首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metastatic spread during carcinogenesis worsens disease prognosis and accelerates the cancer progression. Therefore, newer therapeutic options with higher specificity toward metastatic cancer are required. Centchroman (CC), a female oral contraceptive, has previously been reported to possess antiproliferative and proapoptotic activities in human breast cancer cells. Here, we investigated the effect of CC-treatment against breast cancer metastasis and associated molecular mechanism using in vitro and in vivo models. CC significantly inhibited the proliferation of human and mouse mammary cancer cells. CC-treatment also inhibited migration and invasion capacities of highly metastatic MDA-MB-231 and 4T1 cells, at sub-IC50 concentrations. Inhibition of cell migration and invasion was found to be associated with the reversal of epithelial-to-mesenchymal transition (EMT) as observed by the upregulation of epithelial markers and downregulation of mesenchymal markers as well as decreased activities of matrix metalloproteinases. Experimental EMT induced by exposure to TGFβ/TNFα in nontumorigenic human mammary epithelial MCF10A cells was also reversed by CC as evidenced by morphological changes and modulation in the expression levels of EMT-markers. CC-mediated inhibition of cellular migration was, at least partially, mediated through inhibition of ERK1/2 signaling, which was further validated by using MEK1/2 inhibitor (PD0325901). Furthermore, CC-treatment resulted in suppression of tumor growth and lung metastasis in 4T1-syngeneic mouse model. Collectively, our findings suggest that CC-treatment at higher doses specifically induces cellular apoptosis and inhibits cellular proliferation; whereas at lower doses, it inhibits cellular migration and invasion. Therefore, CC could further be developed as an effective drug candidate against metastatic breast cancer.  相似文献   

2.
《Phytomedicine》2014,21(3):348-355
Cyclooxygenase-2 (COX-2) plays an important role in the carcinogenesis and progression of gastric cancer. Harmine is reported as a promising drug candidate for cancer therapy; however, effects and action mechanism of harmine on the human gastric cancer cells remain unclear. This study evaluated the anti-tumor effects of harmine on human gastric cancer both in vitro and in vivo. The cell proliferation was determined using MTT colorimetric assay. Apoptosis was measured by DAPI staining and flow cytometry analysis. The wound healing and transwell invasion assays were performed to evaluate the effects of harmine on the migration and invasion of gastric cancer cells. The expression of COX-2, proliferating cell nuclear antigen (PCNA), Bcl-2, Bax and matrix metalloproteinase-2 (MMP-2) was detected by Western blot analysis. Our results showed that harmine significantly inhibited cellular proliferation, migration, invasion and induced apoptosis in vitro, as well as inhibited tumor growth in vivo. In addition, harmine significantly inhibited the expression of COX-2, PCNA, Bcl-2 and MMP-2 as well as increased Bax expression in gastric cancer cells. These results collectively indicate that harmine induces apoptosis and inhibits proliferation, migration and invasion of human gastric cancer cells, which may be mediated by down-regulation of COX-2 expression.  相似文献   

3.
To investigate the biologic relevance and clinical implication of genes involved in multiple gene expression signatures for breast cancer prognosis, we identified 16 published gene expression signatures, and selected two genes, MAD2L1 and BUB1. These genes appeared in 5 signatures and were involved in cell-cycle regulation. We analyzed the expression of these genes in relation to tumor features and disease outcomes. In vitro experiments were also performed in two breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to assess cell proliferation, migration and invasion after knocking down the expression of these genes. High expression of these genes was found to be associated with aggressive tumors and poor disease-free survival of 203 breast cancer patients in our study, and the association with survival was confirmed in an online database consisting of 914 patients. In vitro experiments demonstrated that lowering the expression of these genes by siRNAs reduced tumor cell growth and inhibited cell migration and invasion. Our investigation suggests that MAD2L1 and BUB1 may play important roles in breast cancer progression, and measuring the expression of these genes may assist the prediction of breast cancer prognosis.  相似文献   

4.

Background

CHL1 gene (also known as CALL) on 3p26.3 encodes a one-pass trans-membrane cell adhesion molecule (CAM). Previously CAMs of this type, including L1, were shown to be involved in cancer growth and metastasis.

