首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The NMR structure of the Antheraea polyphemus pheromone-binding protein 1 at pH 4.5, ApolPBP1A, was determined at 20 degrees C. The structure consists of six alpha-helices, which are arranged in a globular fold that encapsulates a central helix alpha7 formed by the C-terminal polypeptide segment 131-142. The 3D arrangement of these helices is anchored by the three disulfide bonds 19-54, 50-108 and 97-117, which were identified by NMR. Superposition of the ApolPBP1A structure with the structure of the homologous pheromone-binding protein of Bombyx mori at pH 4.5, BmorPBPA, yielded an rmsd of 1.7 A calculated for the backbone heavy-atoms N, Calpha and C' of residues 10-142. In contrast, the present ApolPBP1A structure is different from a recently proposed molecular model for a low-pH form of ApolPBP1 that does not contain the central helix alpha7. ApolPBP1 exhibits a pH-dependent transition between two different globular conformations in slow exchange on the NMR chemical shift timescale similar to BmorPBP, suggesting that the two proteins use the same mechanism of ligand binding and ejection. The extensive sequence homology observed for pheromone-binding proteins from moth species further implies that the previously proposed mechanism of ligand ejection involving the insertion of a C-terminal helix into the pheromone-binding site is a general feature of pheromone signaling in moths.  相似文献   

2.
Prostacyclin synthase (PGIS) catalyzes an isomerization of prostaglandin H(2) to prostacyclin, a potent mediator of vasodilation and anti-platelet aggregation. Here, we report the crystal structure of human PGIS at 2.15 A resolution, which represents the first three-dimensional structure of a class III cytochrome P450. While notable sequence divergence has been recognized between PGIS and other P450s, PGIS exhibits the typical triangular prism-shaped P450 fold with only moderate structural differences. The conserved acid-alcohol pair in the I helix of P450s is replaced by residues G286 and N287 in PGIS, but the distinctive disruption of the I helix and the presence of a nearby water channel remain conserved. The side-chain of N287 appears to be positioned to facilitate the endoperoxide bond cleavage, suggesting a functional conservation of this residue in O-O bond cleavage. A combination of bent I helix and tilted B' helix creates a channel extending from the heme distal pocket, which seemingly allows binding of various ligands; however, residue W282, placed in this channel at a distance of 8.4 A from the iron with its indole side-chain lying parallel with the porphyrin plane, may serve as a threshold to exclude most ligands from binding. Additionally, a long "meander" region protruding from the protein surface may impede electron transfer. Although the primary sequence of the PGIS cysteine ligand loop diverges significantly from the consensus, conserved tertiary structure and hydrogen bonding pattern are observed for this region. The substrate-binding model was constructed and the structural basis for prostacyclin biosynthesis is discussed.  相似文献   

3.
4.
Raf1 kinase inhibitor protein (RKIP) negatively regulates the Raf1/MEK/ERK pathway which is vital for cell growth and differentiation. It is also a biomarker in clinical cancer diagnosis. RKIP binds to the N-terminus of Raf1 kinase but little is known about the structural basis of RKIP binding with Raf1. Here, we demonstrate that the N-terminus of human Raf1 kinase (hRaf11-147aa) binds with human RKIP (hRKIP) at its ligand-binding pocket, loop “127–149”, and the C-terminal helix by NMR experiments. D70, D72, E83, Y120, and Y181 were further verified as the key residues participating in the interaction of hRKIP and hRaf11-147aa. G143-R146 fragment was also critical for hRKIP binding with hRaf11-147aa, for its deletion decreased the binding affinity around 300 times, from 154 to 0.46 mM?1. Our results provide important structural clues for designing the lead compound that disrupts RKIP–Raf1 interaction.  相似文献   

