首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dehydrozingerone (DHZ) exerts beneficial effects on human health; however, its mechanism of action remains unclear. Here, we found that DHZ suppressed high‐fat diet‐induced weight gain, lipid accumulation and hyperglycaemia in C57BL/6 mice and increased AMP‐activated protein kinase (AMPK) phosphorylation and stimulated glucose uptake in C2C12 skeletal muscle cells. DHZ activated p38 mitogen‐activated protein kinase (MAPK) signalling in an AMPK‐dependent manner. Inhibiting AMPK or p38 MAPK blocked DHZ‐induced glucose uptake. DHZ increased GLUT4 (major transporter for glucose uptake) expression in skeletal muscle. Glucose clearance and insulin‐induced glucose uptake increased in DHZ‐fed animals, suggesting that DHZ increases systemic insulin sensitivity in vivo. Thus, the beneficial health effects of DHZ could possibly be explained by its ability to activate the AMPK pathway in skeletal muscle.  相似文献   

2.
Homocysteine sulfinic acid (HCSA) is a homologue of the amino acid cysteine and a selective metabotropic glutamate receptor (mGluR) agonist. However, the metabolic role of HCSA is poorly understood. In this study, we showed that HCSA and glutamate stimulated glucose uptake in C2C12 mouse myoblast cells and increased AMP-activated protein kinase (AMPK) phosphorylation. RT-PCR and Western blot analysis revealed that C2C12 expresses mGluR5. HCSA transiently increased the intracellular calcium concentration. Although α-methyl-4-carboxyphenylglycine, a metabotropic glutamate receptor antagonist, blocked the action of HCSA in intracellular calcium response and AMPK phosphorylation, 6-cyano-7-nitroquinoxaline-2,3-dione, an AMPA antagonist, did not exhibit such effects. Knockdown of mGluR5 with siRNA blocked HCSA-induced AMPK phosphorylation. Pretreatment of cells with STO-609, a calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, blocked HCSA-induced AMPK phosphorylation, and knockdown of CaMKK blocked HCSA-induced AMPK phosphorylation. In addition, HCSA activated p38 mitogen-activated protein kinase (MAPK). Expression of dominant-negative AMPK suppressed HCSA-mediated phosphorylation of p38 MAPK, and inhibition of AMPK and p38 MAPK blocked HCSA-induced glucose uptake. Phosphorylation of protein kinase C ζ (PKCζ) was also increased by HCSA. Pharmacologic inhibition or knockdown of p38 MAPK blocked HCSA-induced PKCζ phosphorylation, and knockdown of PKCζ suppressed the HCSA-induced increase of cell surface GLUT4. The stimulatory effect of HCSA on cell surface GLUT4 was impaired in FITC-conjugated PKCζ siRNA-transfected cells. Together, the above results suggest that HCSA may have a beneficial role in glucose metabolism in skeletal muscle cells via stimulation of AMPK.  相似文献   

3.
Retinoic acid (RA) is one of the major components of vitamin A. In the present study, we found that retinoic acid activated AMP-activated protein kinase (AMPK). RA induced Rac1-GTP formation and phosphorylation of its downstream target, p21-activated kinase (PAK), whereas the inhibition of AMPK blocked RA-induced Rac1 activation. Moreover, cofilin, an actin polymerization regulator, was activated when incubated with RA. We then showed that inhibition of AMPK by compound C, a selective inhibitor of AMPK, or small interfering RNA of AMPK alpha1 blocked RA-induced cofilin phosphorylation. Additionally, we found that retinoic acid-stimulated glucose uptake in differentiated C2C12 myoblast cells and activated p38 mitogen-activated protein kinase (MAPK). Finally, the inhibition of AMPK and p38 MAPK blocked retinoic acid-induced glucose uptake. In summary, our results suggest that retinoic acid may have cytoskeletal roles in skeletal muscle cells via stimulation of the AMPK-Rac1-PAK-cofillin pathway and may also have beneficial roles in glucose metabolism via stimulation of the AMPK-p38 MAPK pathway.  相似文献   

