asparaginase has been cloned from Pseudomonas fluorescens and characterized by DNA sequencing, promoter analysis and heterologous expression in Escherichia coli. We show that ansB is monocistronic and depends on the alternate sigma factor sigma 54 for expression. A second open reading frame located downstream of ansB is highly homologous to a number of bacterial genes that encode secreted endonucleases of unknown function.  相似文献   

12.
Abstract

We describe the characterisation of a series of 4,4′-biphenylsulfonamides as selective inhibitors of matrix metalloproteases MMP-2 and -13, two enzymes involved in cell invasion and angiogenesis. Double-inhibitor studies in the presence of acetohydroxamic acid show that these molecules do not bind the catalytic zinc. Moreover, two of the characterised inhibitors (11 and 19) act as non-competitive inhibitors, whereas the para-methyl ester derivative 13 behaves as a competitive inhibitor. This finding suggests that this class of molecules binds to a catalytic subsite, possibly the S1′-pocket. Moreover, since these compounds also act as inhibitors of carbonic anhydrases (CAs), another family of enzymes involved in cell invasion, they could be potentially useful as CA/MMP dual target inhibitors with increased efficacy as anticancer agents.  相似文献   

13.
为探讨高温对不同类型早籼稻开花后剑叶中氮代谢关键酶活性及籽粒蛋白质含量的影响,利用人工气候室在籽粒灌浆成熟期进行高温(日均温31.5 ℃)和适温(日均温23.5 ℃)处理,对2个早籼稻品种(湘早籼24和株两优611)灌浆成熟期籽粒中蛋白质含量及剑叶中GS和GOGAT活性的动态变化进行了分析.结果表明:供试2个品种在高温...  相似文献   

14.
Phosphate activated glutaminase comprises two kinetically distinguishable enzyme forms in cultures of cerebellar granule cells, of cortical neurons and of astrocytes. Specific activity of glutaminase is higher in cultured neurons compared with astrocytes. Glutaminase is activated by phosphate in all cell types investigated, however, glutaminase in astrocytes reguires a much higher concentration of phosphate for half maximal activation. One of the products, glutamate, inhibits the enzyme strongly, whereas the other product ammonia has only a slight inhibitory action on the enzyme.  相似文献   

15.
The cytosolic form of phosphoenolpyruvate carboxykinase (PCK1) plays a regulatory role in gluconeogenesis and glyceroneogenesis. The role of the mitochondrial isoform (PCK2) remains unclear. We report the partial purification and kinetic and functional characterization of human PCK2. Kinetic properties of the enzyme are very similar to those of the cytosolic enzyme. PCK2 has an absolute requirement for Mn2+ ions for activity; Mg2+ ions reduce the Km for Mn2+ by about 60 fold. Its specificity constant is 100 fold larger for oxaloacetate than for phosphoenolpyruvate suggesting that oxaloacetate phosphorylation is the favored reaction in vivo. The enzyme possesses weak pyruvate kinase-like activity (kcat=2.7 s?1). When overexpressed in HEK293T cells it enhances strongly glucose and lipid production showing that it can play, as the cytosolic isoenzyme, an active role in glyceroneogenesis and gluconeogenesis.  相似文献   

16.
Alkaline phosphatase (AP) and ecto-5′-nucleotidase (e5′NT) belong to same family that hydrolyze the extracellular nucleotides and ensure the bioavailability of nucleotides and nucleosides at purinergic receptors. During pathophysiological conditions, the over expression of AP and e5′NT lead to an increased production of adenosine that enhance tumor proliferation, invasiveness, neoangiogenesis and disrupts the body antitumor response. As both enzymes are abundantly expressed in above mentioned conditions, therefore it is of great interest to synthesize and develop potent inhibitors of these enzymes that augment the antitumor therapy. Herein we reported the synthesis and biological activity of a new series of chalcone-sulfonamide hybrids (4a-j). These derivatives were then evaluated for their inhibitory potential against two members of ecto-nucleotidase family, e5′NT (human and rat) and APs isozyme (intestinal and tissue nonspecific). Only six derivatives were found to inhibit both human and rat e5′NT enzymes. Compounds 4e and 4d showed maximum inhibition of human and rat e5′NT with an IC50 ± SEM = 0.26 ± 0.01 and 0.33 ± 0.004 μM, respectively. Moreover, on APs, these derivatives were identified as the selective inhibitors of calf intestinal AP (c-IAP). The derivative 4a exhibited maximum inhibition of c-IAP with an IC50 ± SEM = 0.12 ± 0.02 μM. In conclusion, these chalcone-sulfonamide hybrids exhibited dual inhibition of both family of isozymes but was more selective towards c-IAP enzyme.  相似文献   