Methodology/Principal Findings

We used Clontech Cancer Profiling Arrays (19 different types of cancers, 395 samples) to analyze expression of the CHL1 gene. The results were further validated by RT-qPCR for breast, renal and lung cancer. Cancer Profiling Arrays revealed differential expression of the gene: down-regulation/silencing in a majority of primary tumors and up-regulation associated with invasive/metastatic growth. Frequent down-regulation (>40% of cases) was detected in 11 types of cancer (breast, kidney, rectum, colon, thyroid, stomach, skin, small intestine, bladder, vulva and pancreatic cancer) and frequent up-regulation (>40% of cases) – in 5 types (lung, ovary, uterus, liver and trachea) of cancer. Using real-time quantitative PCR (RT-qPCR) we found that CHL1 expression was decreased in 61% of breast, 60% of lung, 87% of clear cell and 89% papillary renal cancer specimens (P<0.03 for all the cases). There was a higher frequency of CHL1 mRNA decrease in lung squamous cell carcinoma compared to adenocarcinoma (81% vs. 38%, P = 0.02) without association with tumor progression.

Conclusions/Significance

Our results suggested that CHL1 is involved in the development of different human cancers. Initially, during the primary tumor growth CHL1 could act as a putative tumor suppressor and is silenced to facilitate in situ tumor growth for 11 cancer types. We also suggested that re-expression of the gene on the edge of tumor mass might promote local invasive growth and enable further metastatic spread in ovary, colon and breast cancer. Our data also supported the role of CHL1 as a potentially novel specific biomarker in the early pathogenesis of two major histological types of renal cancer.  相似文献   

5.
6.
7.

Breast cancer is a highly heterogeneous group of human cancer with distinct genetic, biological and clinicopathological features. Triple-negative breast cancer (TNBC) is the most aggressive and metastatic type of breast cancer and associated with poor patient survival. However, the role of UV Radiation Resistance-Associated Gene (UVRAG) in TNBC remains unknown. Here, we report that UVRAG is highly upregulated in all TNBC cells and its knockdown leads to the inhibition of cell proliferation, colony formation and progression of cell cycle, which is associated with and reduced expression of cell cycle related protein expression, including Cyclin A2, B1, D1, cdc2 and cdk6 in TNBC cells. Inhibition of UVRAG also suppressed cell motility, migration and invasion of TNBC cells by inhibition of Integrin β1 and β3 and Src activity. Our findings suggest for the first time that UVRAG expression contributes to proliferation, cell cycle progression, motility/migration and invasion of TNBC cells. Thus, targeting UVRAG could be a potential strategy in breast cancer especially against TNBC.

  相似文献   

8.
Colorectal carcinogenesis (CRC) is the most important health concerns throughout the World as the tumour cells rapidly spread and abruptly grow in colon and rectum to further organs. Several etiological factors are associated with colorectal carcinogenesis. During invasion and proliferation of tumour cells, various mechanistic molecular pathways are involved in the cells. Nitric Oxide pathway (NO) is one of the important cellular mechanisms associated with tumour cells initiation, invasion and progression. Epidemiological evidences suggest that NO has potential role in development of cancer. The multidisciplinary action of NO on the initiation of cancer depends on several factors including cell type, metastasis stage, and organs involved. This review emphasizes the biological significance of NO in each step of cancer metastasis, its controversial effects for carcinogenesis including initiation, invasion and progression.  相似文献   

9.
TNBC is an aggressive breast cancer subtype that does not express hormone receptors (estrogen and progesterone receptors, ER and PR) or amplified human epidermal growth factor receptor type 2 (HER2), and there currently exist no targeted therapies effective against it. Consequently, finding new molecular targets in triple negative breast cancer (TNBC) is critical to improving patient outcomes. Previously, we have detected the expression of metabotropic glutamate receptor-1 (gene: GRM1; protein: mGluR1) in TNBC and observed that targeting glutamatergic signaling inhibits TNBC growth both in vitro and in vivo. In this study, we explored how mGluR1 contributes to TNBC progression, using the isogenic MCF10 progression series, which models breast carcinogenesis from nontransformed epithelium to malignant basal-like breast cancer. We observed that mGluR1 is expressed in human breast cancer and that in MCF10A cells, which model nontransformed mammary epithelium, but not in MCF10AT1 cells, which model atypical ductal hyperplasia, mGluR1 overexpression results in increased proliferation, anchorage-independent growth, and invasiveness. In contrast, mGluR1 knockdown results in a decrease in these activities in malignant MCF10CA1d cells. Similarly, pharmacologic inhibition of glutamatergic signaling in MCF10CA1d cells results in a decrease in proliferation and anchorage-independent growth. Finally, transduction of MCF10AT1 cells, which express c-Ha-ras, using a lentiviral construct expressing GRM1 results in transformation to carcinoma in 90% of resultant xenografts. We conclude that mGluR1 cooperates with other factors in hyperplastic mammary epithelium to contribute to TNBC progression and therefore propose that glutamatergic signaling represents a promising new molecular target for TNBC therapy.  相似文献   

10.

