首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To elucidate the structural basis for the alteration of coenzyme specificity from NADH toward NADPH in a malate dehydrogenase mutant EX7 from Thermus flavus, we determined the crystal structures at 2.0 A resolution of EX7 complexed with NADPH and NADH, respectively. In the EX7-NADPH complex, Ser42 and Ser45 form hydrogen bonds with the 2'-phosphate group of the adenine ribose of NADPH, although the adenine moiety is not seen in the electron density map. In contrast, although Ser42 and Ser45 occupy a similar position in the EX7-NADH complex structure, both the adenine and adenine ribose moieties of NADH are missing in the map. These results and kinetic analysis of site-directed mutant enzymes indicate (1) that the preference of EX7 for NADPH over NADH is ascribed to the recognition of the 2'-phosphate group by two Ser and Arg44, and (2) that the adenine moiety of NADPH is not recognized in this mutant.  相似文献   

2.
D-3-Hydroxybutyrate dehydrogenase from Paracoccus denitrificans has been purified to near homogeneity. The enzyme was prepared using DEAE-cellulose chromatography, affinity chromatography on immobilized Cibacron blue (Matrex Gel Blue A) and gel permeation chromatography. The pure enzyme was obtained by chromatofocusing as the final isolation step. The purification procedure yielded the enzyme with a specific activity of about 100 units/mg protein. The enzyme is specific for D-3-hydroxybutyrate and NAD and it exhibits anomalous kinetics (hysteresis) at low enzyme and coenzyme concentrations. It is relatively stable in the presence of EDTA at pH 7–8 higer salt concentrations. D-3-Hydroxybutyrate dehydrogenase is a tetramer with a molecular weight of 130 000 ± 10 000, its isoelectric point equals 5.10 ± 0.05. The enzyme is applicable to the determination of acetoacetate and D-3-hydroxybutyrate concentrations.  相似文献   

3.
We identified a gene encoding a soluble quinoprotein glucose dehydrogenase homologue in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The enzyme was extremely thermostable, and the activity of the pyrroloquinoline quinone (PQQ)-bound holoenzyme was not lost after incubation at 100 °C for 10 min. The crystal structure of the enzyme was determined in both the apoform and as the PQQ-bound holoenzyme. The overall fold of the P. aerophilum enzyme showed significant similarity to that of soluble quinoprotein aldose sugar dehydrogenase (Asd) from E. coli. However, clear topological differences were observed in the two long loops around the PQQ-binding sites of the two enzymes. Structural comparison revealed that the hyperthermostability of the P. aerophilum enzyme is likely attributable to the presence of an extensive aromatic pair network located around a β-sheet involving N- and C-terminal β-strands.  相似文献   

4.
Saccharomyces cerevisiae Gre2 (EC1.1.1.283) serves as a versatile enzyme that catalyzes the stereoselective reduction of a broad range of substrates including aliphatic and aromatic ketones, diketones, as well as aldehydes, using NADPH as the cofactor. Here we present the crystal structures of Gre2 from S. cerevisiae in an apo-form at 2.00 Å and NADPH-complexed form at 2.40 Å resolution. Gre2 forms a homodimer, each subunit of which contains an N-terminal Rossmann-fold domain and a variable C-terminal domain, which participates in substrate recognition. The induced fit upon binding to the cofactor NADPH makes the two domains shift toward each other, producing an interdomain cleft that better fits the substrate. Computational simulation combined with site-directed mutagenesis and enzymatic activity analysis enabled us to define a potential substrate-binding pocket that determines the stringent substrate stereoselectivity for catalysis.  相似文献   

5.
The flavoenzyme ferredoxin-NADP+ reductase (FNR) catalyses the production of NADPH in photosynthesis. The three-dimensional structure of FNR presents two distinct domains, one for binding of the FAD prosthetic group and the other for NADP+ binding. In spite of extensive experiments and different crystallographic approaches, many aspects about how the NADP+ substrate binds to FNR and how the hydride ion is transferred from FAD to NADP+ remain unclear. The structure of an FNR:NADP+ complex from Anabaena has been determined by X-ray diffraction analysis of the cocrystallised units to 2.1 A resolution. Structural perturbation of FNR induced by complex formation produces a narrower cavity in which the 2'-phospho-AMP and pyrophosphate portions of the NADP+ are perfectly bound. In addition, the nicotinamide mononucleotide moiety is placed in a new pocket created near the FAD cofactor with the ribose being in a tight conformation. The crystal structure of this FNR:NADP+ complex obtained by cocrystallisation displays NADP+ in an unusual conformation and can be considered as an intermediate state in the process of coenzyme recognition and binding. Structural analysis and comparison with previously reported complexes allow us to postulate a mechanism which would permit efficient hydride transfer to occur. Besides, this structure gives new insights into the postulated formation of the ferredoxin:FNR:NADP+ ternary complex by prediction of new intermolecular interactions, which could only exist after FNR:NADP+ complex formation. Finally, structural comparison with the members of the broad FNR structural family also provides an explanation for the high specificity exhibited by FNR for NADP+/H versus NAD+/H.  相似文献   

