首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Enzymes synthesizing reactive oxygen (Nox family) have recently been identified. Elucidation of the production mechanism has been initiated, and the involvement of reactive oxygen in metabolism, intracellular transport, signal transmission and apoptosis has been reported. We immunohistochemically investigated expression and localization of the Nox family in endochondral ossification using a normal mouse femur. Weakly positive reactions with Nox1, Noxa1, and Noxo1 were observed in the zones of proliferative and prehypertrophic chondrocytes at 3 weeks of age. Nox4 was widely positive from the resting over the hypertrophic cell zone. At 18 weeks of age, none of the Nox types was expressed in chondrocytes as the zones disappeared. On the other hand, positive reactions with Nox1, Noxa1, Noxo1, and Nox4 were observed in osteoblasts in the zone of ossification at 3 weeks of age, and each Nox was also positive in osteoblasts arranged on the bone marrow side in the epiphyseal cartilage at 18 weeks of age. In addition, a reactive oxygen-eliminating enzyme, Mn-SOD, was observed only in prehypertrophic chondrocytes at 3 weeks of age, and not detected in osteoblasts. It was suggested that the Nox family is closely associated with endochondral ossification of the mouse femur, and Nox1 and Nox4 are closely involved in the chondrocyte maturation process and bone matrix formation.  相似文献   

2.
It is well established that growth-factor-induced reactive oxygen species (ROS) act as second messengers in cell signaling. We have previously reported that betaPix, a guanine nucleotide exchange factor for Rac, interacts with NADPH oxidase 1 (Nox1) leading to EGF-induced ROS generation. Here, we report the identification of the domains of Nox1 and betaPix responsible for the interaction between the two proteins. GST pull-down assays show that the PH domain of betaPix binds to the FAD-binding region of Nox1. We also show that overexpression of the PH domain of betaPix results in inhibition of superoxide anion generation in response to EGF. Additionally, NADPH oxidase Organizer 1 (NoxO1) is shown to interact with the NADPH-binding region of Nox1. These results suggest that the formation of the complex consisting of Nox1, betaPix, and NoxO1 is likely to be a critical step in EGF-induced ROS generation.  相似文献   

3.
摘要 目的:观察Nox2对AngII活化的人肾上腺皮质腺癌细胞(H295R细胞)醛固酮合成的影响。方法:将H295R细胞分为正常对照组、AngII、AngII+gp91ds-tat(Nox2抑制剂)组、AngII+PEG-Cat(H2O2清除剂)组、AngII+Nox2 siRNA组及不同时间的AngII组,采用Q-PCR和western blot检测醛固酮合成酶(CYP11B2)和Nox2基因及蛋白水平;放免法检测细胞上清液醛固酮浓度;应用流式细胞术和酶标仪检测细胞内Nox2来源的ROS和H2O2的含量。结果:10 nmol/L AngII以时间依赖性增加H295R细胞内ROS和H2O2含量、Nox2和CYP11B2表达、醛固酮合成(P<0.05)。与正常对照组相比,gp91ds-tat和PEG-Cat明显降低AngII诱导的细胞内ROS和H2O2含量(P<0.05),而gp91ds-tat组和PEG-Cat组AngII诱导的细胞内ROS和H2O2抑制作用无差别(P>0.05)。10 nmol/L AngII 处理24 h诱导H295R细胞CYP11B2表达(P<0.05),而gp91ds-tat组、PEG-Cat组和Nox2 siRNA组明显抑制AngII诱导H295R细胞CYP11B2表达(P<0.05)。结论:Nox2来源的ROS在AngII诱导的醛固酮合成过程中起主要调控作用。  相似文献   

4.
Glioblastoma multiforme is a common primary brain tumor in adults and one of the most devastating human cancers. Reactive oxygen species (ROS) generated by NADPH oxidase (Nox) 4 have recently been a focus of attention in the study of glioblastomas, but the molecular mechanisms underlying the actions of Nox4 remain elusive. In this study, we demonstrated that silencing of Nox4 expression by Nox4-targeted siRNA suppressed cell growth and motility of glioblastoma U87 cells, indicating the involvement of Nox4. Furthermore, Nox4-derived ROS oxidized and inactivated protein tyrosine phosphatase (PTP):1B: PTP1B in its active form downregulates cell proliferation and migration. By affinity purification with the substrate-trapping mutant of PTP1B, tyrosine-phosphorylated coronin-1C was identified as a substrate of PTP1B. Its tyrosine phosphorylation level was suppressed by Nox4 inhibition, suggesting that tyrosine phosphorylation of coronin-1C is regulated by the Nox4–PTP1B pathway. Finally, ablation of coronin-1C attenuated the proliferative and migratory activity of the cells. Collectively, these findings reveal that Nox4-mediated redox regulation of PTP1B serves as a modulator, in part through coronin-1C, of the growth and migration of glioblastoma cells, and provide new insight into the mechanistic aspect of glioblastoma malignancy.  相似文献   