5.
Bovine beta-lactoglobulin (betaLG) binds a variety of hydrophobic ligands, though precisely how is not clear. To understand the structural basis of this promiscuous binding, we studied the interaction of betaLG with palmitic acid (PA) using heteronuclear NMR spectroscopy. The titration was monitored using tryptophan fluorescence and a HSQC spectrum confirmed a 1:1 stoichiometry for the PA-betaLG complex. Upon the binding of PA, signal disappearances and large changes in chemical shifts were observed for the residues located at the entrance and bottom of the cavity, respectively. This observation indicates that the lower region makes a rigid connection with PA whereas the entrance is more flexible. The result is in contrast to the binding of PA to intestinal fatty acid-binding protein, another member of the calycin superfamily, in which structural consolidation occurs upon ligand binding. On the other hand, the ability of betaLG to accommodate various hydrophobic ligands resembles that of GroEL, in which a large hydrophobic cavity and flexible binding site confer the ability to bind various hydrophobic substrates. Considering these observations, it is suggested that, in addition to the presence of the hydrophobic cavity, the plasticity of the entrance region makes possible the binding of hydrophobic ligands of various shapes. Thus, in contrast to the specific binding seen for many enzymes, betaLG provides an example of binding with low specificity but high affinity, which may play an important role in protein-ligand and protein-protein networks.  相似文献   

6.
7.
The formation of CFTR–NHERF2–LPA2 macromolecular complex in airway epithelia regulates CFTR channel function and plays an important role in compartmentalized cAMP signaling. We previously have shown that disruption of the PDZ-mediated NHERF2–LPA2 interaction abolishes the LPA inhibitory effect and augments CFTR Cl channel activity in vitro and in vivo. Here we report the first crystal structure of the NHERF2 PDZ1 domain in complex with the C-terminal LPA2 sequence. The structure reveals that the PDZ1–LPA2 binding specificity is achieved by numerous hydrogen bonds and hydrophobic contacts with the last four LPA2 residues contributing to specific interactions. Comparison of the PDZ1–LPA2 structure to the structure of PDZ1 in complex with a different peptide provides insights into the diverse nature of PDZ1 substrate recognition and suggests that the conformational flexibility in the ligand binding pocket is involved in determining the broad substrate specificity of PDZ1. In addition, the structure reveals a small surface pocket adjacent to the ligand-binding site, which may have therapeutic implications. This study provides an understanding of the structural basis for the PDZ-mediated NHERF2–LPA2 interaction that could prove valuable in selective drug design against CFTR-related human diseases.  相似文献   

8.
Lipid-mediated regulatory mechanism of the C-terminal ligand binding to PDZ domains is not fully understood, despite their roles in subcellular organization. Here, we provide structural insights into the phosphatidylinositol 4,5-bisphosphate (PIP2) recognition mode of a PDZ domain, as revealed from the crystal structure of the phosphate-bound PDZ domain. Two adjacent phosphate ions bind to the basic residues close to the amino terminus of the α2 helix in the Tamalin PDZ domain, reflecting an interaction mode of the two phosphate groups of PIP2. Based on the observed location of the two phosphate molecules within the PDZ domain, we built the docking model of PIP2 with the PDZ domain of the well-known PIP2-binding protein, syntenin-1. This model suggests that the hydrophobic diacylglycerol group of PIP2 could contact the ligand-binding groove of the PDZ domain. These structural features well explain biological phenomena, which were previously reported for the PIP2-mediated PDZ ligand-binding regulation.  相似文献   

9.
In this work we are proposing Homology modeled structures of Mycobacterium leprae 18kDa heat shock protein and its mutant. The more closely related structure of the small heat shock protein (sHSP) belonging to the eukaryotic species from wheat sHSP16.9 and 16.3kDa ACR1 protein from Mycobacterium tuberculosis were used as template structures. Each model contains an N-terminal domain, alpha-crystalline domain and a C-terminal tail. The models showed that a single point mutation from serine to proline at 52nd position causes structural changes. The structural changes are observed in N-terminal region and alpha-crystalline domains. Serine in 52nd position is observed in β4 strand and Proline in 52nd position is observed in loop. The number of residues contributing α helix at N-terminal region varies in both models. In 18S more number of residues is present in α helix when compared to 18P. The loop regions between β3 and β4 strands of both models vary in number of residues present in it. Number of residues contributing β4 strand in both models vary. β6 strand is absent in both models. Major functional peptide region of alpha crystalline domains of both models varies. These differences observed in secondary structures support their distinct functional roles. It also emphasizes that a point mutation can cause structural variation.  相似文献   