6.
Plant family 1 UDP-dependent glycosyltransferases (UGTs) catalyze the glycosylation of a plethora of bioactive natural products. In Arabidopsis thaliana, 120 UGT encoding genes have been identified. The crystal-based 3D structures of four plant UGTs have recently been published. Despite low sequence conservation, the UGTs show a highly conserved secondary and tertiary structure. The sugar acceptor and sugar donor substrates of UGTs are accommodated in the cleft formed between the N- and C-terminal domains. Several regions of the primary sequence contribute to the formation of the substrate binding pocket including structurally conserved domains as well as loop regions differing both with respect to their amino acid sequence and sequence length. In this review we provide a detailed analysis of the available plant UGT crystal structures to reveal structural features determining substrate specificity. The high 3D structural conservation of the plant UGTs render homology modeling an attractive tool for structure elucidation. The accuracy and utility of UGT structures obtained by homology modeling are discussed and quantitative assessments of model quality are performed by modeling of a plant UGT for which the 3D crystal structure is known. We conclude that homology modeling offers a high degree of accuracy. Shortcomings in homology modeling are also apparent with modeling of loop regions remaining as a particularly difficult task.  相似文献   

7.
NAD-linked l-glycerol-3-phosphate dehydrogenase binds to phosphatidylcholine liposomes as shown by the changes in the properties of both the enzyme and the membrane. The surface potential and the fluidity of the liposome membrane (monitored at the 5th C atom depth) change due to the presence of the enzyme, whereas the enzyme is activated by the liposomes. These findings suggest the occurrence of peripheral protein-lipid interactions.  相似文献   

8.
The extremely thermostable NAD-dependent glutamate dehydrogenase (NAD-GluDH) from Pyrobaculum islandicum, a member of the Crenarchaeota, was crystallized, and its 3D structure has been determined by X-ray diffraction methods. The homohexameric structure of Pb. islandicum glutamate dehydrogenase (Pis-GluDH) was solved and refined at a resolution of 2.9A with a crystallographic R-factor of 19.9% (Rfree 26.0%). The structure indicates that each subunit consists of two domains separated by a deep cleft containing an active site. The secondary structural elements and catalytically important residues of the enzyme were highly conserved among the NAD(P)-dependent GluDHs from other sources. A structural comparison of Pis-GluDH with other NAD(P)-dependent GluDHs suggests that a significant difference in the alpha8-loop-alpha9 region of this enzyme is associated with its coenzyme specificity. From the analysis of the 3D structure, hydrophobic interactions between intersubunits were found to be important features for the enzyme oligomerization. It has been reported that Pis-GluDH is highly thermostable, like the GluDH of the hyperthermophilic archaeum Pyrococcus furiosus, and the increase in the intersubunit ion pair networks is responsible for the extreme thermostability of the Pc. furiosus enzyme. However, the number of intersubunit ion pairs in the Pis-GluDH molecules is much smaller than those of the Pc. furiosus GluDH. The number of hydrophobic interactions at the intersubunit interfaces were increased and responsible for the extremely high thermostability. This indicates that the major molecular strategy for high thermostability of the GluDHs may be different for each hyperthermophile.  相似文献   

9.
The crystal structure of the apo-form of an R-specific alcohol dehydrogenase from Lactobacillus brevis (LB-RADH) was solved and refined to 1.8A resolution. LB-RADH is a member of the short-chain dehydrogenase/reductase (SDR) enyzme superfamily. It is a homotetramer with 251 amino acid residues per subunit and uses NADP(H) as co-enzyme. NADPH and the substrate acetophenone were modelled into the active site. The enantiospecificity of the enzyme can be explained on the basis of the resulting hypothetical ternary complex. In contrast to most other SDR enzymes, the catalytic activity of LB-RADH depends strongly on the binding of Mg(2+). Mg(2+) removal by EDTA inactivates the enzyme completely. In the crystal structure, the Mg(2+)-binding site is well defined. The ion has a perfect octahedral coordination sphere and occupies a special position concerning crystallographic and molecular point symmetry, meaning that each RADH tetramer contains two magnesium ions. The magnesium ion is no direct catalytic cofactor. However, it is structurally coupled to the putative C-terminal hinge of the substrate-binding loop and, via an extended hydrogen bonding network, to some side-chains forming the substrate binding region. Therefore, the presented structure of apo-RADH provides plausible explanations for the metal dependence of the enzyme.  相似文献   