5.
Helicobacter pylori infection has been suggested to stimulate expression of the NADPH oxidase 1 (Nox1)-based oxidase system in guinea pig gastric epithelium, whereas Nox1 mRNA expression has not yet been documented in the human stomach. PCR of human stomach cDNA libraries showed that Nox1 and Nox organizer 1 (NOXO1) messages were absent from normal stomachs, while they were specifically coexpressed in intestinal- and diffuse-type adenocarcinomas including signet-ring cell carcinoma. Immunohistochemistry showed that Nox1 and NOXO1 proteins were absent from chronic atrophic gastritis (15 cases), adenomas (4 cases), or surrounding tissues of adenocarcinomas (45 cases). In contrast, Nox1 and its partner proteins were expressed in intestinal-type adenocarcinomas (19/21 cases), diffuse-type adenocarcinomas (15/15 cases), and signet-ring cell carcinomas (9/9 cases). Confocal microscopy revealed that Nox1, NOXO1, Nox activator 1, and p22phox were predominantly associated with Golgi apparatus in these cancer cells, while diffuse-type adenocarcinomas also contained cancer cells having Nox1 and its partner proteins in their nuclei. Nox1-expressing cancer cells exhibited both gastric and intestinal phenotypes, as assessed by expression of mucin core polypeptides. Thus, the Nox1-base oxidase may be a potential marker of neoplastic transformation and play an important role in oxygen radical- and inflammation-dependent carcinogenesis in the human stomach.  相似文献   

6.
Accumulating evidence indicates that protein phosphorylation regulates Nox activity. In this report, we show that serine282 residue of Nox activator 1 (NoxA1) is phosphorylated by Erk in response to EGF resulting in desensitization of Nox1 activity. Specifically, murine NoxA1 is detected as two independent protein bands in SDS PAGE, and the form of protein with higher mobility shifted to and merged with the one with lower mobility in response to EGF treatment. Pretreatment with PD98059 resulted in inhibition of NoxA1 migration in response to EGF indicating that Erk was involved in the process. Site-directed mutagenesis showed that S282A mutant but not S239A mutant failed to respond to EGF, demonstrating that serine282 is the target amino acid of Erk. Expression of S282A mutant of NoxA1 in these cells led to increased superoxide anion production in response to EGF compared to expression of the wild type, whereas the expression of S282E, a phosphomimetic mutant, resulted in significantly decreased superoxide anion generation. We also tested whether the phosphorylation of serine282 of NoxA1 affects Rac activation. Expression of S282A mutant NoxA1 up-regulated the Rac activity, whereas expression of S282E mutant led to the abrogation of Rac activation. Taken together, these results demonstrate that phosphorylation of NoxA1 is a part of the feedback mechanism that functions through activation of Rac with a net outcome of negative modulation of Nox1 activity.  相似文献   

7.
NADPH oxidase complexes are multiprotein assemblies that generate reactive oxygen species in a variety of mammalian tissues. The canonical phagocytic oxidase consists of a heterodimeric, enzymatic core comprised of the transmembrane proteins, CYBB andCYBA and is regulated, in part, by an “organizing” function of NCF1 and an “activating” activity of NCF2. In contexts outside of the phagocyte, these regulatory functions may be encoded not only by NCF1 and NCF2, but also alternatively by their respective paralogues, NOXO1 and NOXA1. To allow tissue‐specific dissection of Noxa1 function in mouse, we have generated an allele of Noxa1 suitable for conditional inactivation. Moreover, by crossing Noxa1 conditional allele carriers to B6.129S4‐Meox2tm1(Cre)Sor/J mice, we have generated first, Noxa1‐null heterozygotes, and ultimately, Noxa1‐null homozygotes. Through the thoughtful use of tissue‐specific, Cre‐expressing mouse strains, the Noxa1 conditional allele will offer insight into the roles of NOXA1 in the variety of tissues in which it is expressed. genesis 48:568–575, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
NADPH oxidase organizer 1 (Noxo1), harboring a PX domain, two SH3 domains, and a proline-rich region (PRR), participates in activation of superoxide-producing Nox-family NADPH oxidases. Here, we show that Noxo1 supports superoxide production in a cell-free system for gp91(phox)/Nox2 activation by arachidonic acid. This lipid enhances an SH3-mediated binding of Noxo1 to p22(phox), a protein complexed with Nox oxidases; the binding is known to be required for Nox activation. We also demonstrate that the bis-SH3 domain directly interacts with the Noxo1 PRR. The interaction appears to prevent the bis-SH3 domain and PRR from binding to their target proteins; disruption of the intramolecular interaction facilitates Noxo1 binding to p22(phox) and also allows the PRR to associate with the Nox activator Noxa1, which association is crucial for Nox activation as well. These findings suggest that Nox activation involves a conformational change leading to disruption of the bis-SH3-PRR interaction in Noxo1.  相似文献   