4.
Cheng Z  Pang T  Gu M  Gao AH  Xie CM  Li JY  Nan FJ  Li J 《Biochimica et biophysica acta》2006,1760(11):1682-1689
Berberine is a plant alkaloid used in traditional Chinese medicine and has been reported to have antihyperglycemic activity in NIDDM patients. However, the molecular basis for this action is yet to be elucidated. Here we investigate the effects and signaling pathways of berberine on L6 rat skeletal muscles. Our study demonstrates that berberine stimulates glucose uptake in a time- and dose-dependent manner. Intriguingly, berberine-stimulated glucose uptake does not vary as insulin concentration increases, and could not be blocked by the PI 3-kinase inhibitor wortmannin. Berberine only weakly stimulates the phosphorylation of Akt/PKB, a key molecule in the insulin signaling pathway, but strongly promotes the phosphorylation of AMPK and p38 MAPK. The effects of berberine are not a result of pro-oxidant action, but a consequence of an increased cellular AMP:ATP ratio. Moreover, berberine-stimulated glucose uptake is inhibited by the AMPK inhibitor Compound C and the p38 MAPK inhibitor SB202190. Inhibition of AMPK reduces p38 MAPK phosphorylation, suggesting that AMPK lies upstream of p38 MAPK. These results suggest that berberine circumvents insulin signaling pathways and stimulates glucose uptake through the AMP-AMPK-p38 MAPK pathway, which may account for the antihyperglycemic effects of this drug.  相似文献   

5.
Dibenzoylmethane (DBM) has been shown to exert a variety of beneficial effects on human health. However, the mechanism of action is poorly understood. In this study, DBM increased phosphorylation of AMP-activated protein kinase (AMPK) and stimulated glucose uptake in a skeletal muscle cell line. Both knockdown of AMPK with siRNA and inhibition with AMPK inhibitor blocked DBM-induced glucose uptake. DBM increased the concentration of intracellular calcium and glucose uptake due to DBM was abolished by STO-609 (a calcium/calmodulin-dependent protein kinase inhibitor). DBM stimulated phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which was blocked by pretreatment with compound C, an AMPK inhibitor. The expression of glucose transporter type 4 (GLUT4) was increased by DBM. The translocation of GLUT4 to the plasma membrane was also increased by DBM in AMPK dependently. In addition, DBM suppressed weight gain and prevented fat accumulation in the liver and abdomen in mice fed a high-fat diet. In pre-adipocyte cells, DBM decreased the activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid synthesis. Expression of the adipogenic gene, fatty acid synthase (FAS), was suppressed by DBM in an AMPK-dependent manner. These results showed that the beneficial metabolic effects of DBM might be due to regulation of glucose uptake via AMPK in skeletal muscle and inhibition of adipogenesis in pre-adipocytes.  相似文献   

6.
We have previously reported that thiazolidinediones (TZDs) are able to restore the tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1, activation of phosphatidyl inositol 3-kinase and glucose uptake in insulin resistant skeletal muscle cells [21]. In this study, we investigated the effects of insulin stimulation and TZDs on the role of mitogen-activated protein kinase (MAPK) in insulin resistant skeletal muscle cells. All the three MAPKs [extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK] were activated by insulin in the sensitive skeletal muscle cells. In contrast, activation of p38 MAPK was impaired in insulin resistant cells, where as ERK and JNK were activated by insulin. Treatment with TZDs resulted in the restoration of p38 MAPK activity in insulin resistant cells. The treatment of cells with p38 MAPK inhibitor, SB203580, blocked the insulin stimulated glucose uptake in sensitive as well as resistant cells and it also prevented the activation of p38 by insulin. These results suggest the potential involvement of p38 as well as the mechanistic role of TZDs in insulin resistance.  相似文献   