10.
Pantothenate is the essential precursor of coenzyme A (CoA), a fundamental cofactor in all aspects of metabolism. In bacteria and eukaryotes, pantothenate synthetase (PS) catalyzes the last step in the pantothenate biosynthetic pathway, and pantothenate kinase (PanK) phosphorylates pantothenate for its entry into the CoA biosynthetic pathway. However, genes encoding PS and PanK have not been identified in archaeal genomes. Recently, a comparative genomic analysis and the identification and characterization of two novel archaea-specific enzymes show that archaeal pantoate kinase (PoK) and phosphopantothenate synthetase (PPS) represent counterparts to the PS/PanK pathway in bacteria and eukaryotes. The TON1374 protein from Thermococcus onnurineus NA1 is a PPS, that shares 54% sequence identity with the first reported archaeal PPS candidate, MM2281, from Methanosarcina mazei and 91% sequence identity with TK1686, the PPS from Thermococcus kodakarensis. Here, we report the apo and ATP-complex structures of TON1374 and discuss the substrate-binding mode and reaction mechanism.  相似文献   

11.
Acyl CoA dehydrogenase and electron-transfer flavoprotein have been isolated and partially purified from mitochondria of the anaerobic nematode, Ascarissuum. Dehydrogenase activity was greatest with 2-methylbutyryl CoA and the relative substrate specificities of the ascarid dehydrogenase(s) differ greatly from their mammalian counterparts. It appears that the ascarid dehydrogenase functions physiologically as a reductase, catalyzing the final step in the synthesis of branched-chain fatty acids. In fact, incubations of A. suum mitochondrial membranes with electron-transfer flavoprotein, 2-methylbutyryl CoA dehydrogenase, 2-methylcrotonyl CoA and NADH resulted in a substantial, rotenone-sensitive, 2-methylbutyrate synthesis. These results suggest that the ascarid electron-transport chain and at least two soluble mitochondrial proteins are involved in the NADH-dependent reduction of 2-methylcrotonyl CoA.  相似文献   

12.
Crystal structures of C-terminal despentapeptide nitrite reductase (NiRc-5) from Achromobacter cycloclastes were determined from 1.9 to 2.3A at pH 5.0, 5.4, and 6.2. NiRc-5, that has lost about 30% activity, is found to possess quite similar trimeric structures as the native enzyme. Electron density and copper content measurements indicate that the activity loss is not caused by the release of type 2 copper (T2Cu). pH-profile structural comparisons with native enzyme reveal that the T2Cu active center in NiRc-5 is perturbed, accounting for the partial loss of enzyme activity. This perturbation likely results from the less constrained conformations of two catalytic residues, Asp98 and His255. Hydrogen bonding analysis shows that the deletion of five residues causes a loss of more than half the intersubunit hydrogen bonds mediated by C-terminal tail. This study shows that the C-terminal tail plays an important role in controlling the conformations around the T2Cu site at the subunit interface, and helps keep the optimum microenvironment of active center for the full enzyme activity of AcNiR.  相似文献   

13.
The presence and partial characterization of the properties of l-histidinol dehydrogenase (EC 1.1.1.23), the enzyme catalysing the last step in the pathway of histidine biosynthesis, has been described in higher plants for the first time. The activity has been found in cell-free extracts from wheat germ, turnip root, radish root and squash fruit. The enzyme has been partially purified and characterized from extracts of acetone powders of wheat germ. DEAE-cellulose chromatography revealed two peaks of histidinol dehydrogenase activity. In one there was a rapid reduction of NAD+ in the absence of histidinol; however, the rate was stimulated by the addition of histidinol. The rate in the absence of substrate became quite low after several min and the histidinol-dependent rate was then easily observed. The second peak of activity did not reduce NAD+ unless l-histidinol was present in the assay mixture. The Kms for l-histidinol and NAD+ were determined for this latter enzyme. The values obtained at saturating concentrations of the other substrate were l-histidinol, 8.8 μM and NAD+, 0.14 mM. The product of the dehydrogenase reaction was histidine as determined by paper chromatography.  相似文献   