Background  

Neural recognition molecule L1CAM, which is a key protein involved in early nervous system development, is known to be abnormally expressed and shed in several types of cancers where it participates in metastasis and progression. The distinction of L1CAM presence in cancerous vs. normal tissues has suggested it to be a new target for cancer treatment. Our current study focused on the potential role of soluble L1CAM in breast cancer cell adhesion to extracellular matrix proteins, migration, and invasion.  相似文献   

11.
Matrix metalloproteinase 9 (MMP-9) and interleukin-8 (IL-8) play major roles in tumor progression and invasion of breast cancer cells. The present study was undertaken to investigate the inhibitory mechanism of cell invasion by luteolin 8-C-β-fucopyranoside (named as LU8C-FP), a C-glycosylflavone, in human breast cancer cells. We investigated whether LU8C-FP would inhibit MMP-9 activation and IL-8 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 breast cancer cells. LU8C-FP suppressed TPA-induced MMP-9 and IL-8 secretion and mRNA expression via inhibition of the MAPK signaling pathway and down-regulation of nuclear AP-1 and NF-κB. TPA-induced phosphorylation of ERK 1/2 was suppressed by LU8C-FP, whereas JNK and p38 MAPK phosphorylation were unaffected. In addition, LU8C-FP blocked the ERK 1/2 pathways following expression of MMP-9 and IL-8. These results suggest LU8C-FP may function to suppress invasion of breast cancer cells through the ERK/AP-1 and ERK/NF-κB signaling cascades.  相似文献   

12.
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment play major roles in supporting cancer progression. A previous report showed that SPIN90 downregulation is correlated with CAF activation and that SPIN90-deficient CAFs promote breast cancer progression. However, the mechanisms that mediate cancer-stroma interaction and how such interactions regulate cancer progression are not well understood. Here, we show that extra domain A (EDA)-containing fibronectin (FN), FN(+)EDA, produced by mouse embryonic fibroblasts (MEFs) derived from Spin90-knockout (KO) mice increases their own myofibroblast differentiation, which facilitates breast cancer progression. Increased FN(+)EDA in Spin90-KO MEFs promoted fibril formation in the extracellular matrix (ECM) and specifically interacted with integrin α4β1 as the mediating receptor. Moreover, FN(+)EDA expression by Spin90-KO MEFs increased proliferation, migration, and invasion of breast cancer cells. Irigenin, a specific inhibitor of the interaction between integrin α4β1 and FN(+)EDA, significantly blocked the effects of FN(+)EDA, such as fibril formation by Spin90-KO MEFs and proliferation, migration, and invasion of breast cancer cells. In orthotopic breast cancer mouse models, irigenin injection remarkably reduced tumor growth and lung metastases. It was supported by that FN(+)EDA in assembled fibrils was accumulated in cancer stroma of human breast cancer patients in which SPIN90 expression was downregulated. Our data suggest that SPIN90 downregulation increases FN(+)EDA and promotes ECM stiffening in breast cancer stroma through an assembly of long FN(+)EDA-rich fibrils; moreover, engagement of the Integrin α4β1 receptor facilitates breast cancer progression. Inhibitory effects of irigenin on tumor growth and metastasis suggest the potential of this agent as an anticancer therapeutic.  相似文献   

13.
越来越多的证据显示乳腺癌干细胞是导致乳腺癌发生、发展、复发和转移的根源。因此,模拟出与人乳腺癌发病机制相似的动物模型将对乳腺癌的治疗起着至关重要的作用。本文旨在介绍乳腺癌干细胞异种移植动物模型的制备方法、应用以及近年来的研究进展。  相似文献   

14.
TH Hsieh  CF Tsai  CY Hsu  PL Kuo  E Hsi  JL Suen  CH Hung  JN Lee  CY Chai  SC Wang  EM Tsai 《PloS one》2012,7(8):e42750
Environmental hormones play important roles in regulating the expression of genes involved in cell proliferation, drug resistance, and breast cancer risk; however, their precise role in human breast cancer cells during cancer progression remains unclear. To elucidate the effect of the most widely used industrial phthalate, n-butyl benzyl phthalate (BBP), on cancer progression, we evaluated the results of BBP treatment using a whole human genome cDNA microarray and MetaCore software and selected candidate genes whose expression was changed by more than ten-fold by BBP compared with controls to analyze the signaling pathways in human breast cancer initiating cells (R2d). A total of 473 genes were upregulated, and 468 were downregulated. Most of these genes are involved in proliferation, epithelial-mesenchymal transition, and angiogenesis signaling. BBP induced the viability, invasion and migration, and tube formation in vitro, and Matrigel plug angiogenesis in vivo of R2d and MCF-7. Furthermore, the viability and invasion and migration of these cell lines following BBP treatment was reduced by transfection with a small interfering RNA targeting the mRNA for lymphoid enhancer-binding factor 1; notably, the altered expression of this gene consistently differentiated tumors expressing genes involved in proliferation, epithelial-mesenchymal transition, and angiogenesis. These findings contribute to our understanding of the molecular impact of the environmental hormone BBP and suggest possible strategies for preventing and treating human breast cancer.  相似文献   

15.
The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.  相似文献   

16.