7.
We have previously reported that thiazolidinediones (TZDs) are able to restore the tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1, activation of phosphatidyl inositol 3-kinase and glucose uptake in insulin resistant skeletal muscle cells. In this study, we investigated the effects of insulin stimulation and TZDs on the role of mitogen-activated protein kinase (MAPK) in insulin resistant skeletal muscle cells. All the three MAPKs [extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK] were activated by insulin in the sensitive skeletal muscle cells. In contrast, activation of p38 MAPK was impaired in insulin resistant cells, where as ERK and JNK were activated by insulin. Treatment with TZDs resulted in the restoration of p38 MAPK activity in insulin resistant cells. The treatment of cells with p38 MAPK inhibitor, SB203580, blocked the insulin stimulated glucose uptake in sensitive as well as resistant cells and it also prevented the activation of p38 by insulin. These results suggest the potential involvement of p38 as well as the mechanistic role of TZDs in insulin resistance.  相似文献   

8.
Adenosine monophosphate-activated protein kinase (AMPK) is a well-known serine/threonine kinase that has been implicated in modulation of glucose and fatty acid metabolism. Recent reports have also implicated AMPK in modulation of mucin secretion. In this study, the effects and signaling pathways of AMPK on MUC5B expression were investigated in human NCI-H292 airway epithelial cells. Metformin, as an activator of AMPK, induced MUC5B expression in a dose-dependent manner. Compound C, as an inhibitor of AMPK, inhibited metformin-induced MUC5B expression in a dose-dependent manner. Metformin significantly activated phosphorylation of AMPK; compound C inhibited metformin-activated phosphorylation of AMPK. Without treatment with metformin, there was no difference in MUC5B mRNA expression between Ad-dnAMPK transfected and wild-type adenovirus transfected NCI-H292 cells. However, after treatment with metformin, MUC5B mRNA expression was increased in wild-type adenovirus transfected NCI-H292 cells; MUC5B mRNA expression was significantly decreased in Ad-dnAMPK transfected NCI-H292 cells. Metformin activated phosphorylation of p38 mitogen-activated protein kinase (MAPK); compound C inhibited metformin-activated phosphorylation of p38 MAPK. SB203580, as an inhibitor of p38 MAPK, significantly inhibited metformin-induced MUC5B mRNA expression, while U0126, as an inhibitor of ERK1/2 MAPK, had no effect. In addition, knockdown of p38 MAPK by p38 MAPK siRNA significantly blocked metformin-induced MUC5B mRNA expression. In conclusion, results of this study show that AMPK induces MUC5B expression through the p38 MAPK signaling pathway in airway epithelial cells.  相似文献   

9.
It has been reported that treatment of cultured human skeletal muscle myotubes with the peroxisome proliferator-activated receptor-delta (PPARdelta) activator GW-501516 directly stimulates glucose transport and enhances insulin action. Cultured myotubes are minimally responsive to insulin stimulation of glucose transport and are not a good model for studying skeletal muscle glucose transport. The purpose of this study was to evaluate the effect of GW-501516 on glucose transport to determine whether the findings on cultured myotubes have relevance to skeletal muscle. Rat epitrochlearis and soleus muscles were treated for 6 h with 10, 100, or 500 nM GW-501516, followed by measurement of 2-deoxyglucose uptake. GW-501516 had no effect on glucose uptake. There was no effect on insulin sensitivity or responsiveness. Also, in contrast to findings on myotubes, treatment of muscles with GW-501516 did not result in increased phosphorylation or increased expression of AMP-activated protein kinase (AMPK) or p38 mitogen-activated protein kinase (MAPK). Treatment of epitrochlearis muscles with GW-501516 for 24 h induced a threefold increase in uncoupling protein-3 mRNA, providing evidence that the GW-501516 compound that we used gets into and is active in skeletal muscle. In conclusion, our results show that, in contrast to myotubes in culture, skeletal muscle does not respond to GW-501516 with 1) an increase in AMPK or p38 MAPK phosphorylation or expression or 2) direct stimulation of glucose transport or enhanced insulin action.  相似文献   