14.
Superoxide reductase (SOR) is a metalloprotein containing a non-heme iron centre, responsible for the scavenging of superoxide radicals in the cell. The crystal structure of Treponema pallidum (Tp) SOR was determined using soft X-rays and synchrotron radiation. Crystals of the oxidized form were obtained using poly(ethylene glycol) and MgCl2 and diffracted beyond 1.55 Å resolution. The overall architecture is very similar to that of other known SORs but TpSOR contains an N-terminal domain in which the desulforedoxin-type Fe centre, found in other SORs, is absent. This domain conserves the β-barrel topology with an overall arrangement very similar to that of other SOR proteins where the centre is present. The absence of the iron ion and its ligands, however, causes a decrease in the cohesion of the domain and some disorder is observed, particularly in the region where the metal would be harboured. The C-terminal domain exhibits the characteristic immunoglobulin-like fold and harbours the Fe(His)4(Cys) active site. The five ligands of the iron centre are well conserved despite some disorder observed for one of the four molecules in the asymmetric unit. The participation of a glutamate as the sixth ligand of some of the iron centres in Pyrococcus furiosus SOR was not observed in TpSOR. A possible explanation is that either X-ray photoreduction occurred or there was a mixture of redox states at the start of data collection. In agreement with earlier proposals, details in the TpSOR structure also suggest that Lys49 might be involved in attraction of superoxide to the active site.This work is dedicated to the memory of Prof. Frank Rusnak.Coordinates and observed structure factor amplitudes have been deposited in the Protein Data Bank under the accession code 1Y07.  相似文献   

15.
A novel short-chain dehydrogenases/reductases superfamily (SDRs) reductase (PsCR) from Pichia stipitis that produced ethyl (S)-4-chloro-3-hydroxybutanoate with greater than 99% enantiomeric excess, was purified to homogeneity using fractional ammonium sulfate precipitation followed by DEAE-Sepharose chromatography. The enzyme purified from recombinant Escherichia coli had a molecular mass of about 35 kDa on SDS–PAGE and only required NADPH as an electron donor. The Km value of PsCR for ethyl 4-chloro-3-oxobutanoate was 4.9 mg/mL and the corresponding Vmax was 337 μmol/mg protein/min. The catalytic efficiency value was the highest ever reported for reductases from yeasts. Moreover, PsCR exhibited a medium-range substrate spectrum toward various keto and aldehyde compounds, i.e., ethyl-3-oxobutanoate with a chlorine substitution at the 2 or 4-position, or α,β-diketones. In addition, the activity of the enzyme was strongly inhibited by SDS and β-mercaptoethanol, but not by ethylene diamine tetra acetic acid.  相似文献   

16.
Tang WK  Wong KB  Lam YM  Cha SS  Cheng CH  Fong WP 《FEBS letters》2008,582(20):3090-3096
The crystal structure of seabream antiquitin in complex with the cofactor NAD(+) was solved at 2.8A resolution. The mouth of the substrate-binding pocket is guarded by two conserved residues, Glu120 and Arg300. To test the role of these two residues, we have prepared the two mutants E120A and R300A. Our model and kinetics data suggest that antiquitin's specificity towards the substrate alpha-aminoadipic semialdehyde is contributed mainly by Glu120 which interacts with the alpha-amino group of the substrate. On the other hand, Arg300 does not have any specific interaction with the alpha-carboxylate group of the substrate, but is important in maintaining the active site conformation.  相似文献   

17.
The gene coding for d-3-hydroxybutyrate dehydrogenase (HBDH) was cloned from Pseudomonas fragi. The nucleotide sequence contained a 780 bp open reading frame encoding a 260 amino acid residue protein. The recombinant enzyme was efficiently expressed in Escherichia coli cells harboring pHBDH11 and was purified to homogeneity as judged by SDS-PAGE. The enzyme showed a strict stereospecificity to the D-enantiomer (3R-configuration) of 3-hydroxybutyrate as a substrate. Crystals of the ligand-free HBDH and of the enzyme-NAD+ complex were obtained using the hanging-drop, vapor-diffusion method. The crystal structure of the HBDH was solved by the multiwavelength anomalous diffraction method using the SeMet-substituted enzyme and was refined to 2.0 A resolution. The overall structure of P.fragi HBDH, including the catalytic tetrad of Asn114, Ser142, Tyr155, and Lys159, shows obvious relationships with other members of the short-chain dehydrogenase/reductase (SDR) family. A cacodylate anion was observed in both the ligand-free enzyme and the enzyme-NAD+ complex, and was located near the catalytic tetrad. It was shown that the cacodylate inhibited the NAD+-dependent D-3-hydroxybutyrate dehydrogenation competitively, with a Ki value of 5.6 mM. From the interactions between cacodylate and the enzyme, it is predicted that substrate specificity is achieved through the recognition of the 3-methyl and carboxyl groups of the substrate.  相似文献   