9.
10.
Neurodegenerative diseases are attributed to impairment of the ubiquitin–proteasome system (UPS). Oxidative stress has been considered a contributing factor in the pathology of impaired UPS by promoting protein misfolding and subsequent protein aggregate formation. Increasing evidence suggests that NADPH oxidase is a likely source of excessive oxidative stress in neurodegenerative disorders. However, the mechanism of activation and its role in impaired UPS is not understood. We show that activation of NADPH oxidase in a neuroblastoma cell line (SHSY-5Y) resulted in increased oxidative and nitrosative stress, elevated cytosolic calcium, ER-stress, impaired UPS, and apoptosis. Rac1 inhibition mitigated the oxidative/nitrosative stress, prevented calcium-dependent ER-stress, and partially rescued UPS function. These findings demonstrate that Rac1 and NADPH oxidase play an important role in rotenone neurotoxicity.  相似文献   

11.
NADPH oxidase Nox2 is involved in the production of superoxide by rheumatoid synovial cells, constitutively and after pro-inflammatory cytokine treatment. The aims of the study were to evaluate the capacity of these cells to produce the superoxide anion in response to arachidonic acid (AA), and to study the involvement of cytosolic phospholipase A(2) (cPLA(2)) in the cytokine regulation of Nox2. Superoxide production was quantified in synovial cells obtained from six patients with rheumatoid arthritis (RA) and six with osteoarthritis (OA), stimulated with (i) AA, and (ii) PLA(2) inhibitors prior to IL-1beta or TNF-alpha treatment. Total cellular AA concentrations and PLA(2) activity were measured; effects of cytokines and NADPH oxidase inhibitors on the AA-activatable proton channel opening were also studied. Our results demonstrated that AA enhanced superoxide production in RA and OA cells; this production was significantly inhibited by iodonium diphenyl and apocynin. cPLA(2) inhibitors inhibited both IL-1beta and TNF-alpha-induced superoxide production in RA and OA cells. Basal PLA(2) activity was significantly more important in RA cells than in OA cells; PLA(2) activity was increased in IL-1beta and TNF-alpha pre-treated RA cells, and cPLA(2) inhibitors inhibited this activity. Opening of the AA-activatable proton channel was amplified when RA cells were pre-treated with both IL-1beta and TNF-alpha, and iodonium diphenyl and apocynin inhibited these cytokine effects. We concluded that AA is an important cofactor for synovial NADPH oxidase activity. Despite their direct effects on p47-phox phosphorylation, cytokines can also regulate the Nox2 activity though the AA-activatable associated H(+) channel.  相似文献   

12.
To illuminate the origins of NADPH oxidase (Nox), we identified cDNA clones encoding Nox2, Nox4, p22 phagocyte oxidase (phox), p47phox, and p67phox in a chordate phylogenetically distant to the vertebrates, the sea squirt Ciona intestinalis. We also examined the spatiotemporal expression of these genes in embryos and juveniles. The sequences of the Nox2, Nox4, p22phox, p47phox, and p67phox cDNAs contained open reading frames encoding 581, 811, 175, 461, and 515 amino acids, respectively. The level of identities between the deduced Nox2, Nox4, p22phox, p47phox, and p67phox amino acid sequences and their corresponding human components were 54.0, 31.0, 44.4, 36.0, and 26.2%, respectively. Despite these low identities, the functional domains of the C. intestinalis and human NADPH oxidase and Nox4 are highly conserved. The genomic organizations of the components of the NADPH oxidase gene except for p67phox (a single exon gene) and the Nox4 gene in C. intestinalis are highly similar to those of the corresponding human NADPH oxidase genes. Further, the analyzed part of the C. intestinalis genome and EST database do not seem to present p40phox and Nox5. The Nox2, p22phox, p47phox, and p67phox genes were specifically expressed in the blood cells of juveniles. The Nox4 gene was expressed in blood cells and endostyle of juveniles. These results suggest that C. intestinalis NADPH oxidase components possess potential functional activities similar to those of human, but the manner in which cytosolic phox proteins in C. intestinalis interact is different from that in human.  相似文献   