10.
Numerous studies have recently focused on the anticarcinogenic, antimutagenic, or chemopreventive activities of the main pungent component of red pepper, capsaicin (N-vanillyl-8-methyl-1-nonenamide). We have previously shown that, in the androgen-independent prostate cancer PC-3 cells, capsaicin inhibits cell growth and induces apoptosis through reactive oxygen species (ROS) generation [Apoptosis 11 (2006) 89–99]. In the present study, we investigated the signaling pathways involved in the antiproliferative effect of capsaicin. Here, we report that capsaicin apoptotic effect was mediated by ceramide generation which occurred by sphingomyelin hydrolysis. Using siRNA, we demonstrated that N-SMase expression is required for the effect of capsaicin on prostate cell viability. We then investigated the role of MAP kinase cascades, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, in the antiproliferative effect of capsaicin, and we confirmed that capsaicin could activate ERK and JNK but not p38 MAPK. Pharmacological inhibition of JNK kinase, as well as inhibition of ROS by the reducing agent N-acetylcysteine, prevented ceramide accumulation and capsaicin-induced cell death. However, inhibition of ceramide accumulation by the SMase inhibitor D609 did not modify JNK activation. These data reveal JNK as an upstream regulator of ceramide production. Capsaicin-promoted activation of ERK was prevented with all the inhibitors tested. We conclude that capsaicin induces apoptosis in PC-3 cells via ROS generation, JNK activation, ceramide accumulation, and second, ERK activation.  相似文献   

11.
As experimental evidence suggests that leptin may have direct effects on peripheral tissues, we investigated some of the transductional molecules induced by leptin in C2C12 cells. In immunoprecipitation experiments using anti-p85 antibodies (a regulatory subunit of phosphatidylinositol-3-kinase; PI3K), we observed a significant increase in PI3K activity. Immunoblot analyses showed that Akt, GSK3, ERK1, ERK2, and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation significantly increased after leptin treatment. Protein kinase C (PKC)-zeta was also activated by leptin, as documented by an immunocomplex kinase assay and immunoblotting experiments. The treatment of C2C12 cells with Wortmannin before leptin administration inhibited induction of the phosphorylation of ERKs (extracellular signal-regulated kinases) but not that of p38 MAPK, whereas pre-treatment with a PKC-zeta inhibitor partially decreased ERK phosphorylation. Taken together, our in vitro results further support the hypothesis that leptin acts acutely on skeletal muscle tissue through some of the components of insulin signalling, including PKC-zeta.  相似文献   

12.
In aerobic conditions, the heart preferentially oxidizes fatty acids. However, during metabolic stress, glucose becomes the major energy source, and enhanced glucose uptake has a protective effect on heart function and cardiomyocyte survival. Thus abnormal regulation of glucose uptake may contribute to the development of cardiac disease in diabetics. Ketone bodies are often elevated in poorly controlled diabetics and are associated with increased cellular oxidative stress. Thus we sought to determine the effect of the ketone body beta-hydroxybutyrate (OHB) on cardiac glucose uptake during metabolic stress. We used 2,4-dinitrophenol (DNP), an uncoupler of the mitochondrial oxidative chain, to mimic hypoxia in cardiomyocytes. Our data demonstrated that chronic exposure to OHB provoked a concentration-dependent decrease of DNP action, resulting in 56% inhibition of DNP-mediated glucose uptake at 5 mM OHB. This was paralleled by a diminution of DNP-mediated AMP-activated protein kinase (AMPK) and p38 MAPK phosphorylation. Chronic exposure to OHB also increased reactive oxygen species (ROS) production by 1.9-fold compared with control cells. To further understand the role of ROS in OHB action, cardiomyocytes were incubated with H(2)O(2). Our results demonstrated that this treatment diminished DNP-induced glucose uptake without altering activation of the AMPK/p38 MAPK signaling pathway. Incubation with the antioxidant N-acetylcysteine partially restored DNP-mediated glucose but not AMPK/p38 MAPK activation. In conclusion, these results suggest that ketone bodies, through inhibition of the AMPK/p38 MAPK signaling pathway and ROS overproduction, regulate DNP action and thus cardiac glucose uptake. Altered glucose uptake in hyperketonemic states during metabolic stress may contribute to diabetic cardiomyopathy.  相似文献   