18.
L-Lysine-2-oxoglutarate reductase (EC 1.5.1.8, NADP+) in the liver of adult rats increased 4–5-times when the animals were treated with alloxan. In diabetic rats injection of insulin or adrenalectomy prevented the increase in enzyme activity. The activity of the similar enzyme in kidney was not changed by these treatments. The enzyme activity in primary cultured adult rat hepatocytes was also induced by addition of dexamethasone and glucagon together, and glucagon could be replaced by dibutyryl cyclic AMP. Insulin inhibited the induction. The hormonal induction was also inhibited by actinomycin D and by cycloheximide. During development of rats, fetal liver showed very low activity, but the activity appeared on day 1 after birth and then increased rapidly, reaching the adult level by day 5. The activity of the kidney enzyme increased more slowly and reached the adult level 1 month after birth. Intra-uterine injection of glucagon caused precocious induction of the liver enzyme in fetuses. These results indicate that the activity of L-lysine-2-oxoglutarate reductase in the adult liver and in part in neonatal liver also, is controlled by both glucagon and glucocorticoid.  相似文献   

19.
Excess l-glutamate (glutamate) levels in brain interstitial and cerebrospinal fluids (ISF and CSF, respectively) are the hallmark of several neurodegenerative conditions such as stroke, traumatic brain injury or amyotrophic lateral sclerosis. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As in previous studies, we have established the role of blood glutamate levels in brain neuroprotection, we have now investigated the contribution of the peripheral organs to the homeostasis of glutamate in blood. We have administered naive rats with intravenous injections of either l-[1-14C] Glutamic acid (l-[1-14C] Glu), l-[G-3H] Glutamic acid (l-[G-3H] Glu) or d-[2,3-3H] Aspartic acid (d-[2,3-3H] Asp), a non-metabolized analog of glutamate, and have followed their distribution into peripheral organs. We have observed that the decay of the radioactivity associated with l-[1-14C] Glu and l-[G-3H] Glu was faster than that associated with glutamate non-metabolized analog, d-[2,3-3H] Asp. l-[1-14C] Glu was subjected in blood to a rapid decarboxylation with the loss of 14CO2. The three major sequestrating organs, serving as depots for the eliminated glutamate and/or its metabolites were skeletal muscle, liver and gut, contributing together 92% or 87% of total l-[U-14C] Glu or d-[2,3-3H] Asp radioactivity capture. l-[U-14C] Glu and d-[2,3-3H] Asp showed a different organ sequestration pattern. We conclude that glutamate is rapidly eliminated from the blood into peripheral tissues, mainly in non-metabolized form. The liver plays a central role in glutamate metabolism and serves as an origin for glutamate metabolites that redistribute into skeletal muscle and gut. The findings of this study suggest now that pharmacological manipulations that reduce the liver glutamate release rate or cause a boosting of the skeletal muscle glutamate pumping rate are likely to cause brain neuroprotection.  相似文献   

20.
Structural and kinetic properties of the human 2-enoyl thioester reductase [mitochondrial enoyl-coenzyme A reductase (MECR)/ETR1] of the mitochondrial fatty acid synthesis (FAS) II pathway have been determined. The crystal structure of this dimeric enzyme (at 2.4 Å resolution) suggests that the binding site for the recognition helix of the acyl carrier protein is in a groove between the two adjacent monomers. This groove is connected via the pantetheine binding cleft to the active site. The modeled mode of NADPH binding, using molecular dynamics calculations, suggests that Tyr94 and Trp311 are critical for catalysis, which is supported by enzyme kinetic data. A deep, water-filled pocket, shaped by hydrophobic and polar residues and extending away from the catalytic site, was recognized. This pocket can accommodate a fatty acyl tail of up to 16 carbons. Mutagenesis of the residues near the end of this pocket confirms the importance of this region for the binding of substrate molecules with long fatty acyl tails. Furthermore, the kinetic analysis of the wild-type MECR/ETR1 shows a bimodal distribution of catalytic efficiencies, in agreement with the notion that two major products are generated by the mitochondrial FAS II pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号