13.
14.
Increased oxidative stress and inflammation have an important role in the pathophysiology of chronic kidney disease (CKD). On the other hand, more affordable therapeutic alternatives for treating this disease are urgently needed. Therefore, we compared the therapeutic efficacy of curcumin and mycophenolate mofetil (MMF) in 5/6 nephrectomy (5/6 Nx) model of CKD. Also, we evaluated whether both compounds provide benefit through the preservation of similar antioxidant mechanisms. Four groups of male Wistar were studied over a period of 4 wk. Control sham group (n=?12), 5/6 Nx (n?=?12), 5/6 Nx?+?MMF (30?mg/k BW/day, n?=?11) and 5/6 Nx?+?Curcumin (120?mg/k BW/day, n?=?12). Renal function and markers of oxidative stress and inflammation were evaluated. Also Nrf2-Keap1 and renal dopamine, antioxidant pathways were assessed. 5/6 Nx induced an altered renal autoregulation response, proteinuria, and hypertension; these effects were in association with increased oxidative stress, endothelial dysfunction and renal inflammation. The mechanisms associated with these alterations included a reduced nuclear translocation of Nrf2 and hyperphosphorylation of dopamine D1 receptor with a concurrent overactivation of renal NADPH oxidase. Treatments with MMF and curcumin provided equivalent therapeutic efficacy as both prevented functional renal alterations as well as preserved antioxidant capacity and avoided renal inflammatory infiltration. Moreover, both treatments preserved Nrf2-Keap1 and renal dopamine antioxidant pathways. In summary, therapeutic strategies aimed to preserve renal antioxidant pathways can help to retard the progression of CKD.  相似文献   

15.
Reactive oxygen species generated by NADPH oxidase 5 (Nox5) have been implicated in physiological and pathophysiological signaling pathways, including cancer development and progression. However, because immunological tools are lacking, knowledge of the role of Nox5 in tumor biology has been limited; the expression of Nox5 protein across tumors and normal tissues is essentially unknown. Here, we report the characterization and use of a mouse monoclonal antibody against a recombinant Nox5 protein (bp 600–746) for expression profiling of Nox5 in human tumors by tissue microarray analysis. Using our novel antibody, we also report the detection of endogenous Nox5 protein in human UACC-257 melanoma cells. Immunofluorescence, confocal microscopy, and immunohistochemical techniques were employed to demonstrate Nox5 localization throughout UACC-257 cells, with perinuclear enhancement. Tissue microarray analysis revealed, for the first time, substantial Nox5 overexpression in several human cancers, including those of prostate, breast, colon, lung, brain, and ovary, as well as in malignant melanoma and non-Hodgkin lymphoma; expression in most nonmalignant tissues was negative to weak. This validated mouse monoclonal antibody will promote further exploration of the functional significance of Nox5 in human pathophysiology, including tumor cell growth and proliferation.  相似文献   

16.
Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.  相似文献   

17.
The phagocyte NADPH oxidase Nox2, heterodimerized with p22phox in the membrane, is dormant in resting cells but becomes activated upon cell stimulation to produce superoxide, a precursor of microbicidal oxidants. Nox2 activation requires two switches to be turned on simultaneously: a conformational change of the cytosolic protein p47phox and GDP/GTP exchange on the small GTPase Rac. These proteins, in an active form, bind to their respective targets, p22phox and p67phox, leading to productive oxidase assembly at the membrane. Although arachidonic acid (AA) efficiently activates Nox2 both in vivo and in vitro, the mechanism has not been fully understood, except that AA induces p47phox conformational change. Here we show that AA elicits GDP-to-GTP exchange on Rac at the cellular level, consistent with its role as a potent Nox2 activator. However, even when constitutively active forms of p47phox and Rac1 are both expressed in HeLa cells, superoxide production by Nox2 is scarcely induced in the absence of AA. These active proteins also fail to effectively activate Nox2 in a cell-free reconstituted system without AA. Without affecting Rac-GTP binding to p67phox, AA induces the direct interaction of Rac-GTP-bound p67phox with the C-terminal cytosolic region of Nox2. p67phox-Rac-Nox2 assembly and superoxide production are both abrogated by alanine substitution for Tyr-198, Leu-199, and Val-204 in the p67phox activation domain that localizes the C-terminal to the Rac-binding domain. Thus the “third” switch (AA-inducible interaction of p67phox·Rac-GTP with Nox2) is required to be turned on at the same time for Nox2 activation.  相似文献   