Background

Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. The purpose of the present study is to examine the effect of Smurf2 knockdown on the tumorigenic potential of human breast cancer cells emphasizing more on proliferative signaling pathway.

Methods

siRNAs targeting different regions of the Smurf2 mRNA were employed to knockdown the expression of Smurf2. The biological effects of synthetic siRNAs on human breast cancer cells were investigated by examining the cell proliferation, migration, invasion, focus formation, anchorage-independent growth, cell cycle arrest, and cell cycle and cell proliferation related protein expressions upon Smurf2 silencing.

Results

Smurf2 silencing in human breast cancer cells resulted in a decreased focus formation potential and clonogenicity as well as in vitro cell migration/invasion capabilities. Moreover, knockdown of Smurf2 suppressed cell proliferation. Cell cycle analysis showed that the anti-proliferative effect of Smurf2 siRNA was mediated by arresting cells in the G0/G1 phase, which was caused by decreased expression of cyclin D1and cdk4, followed by upregulation p21 and p27. Furthermore, we demonstrated that silencing of Smurf2 downregulated the proliferation of breast cancer cells by modulating the PI3K- PTEN-AKT-FoxO3a pathway via the scaffold protein CNKSR2 which is involved in RAS-dependent signaling pathways. The present study provides the first evidence that silencing Smurf2 using synthetic siRNAs can regulate the tumorigenic properties of human breast cancer cells in a CNKSR2 dependent manner.

Conclusions

Our results therefore suggest a novel relation between Smurf2 and CNKSR2 thereby regulating AKT-dependent cell proliferation and invasion. Owing to the fact that PI3K-AKT signaling is hyperactivated in various human cancers and that Smurf2 also regulates cellular transformation, our results indicate that Smurf2 may serve as a potential molecule for targeted cancer therapy of certain tumour types including breast cancer.
  相似文献   

17.
Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.  相似文献   

18.
As a pancreatic inflammatory marker, regenerating islet-derived protein 3A (Reg3A) plays a key role in inflammation-associated pancreatic carcinogenesis by promoting cell proliferation, inhibiting apoptosis, and regulating cancer cell migration and invasion. This study aimed to reveal a novel immuno-regulatory mechanism by which Reg3A modulates tumour-promoting responses during pancreatic cancer (PC) progression. In an in vitro Transwell system that allowed the direct co-culture of human peripheral blood-derived dendritic cells (DCs) and Reg3A-overexpressing/ silenced human PC cells, PC cell-derived Reg3A was found to downregulate CD80, CD83 and CD86 expression on educated DCs, increase DC endocytic function, inhibit DC-induced T lymphocyte proliferation, reduce IL-12p70 production, and enhance IL-23 production by DCs. The positive effect of tumour-derived Reg3A-educated human DCs on PC progression was demonstrated in vivo by intraperitoneally transferring them into PC-implanted severe combined immunodeficiency (SCID) mice reconstituted with human T cells. A Reg3A-JAK2/STAT3 positive feedback loop was identified in DCs educated with Reg3A. In conclusion, as a tumour-derived factor, Reg3A acted to block the differentiation and maturation of the most important antigen-presenting cells, DCs, causing them to limit their potential anti-tumour responses, thus facilitating PC escape and progression.  相似文献   

19.
20.
Helicobacter pylori (H. pylori) is one of the main causes of gastric cancer. It has been reported that circRNAs play a vital role in the development of multiple types of cancer. However, the role of H. pylori-induced circRNAs in the development of gastric cancer has not been studied. In this study, we found that H. pylori could induce the upregulation of circMAN1A2 in AGS and BGC823 cells independent of CagA. The downregulation of circMAN1A2 could inhibit the proliferation, migration and invasion of gastric cancer cells, and circMAN1A2 could promote the progression of gastric cancer induced by H. pylori by sponging miR-1236-3p to regulate MTA2 expression. Furthermore, circMAN1A2 knockdown inhibited xenograft tumour growth in vivo, and the overexpression of circMAN1A2 was associated with the progression of gastric cancer. Hence, Helicobacter pylori induced circMAN1A2 expression to promote the carcinogenesis of gastric cancer, and circMAN1A2 might be a new potential diagnostic marker and therapeutic target for gastric cancer.Subject terms: Cancer, Non-coding RNAs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号