13.
Insulin resistance accompanies atrophy in slow-twitch skeletal muscles such as the soleus. Using a rat hindlimb suspension model of atrophy, we have previously shown that an upregulation of JNK occurs in atrophic muscles and correlates with the degradation of insulin receptor substrate-1 (IRS-1) (Hilder TL, Tou JC, Grindeland RF, Wade CE, and Graves LM. FEBS Lett 553: 63-67, 2003), suggesting that insulin-dependent glucose uptake may be impaired. However, during atrophy, these muscles preferentially use carbohydrates as a fuel source. To investigate this apparent dichotomy, we examined insulin-independent pathways involved in glucose uptake following a 2- to 13-wk hindlimb suspension regimen. JNK activity was elevated throughout the time course, and IRS-1 was degraded as early as 2 wk. AMP-activated protein kinase (AMPK) activity was significantly higher in atrophic soleus muscle, as were the activities of the ERK1/2 and p38 MAPKs. As a comparison, we examined the kinase activity in solei of rats exposed to hypergravity conditions (2 G). IRS-1 phosphorylation, protein, and AMPK activity were not affected by 2 G, demonstrating that these changes were only observed in soleus muscle from hindlimb-suspended animals. To further examine the effect of AMPK activation on glucose uptake, C2C12 myotubes were treated with the AMPK activator metformin and then challenged with the JNK activator anisomycin. While anisomycin reduced insulin-stimulated glucose uptake to control levels, metformin significantly increased glucose uptake in the presence of anisomycin and was independent of insulin. Taken together, these results suggest that AMPK may be an important mediator of insulin-independent glucose uptake in soleus during skeletal muscle atrophy.  相似文献   

14.
alpha-Lipoic acid (ALA) widely exists in foods and is an antidiabetic agent. ALA stimulates glucose uptake and increases insulin sensitivity by the activation of AMP-activated protein kinase (AMPK) in skeletal muscle, but the underlying mechanism for AMPK activation is unknown. Here, we investigated the mechanism through which ALA activates AMPK in C2C12 myotubes. Incubation of C2C12 myotubes with 200 and 500 microM ALA increased the activity and phosphorylation of the AMPK alpha-subunit at Thr(172). Phosphorylation of the AMPK substrate, acetyl CoA carboxylase (ACC), at Ser(79) was also increased. No difference in ATP, AMP, and the calculated AMP-to-ATP ratio was observed among the different treatment groups. Since the upstream AMPK kinase, LKB1, requires an alteration of the AMP-to-ATP ratio to activate AMPK, this data showed that LKB1 might not be involved in the activation of AMPK induced by ALA. Treatment of ALA increased the intracellular Ca(2+) concentration measured by fura-2 fluorescent microscopy (P < 0.05), showing that ALA may activate AMPK through enhancing Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) signaling. Indeed, chelation of intracellular free Ca(2+) by loading cells with 25 microM BAPTA-AM for 30 min abolished the ALA-induced activation of AMPK and, in turn, phosphorylation of ACC at Ser(79). Furthermore, inhibition of CaMKK using its selective inhibitor, STO-609, abolished ALA-stimulated AMPK activation, with an accompanied reduction of ACC phosphorylation at Ser(79). In addition, ALA treatment increased the association of AMPK with CaMKK. To further show the role of CaMKK in AMPK activation, short interfering RNA was used to silence CaMKK, which abolished the ALA-induced AMPK activation. These data show that CaMKK is the kinase responsible for ALA-induced AMPK activation in C2C12 myotubes.  相似文献   

15.
We previously reported that bupivacaine induces reactive oxygen species (ROS) generation, p38 mitogen-activated protein kinase (MAPK) activation and nuclear factor-kappa B activation, resulting in an increase in expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. However, the identity of signaling upstream of p38 MAPK pathways to WDR35 expression remains unclear. It has been shown that AMP-activated protein kinase (AMPK) can activate p38 MAPK through diverse mechanisms. In addition, several kinases acting upstream of AMPK have been identified including Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). Recent studies reported that AMPK may be involved in bupivacaine-induced cytotoxicity in Schwann cells and in human neuroblastoma SH-SY5Y cells. The present study was undertaken to test whether CaMKK and AMPK are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Our results showed that bupivacaine induced activation of AMPK and p38 MAPK in Neuro2a cells. The AMPK inhibitors, compound C and iodotubercidin, attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. Treatment with the CaMKK inhibitor STO-609 also attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. These results suggest that bupivacaine activates AMPK and p38 MAPK via CaMKK in Neuro2a cells, and that the CaMKK/AMPK/p38 MAPK pathway is involved in regulating WDR35 expression.  相似文献   