17.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are constitutively overexpressed in many types of cancer cells and exert important immunosuppressive functions. In this article, a series of 4,6-substituted-1H-indazole derivatives were synthesized and evaluated the inhibitory activities against IDO1 and TDO, as well as their structure-activity relationships (SARs). Among these, compound 35 displayed the most IDO1 inhibitory potency with an IC50 value of 0.74?μM in an enzymatic assay and 1.37?μM in HeLa cells. Quantitative analysis of the Western blot results indicated that 35 significantly decreased the INFγ-induced IDO1 expression in a concentration-dependent manner. In addition, 35 showed promising TDO inhibition with an IC50 value of 2.93?μM in the enzymatic assay and 7.54?μM in A172 cells. Moreover, compound 35 exhibited in vivo antitumor activity in the CT26 xenograft model. These findings suggest that 1H-indazole derivative 35 is a potent IDO1/TDO dual inhibitor, and has the potential to be developed for IDO1/TDO-related cancer treatment.  相似文献   

18.
Interaction kinetic and thermodynamic analyses provide information beyond that obtained in general inhibition studies, and may contribute to the design of improved inhibitors and increased understanding of molecular interactions. Thus, a biosensor-based method was used to characterize the interactions between HIV-1 protease and seven inhibitors, revealing distinguishing kinetic and thermodynamic characteristics for the inhibitors. Lopinavir had fast association and the highest affinity of the tested compounds, and the interaction kinetics were less temperature-dependent as compared with the other inhibitors. Amprenavir, indinavir and ritonavir showed non-linear temperature dependencies of the kinetics. The free energy, enthalpy and entropy (DeltaG, DeltaH, DeltaS) were determined, and the energetics of complex association (DeltaG(on), DeltaH(on), DeltaS(on)) and dissociation (DeltaG(off), DeltaH(off), DeltaS(off)) were resolved. In general, the energetics for the studied inhibitors was in the same range, with the negative free energy change (DeltaG < 0) due primarily to increased entropy (DeltaS > 0). Thus, the driving force of the interaction was increased degrees of freedom in the system (entropy) rather than the formation of bonds between the enzyme and inhibitor (enthalpy). Although the DeltaG(on) and DeltaG(off) were in the same range for all inhibitors, the enthalpy and entropy terms contributed differently to association and dissociation, distinguishing these phases energetically. Dissociation was accompanied by positive enthalpy (DeltaH(off) > 0) and negative entropy (DeltaS(off) < 0) changes, whereas association for all inhibitors except lopinavir had positive entropy changes (DeltaS(on) > 0), demonstrating unique energetic characteristics for lopinavir. This study indicates that this type of data will be useful for the characterization of target-ligand interactions and the development of new inhibitors of HIV-1 protease.  相似文献   

19.
The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu232 in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu232 being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu232 of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme.  相似文献   

20.
在发育的新生组织中 ,来自种子胚乳储存蛋白的降解和氨基酸分解代谢产生的氨由谷氨酰胺合成酶 ( Glutamine synthetase,GS)重新同化 ,生成的谷氨酰胺 ( Gln)被转运到正在生长着的部分。GS是高等植物氮素代谢的关键酶 [1] ,这个酶能同化不同来源的氨。 GS有多种同工酶 ,存在于植物的各种组织和器官中。它们是由一小的同源但分离的核基因家族编码的 [2 3 ] ,这些不同的 GS在植物氮素同化中起着非重叠的作用 [4] ,它们的表达受到环境、发育进程以及组织或细胞类型等许多因素的影响。在大多数已研究过的植物叶片中存在两种 GS,即胞液型GS(…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号