10.
N-terminal domain of HIV-1 p24 capsid protein is a globular fold composed of seven helices and two β-strands with a flexible structure including the α4–5 loop and both N- and C-terminal ends. However, the protein shows a high tendency (48%) for an intrinsically disordered structure based on the PONDR VL-XT prediction from the primary sequence. To assess the possibility of marginally stabilized structure under physiological conditions, the N-terminal domain of p24 was destabilized by the addition of an artificial flexible tag to either N- or C-terminal ends, and it was analyzed using T1, T2, hetero-nuclear NOE, and amide-proton exchange experiments. When the C-terminal tag (12 residues) was attached, the regions of the α3–4 loop and helix 6 as well as the α4–5 loop attained the flexible structures. Furthermore, in the protein containing the N-terminal tag (27 residues), helix 4 in addition to the above-mentioned area including α3–4 and α4–5 loops as well as helix 6 exhibited highly disordered structures. Thus, the long-range effects of the existence of tag sequence was observed in the stepwise manner of the appearance of disordered structures (step 1: α4–5 loop, step 2: α3–4 loop and helix 6, and step 3: helix 4). Furthermore, the disordered regions in tagged proteins were consistent with the PONDR VL-XT disordered prediction. The dynamic structure located in the middle part (α3–4 loop to helix 6) of the protein shown in this study may be related to the assembly of the viral particle.  相似文献   

11.
The shortest helices (three-length 3(10) and four-length alpha), most abundant among helices of different lengths, have been analyzed from a database of protein structures. A characteristic feature of three-length 3(10)-helices is the shifted backbone conformation for the C-terminal residue (phi,psi angles: -95 degrees,0 degrees ), compared to the rest of the helix (-62 degrees,-24 degrees ). The deviation can be attributed to the release of electrostatic repulsion between the carbonyl oxygen atoms at the two C-terminal residues and further stabilization (due to a more linear geometry) of an intrahelical hydrogen bond. A consequence of this non-canonical C-terminal backbone conformation can be a potential origin of helix kinks when a 3(10)-helix is sequence-contiguous at the alpha-helix N-terminal. An analysis of hydrogen bonding, as well as hydrophobic interactions in the shortest helices shows that capping interactions, some of them not observed for longer helices, dominate at the N termini. Further, consideration of the distribution of amino acid residues indicates that the shortest helices resemble the N-terminal end of alpha-helices rather than the C terminus, implying that the folding of helices may be initiated at the N-terminal end, which does not get propagated in the case of the shortest helices. Finally, pairwise comparison of beta-turns and the shortest helices, based on correlation matrices of site-specific amino acid composition, and the relative abundance of these short secondary structural elements, leads to a helix nucleation scheme that considers the formation of an isolated beta-turn (and not an alpha-turn) as the helix nucleation step, with shortest 3(10)-helices as intermediates between the shortest alpha-helix and the beta-turn. Our results ascribe an important role played by shortest 3(10)-helices in proteins with important structural and folding implications.  相似文献   

12.
13.
The sodium ion-translocating F(1)F(0) ATP synthase from the bacterium Ilyobacter tartaricus contains a remarkably stable rotor ring composed of 11 c subunits. The rotor ring was isolated, crystallised in two dimensions and analysed by electron cryo-microscopy. Here, we present an alpha-carbon model of the c-subunit ring. Each monomeric c subunit of 89 amino acid residues folds into a helical hairpin consisting of two membrane-spanning helices and a cytoplasmic loop. The 11 N-terminal helices are closely spaced within an inner ring surrounding a cavity of approximately 17A (1.7 nm). The tight helix packing leaves no space for side-chains and is accounted for by a highly conserved motif of four glycine residues in the inner, N-terminal helix. Each inner helix is connected by a clearly visible loop to an outer C-terminal helix. The outer helix has a kink near the position of the ion-binding site residue Glu65 in the centre of the membrane and another kink near the C terminus. Two helices from the outer ring and one from the inner ring form the ion-binding site in the middle of the membrane and a potential access channel from the binding site to the cytoplasmic surface. Three possible inter-subunit ion-bridges are likely to account for the remarkable temperature stability of I.tartaricus c-rings compared to those of other organisms.  相似文献   