16.
Lithium increases glucose transport and glycogen synthesis in insulin-sensitive cell lines and rat skeletal muscle, and has been used as a non-selective inhibitor of glycogen synthase kinase-3 (GSK-3). However, the molecular mechanisms underlying lithium action on glucose transport in mammalian skeletal muscle are unknown. Therefore, we examined the effects of lithium on glucose transport activity, glycogen synthesis, insulin signaling elements (insulin receptor (IR), Akt, and GSK-3beta), and the stress-activated p38 mitogen-activated protein kinase (p38 MAPK) in the absence or presence of insulin in isolated soleus muscle from lean Zucker rats. Lithium (10 mM LiCl) enhanced basal glucose transport by 62% (p < 0.05) and augmented net glycogen synthesis by 112% (p < 0.05). Whereas lithium did not affect basal IR tyrosine phosphorylation or Akt ser(473) phosphorylation, it did enhance (41%, p < 0.05) basal GSK-3beta ser(9) phosphorylation. Lithium further enhanced (p < 0.05) the stimulatory effects of insulin on glucose transport (43%), glycogen synthesis (44%), and GSK-3beta ser(9) phosphorylation (13%). Lithium increased (p < 0.05) p38 MAPK phosphorylation both in the absence (37%) and presence (41%) of insulin. Importantly, selective inhibition of p38 MAPK (using 10 microM A304000) completely prevented the basal activation of glucose transport by lithium, and also significantly reduced (52%, p < 0.05) the lithium-induced enhancement of insulin-stimulated glucose transport. Theses results demonstrate that lithium enhances basal and insulin-stimulated glucose transport activity and glycogen synthesis in insulin-sensitive rat skeletal muscle, and that these effects are associated with a significant enhancement of GSK-3beta phosphorylation. Importantly, we have documented an essential role of p38 MAPK phosphorylation in the action lithium on the glucose transport system in isolated mammalian skeletal muscle.  相似文献   

17.
Adenosine-induced acceleration of glycolysis in hearts stressed by transient ischemia is accompanied by suppression of glycogen synthesis and by increases in activity of adenosine 5'-monophosphate-activated protein kinase (AMPK). Because p38 mitogen-activated protein kinase (MAPK) may regulate glucose metabolism and may be activated downstream of AMPK, this study determined the effects of the p38 MAPK inhibitors SB202190 and SB203580 on adenosine-induced alterations in glucose utilization and AMPK activity. Studies were performed in working rat hearts perfused aerobically following stressing by transient ischemia (2 x 10-min ischemia followed by 5-min reperfusion). Phosphorylation of AMPK and p38 MAPK each were increased fourfold by adenosine, and these effects were inhibited by either SB202190 or SB203580. Neither of these inhibitors directly affected AMPK activity. Attenuation of the adenosine-induced increase in AMPK and p38 MAPK phosphorylation by SB202190 and SB203580 occurred independently of any change in tissue ATP-to-AMP ratio and did not alter glucose uptake, but it was accompanied by an increase in glycogen synthesis and glycogen content and by inhibition of glycolysis and proton production. There was a significant inverse correlation between the rate of glycogen synthesis and AMPK activity and between AMPK activity and glycogen content. These data demonstrate that AMPK is likely downstream of p38 MAPK in mediating the effects of adenosine on glucose utilization in hearts stressed by transient ischemia. The ability of p38 MAPK inhibitors to relieve the inhibition of glycogen synthesis and to inhibit glycolysis and proton production suggests that these agents may restore adenosine-induced cardioprotection in stressed hearts.  相似文献   