18.
The macroautophagic/autophagic machinery cannot only target cell-endogenous components but also intracellular pathogenic bacteria such as Listeria monocytogenes. Listeria are targeted both by canonical autophagy and by a noncanonical form of autophagy referred to as LC3-associated phagocytosis (LAP). The molecular mechanisms involved and whether these processes contribute to anti-listerial immunity or rather provide Listeria with a replicative niche for persistent infection, however, remained unknown. Recently, using an in vivo mouse infection model, we have been able to demonstrate that Listeria in tissue macrophages are targeted exclusively by LAP. Furthermore, our data show that LAP is required for killing of Listeria by macrophages and thereby contributes to anti-listerial immunity of mice, whereas canonical autophagy is completely dispensable. Moreover, we have elucidated the molecular mechanisms that trigger LAP of Listeria and identified the integrin ITGAM-ITGB2/Mac-1/CR3/integrin αMß2 as the receptor that initiates LAP in response to Listeria infection.  相似文献   

19.
4E-BP1 is a protein that, in its hypophosphorylated state, binds the mRNA cap-binding protein eIF4E and represses cap-dependent mRNA translation. By doing so, it plays a major role in the regulation of gene expression by controlling the overall rate of mRNA translation as well as the selection of mRNAs for translation. Phosphorylation of 4E-BP1 causes it to release eIF4E to function in mRNA translation. 4E-BP1 is also subject to covalent addition of N-acetylglucosamine to Ser or Thr residues (O-GlcNAcylation) as well as to truncation. In the truncated form, it is both resistant to phosphorylation and able to bind eIF4E with high affinity. In the present study, Ins2(Akita/+) diabetic mice were used to test the hypothesis that hyperglycemia and elevated flux of glucose through the hexosamine biosynthetic pathway lead to increased O-GlcNAcylation and truncation of 4E-BP1 and consequently decreased eIF4E function in the liver. The amounts of both full-length and truncated 4E-BP1 bound to eIF4E were significantly elevated in the liver of diabetic as compared with non-diabetic mice. In addition, O-GlcNAcylation of both the full-length and truncated proteins was elevated by 2.5- and 5-fold, respectively. Phlorizin treatment of diabetic mice lowered blood glucose concentrations and reduced the expression and O-GlcNAcylation of 4E-BP1. Additionally, when livers were perfused in the absence of insulin, 4E-BP1 phosphorylation in the livers of diabetic mice was normalized to the control value, yet O-GlcNAcylation and the association of 4E-BP1 with eIF4E remained elevated in the liver of diabetic mice. These findings provide insight into the pathogenesis of metabolic abnormalities associated with diabetes.  相似文献   

20.
Hedgehog (Hh) signaling is conserved from flies to humans and is indispensable in embryogenesis and adulthood. Patched (Ptc) encodes a receptor for Hh ligands and functions as a tumor suppressor. PTCH1 mutations in humans are found in basal cell carcinoma (BCC) and irradiated Ptc1(+/-) mice recapitulate this phenotype. However, due to embryonic lethality associated with the Ptc1 null mutation, its normal function in embryonic and adult skin remains unknown. Here we describe the epidermal phenotypes of a spontaneous and viable allele of Ptc1, Ptc1(mes), in which the C-terminal domain (CTD) is truncated. Ptc1(mes/mes) embryos display normal epidermal and hair follicle development. Postnatal Ptc1(mes/mes) skin displays severe basal cell layer hyperplasia and increased proliferation, while stratification of the suprabasal layers is mostly normal. Interestingly, truncation of the Ptc1 CTD did not result in skin tumors. However, long term labeling studies revealed a greater than three-fold increase in label-retaining cells in the interfollicular epidermis of Ptc1(mes/mes) adults, indicating possible expansion of the epidermal stem cell compartment. Increased expression of regulators of epidermal homeostasis, c-Myc and p63, was also observed in Ptc1(mes/mes) adult skin. These results suggest that the CTD of Ptc1 is involved in regulating epidermal homeostasis in mature skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号