14.
The pregnane X receptor (PXR) detects the presence of a wide variety of endogenous and xenobiotic compounds, and is a master regulator of the expression of genes central to drug metabolism and excretion. We present the 2.0A crystal structure of the human PXR ligand-binding domain (LBD) in complex with the cholesterol-lowering compound SR12813 and a 25 amino acid residue fragment of the human steroid receptor coactivator-1 (SRC-1) containing one LXXLL motif. PXR crystallizes as a homodimer in the asymmetric unit in this structure and possesses a novel alpha2 helix adjacent to its ligand-binding cavity. The SRC-1 peptide forms two distinct helices and binds adjacent to the ligand-dependent transactivation AF-2 helix on the surface of PXR. In contrast with previous PXR structures, in which SR12813 bound in multiple orientations, the small SR12813 agonist in this structure binds in a single, unique orientation within the receptor's ligand-binding pocket and contacts the AF-2 helix. Thermal denaturation studies reveal that the SR12813 ligand and SRC-1 coactivator peptide each stabilize the LBD of PXR, and that together they exert an additive effect on the stability of the receptor. These results indicate that the binding of coactivator to the surface of PXR limits the ability of this promiscuous receptor to "breathe" and helps to trap a single, active conformation of SR12813. They further reveal that specificity is required for PXR activation.  相似文献   

15.
The Bombyx mori pheromone-binding protein (BmorPBP) undergoes a pH-dependent conformational transition from a form at basic pH, which contains an open cavity suitable for ligand binding (BmorPBPB), to a form at pH 4.5, where this cavity is occupied by an additional helix (BmorPBPA). This helix α7 is formed by the C-terminal dodecapeptide 131-142, which is flexibly disordered on the protein surface in BmorPBPB and in its complex with the pheromone bombykol. Previous work showed that the ligand-binding cavity cannot accommodate both bombykol and helix α7. Here we further investigated mechanistic aspects of the physiologically crucial ejection of the ligand at lower pH values by solution NMR studies of the variant protein BmorPBP(1-128), where the C-terminal helix-forming tetradecapeptide is removed. The NMR structure of the truncated protein at pH 6.5 corresponds closely to BmorPBPB. At pH 4.5, BmorPBP(1-128) maintains a B-type structure that is in a slow equilibrium, on the NMR chemical shift timescale, with a low-pH conformation for which a discrete set of 15N-1H correlation peaks is NMR unobservable. The full NMR spectrum was recovered upon readjusting the pH of the protein solution to 6.5. These data reveal dual roles for the C-terminal tetradecapeptide of BmorPBP in the mechanism of reversible pheromone binding and transport, where it governs dynamic equilibria between two locally different protein conformations at acidic pH and competes with the ligand for binding to the interior cavity.  相似文献   

16.
A series of truncated forms of subunit H were generated to establish the domain features of that protein. Circular dichroism analysis demonstrated that H is divided at least into a C-terminal coiled-coil domain within residues 54-104, and an N-terminal domain formed by adjacent α-helices. With a cysteine at the C-terminus of each of the truncated proteins (H1-47, H1-54, H1-59, H1-61, H1-67, H1-69, H1-71, H1-78, H1-80, H1-91, and H47-105), the residues involved in formation of the coiled-coil interface were determined. Proteins H1-54, H1-61, H1-69, and H1-80 showed strong cross-link formation, which was weaker in H1-47, H1-59, H1-71, and H1-91. A shift in disulfide formation between cysteins at positions 71 and 80 reflected an interruption in the periodicity of hydrophobic residues in the region 71AEKILEETEKE81. To understand how the N-terminal domain of H is formed, we determined for the first time, to our knowledge, the solution NMR structure of H1-47, which revealed an α-helix between residues 15-42 and a flexible N-terminal stretch. The α-helix includes a kink that would bring the two helices of the C-terminus into the coiled-coil arrangement. H1-47 revealed a strip of alanines involved in dimerization, which were tested by exchange to single cysteines in subunit H mutants.  相似文献   