18.
The effect of Ganoderma lucidum extract on glucose uptake was studied in L6 rat skeletal muscle cells. G. lucidum extract increased glucose uptake about 2-fold compared to control. The extract stimulated the activity of phosphatidylinositol (PI) 3-kinase which is a major regulatory molecule in the glucose uptake pathway. About 7-fold increased activity of a PI 3-kinase was observed after treatment with G. lucidum extract, whereas PI 3-kinase inhibitor, LY294002, blocked the G. lucidum extract-stimulated PI 3-kinase activity in L6 skeletal muscle cells. Protein kinase B, a downstream mediator of PI 3-kinase, was also activated by G. lucidum extract. We then assessed the activity of AMP-activated protein kinase (AMPK), another regulatory molecule in the glucose uptake pathway. G. lucidum extract increased the phosphorylation level of both AMPK alpha1 and alpha2. Activity of p38 MAPK, a downstream mediator of AMPK, was also increased by G. lucidum extract. Taken together, these results suggest that G. lucidum extract may stimulate glucose uptake, through both PI 3-kinase and AMPK in L6 skeletal muscle cells thereby contributing to glucose homeostasis.  相似文献   

19.
Adiponectin functions as an insulin sensitizer, and yet the underlying molecular mechanism(s) remains largely unknown. We found that treating C2C12 myotubes with adiponectin or rapamycin enhanced the ability of insulin to stimulate IRS-1 tyrosine phosphorylation and Akt phosphorylation, concurrently with reduced p70 S6 kinase phosphorylation at Thr389 as well as IRS-1 phosphorylation at Ser302 and Ser636/639. Overexpression of dominant-negative AMP kinase (AMPK), but not dominant-negative p38 MAPK, reduced the insulin-sensitizing effect of adiponectin. Rapamycin, but not adiponectin, enhanced insulin-stimulated Akt phosphorylation in HeLa cells, which lack LKB1, and exogenous expression of LKB1 in HeLa cells rescued the insulin-sensitizing effect of adiponectin. Finally, overexpression of wild-type Rheb (Ras homology-enriched in brain) or the TSC2 mutant lacking the AMPK phosphorylation site (TSC2S1345A) inhibited the insulin-sensitizing effect of adiponectin in C2C12 cells. These results indicate that activation of the LKB1/AMPK/TSC1/2 pathway alleviates the p70 S6 kinase-mediated negative regulation of insulin signaling, providing a mechanism by which adiponectin increases insulin sensitivity in cells.  相似文献   

20.
Insulin stimulation produced a reliable 3-fold increase in glucose uptake in primary neonatal rat myotubes, which was accompanied by a similar effect on GLUT4 translocation to plasma membrane. Tumor necrosis factor (TNF)-alpha caused insulin resistance on glucose uptake and GLUT4 translocation by impairing insulin stimulation of insulin receptor (IR) and IR substrate (IRS)-1 and IRS-2 tyrosine phosphorylation, IRS-associated phosphatidylinositol 3-kinase activation, and Akt phosphorylation. Because this cytokine produced sustained activation of stress and proinflammatory kinases, we have explored the hypothesis that insulin resistance by TNF-alpha could be mediated by these pathways. In this study we demonstrate that pretreatment with PD169316 or SB203580, inhibitors of p38 MAPK, restored insulin signaling and normalized insulin-induced glucose uptake in the presence of TNF-alpha. However, in the presence of PD98059 or SP600125, inhibitors of p42/p44 MAPK or JNK, respectively, insulin resistance by TNF-alpha was still produced. Moreover, TNF-alpha produced inhibitor kappaB kinase (IKK)-beta activation and inhibitor kappaB-beta and -alpha degradation in a p38 MAPK-dependent manner, and treatment with salicylate (an inhibitor of IKK) completely restored insulin signaling. Furthermore, TNF-alpha produced serine phosphorylation of IR and IRS-1 (total and on Ser(307) residue), and these effects were completely precluded by pretreatment with either PD169316 or salicylate. Consequently, TNF-alpha, through activation of p38 MAPK and IKK, produces serine phosphorylation of IR and IRS-1, impairing its tyrosine phosphorylation by insulin and the corresponding activation of phosphatidylinositol 3-kinase and Akt, leading to insulin resistance on glucose uptake and GLUT4 translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号