17.
18.
The integrase protein (Int) from bacteriophage lambda is the archetypal member of the tyrosine recombinase family, a large group of enzymes that rearrange DNA in all domains of life. Int catalyzes the insertion and excision of the viral genome into and out of the Escherichia coli chromosome. Recombination transpires within higher-order nucleoprotein complexes that form when its amino-terminal domain binds to arm-type DNA sequences that are located distal to the site of strand exchange. Arm-site binding by Int is essential for catalysis, as it promotes Int-mediated bridge structures that stabilize the recombination machinery. We have elucidated how Int is able to sequence specifically recognize the arm-type site sequence by determining the solution structure of its amino-terminal domain (IntN, residues Met1 to Leu64) in complex with its P′2 DNA binding site. Previous studies have shown that IntN adopts a rare monomeric DNA binding fold that consists of a three-stranded antiparallel beta-sheet that is packed against a carboxy-terminal alpha helix. A low-resolution crystal structure of the full-length protein also revealed that the sheet is inserted into the major groove of the arm-type site. The solution structure presented here reveals how IntN specifically recognizes the arm-type site sequence. A novel feature of the new solution structure is the use of an 11-residue tail that is located at the amino terminus. DNA binding induces the folding of a 310 helix in the tail that projects the amino terminus of the protein deep into the minor groove for stabilizing DNA contacts. This finding reveals the structural basis for the observation that the “unstructured” amino terminus is required for recombination.  相似文献   

19.
Tsuyoshi Waku 《FEBS letters》2009,583(2):320-2263
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) activates a nuclear receptor heterodimer, peroxisome proliferators-activated receptor γ (PPARγ)/ retinoid X receptor (RXRα) through covalent binding to Cys285 in PPARγ ligand-binding domain (LBD). Here, we present the 1.9 Å crystal structure of C285S mutant LBD complexed with 15d-PGJ2, corresponding to the non-covalently bound state. The ligand lies adjacent to a hydrogen-bond network around the helix H2 and the nearby β-sheet. Comparisons with previous structures clarified the relationships between PPARγ function and conformational alterations of LBD during the process of covalently binding ligands, such as 15d-PGJ2, and thus suggested a mechanism, by which these ligands modulate PPARγ/RXRα function through conformational changes of the loop following helix H2′ and the β-sheet.  相似文献   

20.
We report herein the NMR structure of Tm0979, a structural proteomics target from Thermotoga maritima. The Tm0979 fold consists of four beta/alpha units, which form a central parallel beta-sheet with strand order 1234. The first three helices pack toward one face of the sheet and the fourth helix packs against the other face. The protein forms a dimer by adjacent parallel packing of the fourth helices sandwiched between the two beta-sheets. This fold is very interesting from several points of view. First, it represents the first structure determination for the DsrH family of conserved hypothetical proteins, which are involved in oxidation of intracellular sulfur but have no defined molecular function. Based on structure and sequence analysis, possible functions are discussed. Second, the fold of Tm0979 most closely resembles YchN-like folds; however the proteins that adopt these folds differ in secondary structural elements and quaternary structure. Comparison of these proteins provides insight into possible mechanisms of evolution of quaternary structure through a simple mechanism of hydrophobicity-changing mutations of one or two residues. Third, the Tm0979 fold is found to be similar to flavodoxin-like folds and beta/alpha barrel proteins, and may provide a link between these very abundant folds and putative ancestral half-barrel proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号