共查询到20条相似文献,搜索用时 15 毫秒
1.
Martina Schweiger Margret Paar Christina Eder Janina Brandis Elena Moser Gregor Gorkiewicz Susanne Grond Franz P. W. Radner Ines Cerk Irina Cornaciu Monika Oberer Sander Kersten Rudolf Zechner Robert Zimmermann Achim Lass 《Journal of lipid research》2012,53(11):2307-2317
The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL), which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 switch gene-2 (G0S2). CGI-58 activates and G0S2 inhibits ATGL activity. In contrast to mice, the functional role of G0S2 in human adipocyte lipolysis is poorly characterized. Here we show that overexpression or silencing of G0S2 in human SGBS adipocytes decreases and increases lipolysis, respectively. Human G0S2 is upregulated during adipocyte differentiation and inhibits ATGL activity in a dose-dependent manner. Interestingly, C-terminally truncated ATGL mutants, which fail to localize to lipid droplets, translocate to the lipid droplet upon coexpression with G0S2, suggesting that G0S2 anchors ATGL to lipid droplets independent of ATGL''s C-terminal lipid binding domain. Taken together, our results indicate that G0S2 also regulates human lipolysis by affecting enzyme activity and intracellular localization of ATGL. Increased lipolysis is known to contribute to the pathogenesis of insulin resistance, and G0S2 expression has been shown to be reduced in poorly controlled type 2 diabetic patients. Our data indicate that downregulation of G0S2 in adipose tissue could represent one of the underlying causes leading to increased lipolysis in the insulin-resistant state. 相似文献
2.
Adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) are major novel triglyceride lipases in animals. The aim of this study was to determine if there are differences in the porcine ATGL ( pATGL ) and HSL genes between Jinhua pigs (a fatty breed) and Landrace pigs (a leaner breed). In addition, the effect of TNFα and pATGL-specific siRNA ( pATGL-siRNA ) on the expression of pATGL and HSL in porcine adipocytes was also examined. Compared with Landrace pigs, the body weight ( BW ) of Jinhua pigs was lower ( P < 0.01), while intramuscular fat content (in the longissimus dorsi muscle), as well as the back fat thickness and body fat content were higher ( P < 0.01). The expression of pATGL and HSL mRNA in Jinhua pigs was lower ( P < 0.01) in subcutaneous adipose tissue, and greater ( P < 0.01) in longissimus dorsi muscle compared with Landrace pigs. In vitro treatment of porcine adipocytes with TNFα decreased ( P < 0.01) the glycerol release and the gene expression of pATGL , HSL and PPARγ in porcine adipocytes. Furthermore, transfection with pATGL-siRNA significantly decreased ( P < 0.01) the expression of pATGL , while it had no effect on the expression of HSL . Treatment with 25 ng/ml TNFα in conjunction with pATGL-siRNA significantly decreased ( P < 0.01) the expression of pATGL and HSL in cultured porcine adipocytes. These results provide useful information to further the understanding of the function of pATGL and HSL in porcine lipid metabolism, which should be applicable to the regulation of fat deposition and improvement of meat quality. 相似文献
3.
Robert Zimmermann Achim Lass Guenter HaemmerleRudolf Zechner 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(6):494-500
Lipolysis, the coordinated catabolism of triacylglycerol (TG) stored in cellular lipid droplets, provides fatty acids, di-, and monoglycerides. These products are important energy substrates, precursors for other lipids, or lipid signaling molecules. Following their discovery by Hollenberg, C.H., Raben, M.S., and Astwood, E.B.(1961) and Vaughan, M., Berger, J.E., and Steinberg, D. (1964), hormone-sensitive lipase (HSL) and monoacylglycerol lipase stayed in the focus of research for three decades. Within the last decade, however, it became evident that the lipolytic pathway is incompletely understood. Studies on the regulation of lipolysis and the characterization of HSL-deficient mice indicated that additional previously unrecognized factors that contribute to fat catabolism must exist. This led to the discovery of the perilipin, adipophilin, Tip47 (PAT) family of lipid droplet binding proteins and the identification of a novel TG hydrolase named adipose triglyceride lipase (ATGL). This review focuses on the importance of ATGL as TG lipase within the “lipolytic machinery” and the current knowledge of molecular mechanisms that regulate ATGL activity. 相似文献
4.
Simonis G Briem SK Schoen SP Bock M Marquetant R Strasser RH 《Molecular and cellular biochemistry》2007,305(1-2):103-111
Objectives Protein kinase C (PKC) is a central enzyme in the regulation of growth and hypertrophy. Little was known on PKC isoform regulation
in human heart. Goal of this study was to characterize the isoforms of protein kinase C in human heart, their changes during
ontogenesis, and their regulation in myocardial hypertrophy and heart failure.
Methods In left ventricular and atrial samples from adults with end-stage dilated cardiomyopathy (DCM), from adults with severe aortic
stenosis (AS), from small infants undergoing repair of ventricular septal defects, and from healthy organ donors (CO), activity
of protein kinase C and the expression of its isozymes were examined.
Results In the adult human heart, the isoforms PKC-α, PCK-β, PKC-δ, PKC-ε, PKC-λ/-ι, and PKC-ζ were detected both on protein and on
mRNA level. All isozymes are subjected to downregulation during ontogenesis. No evidence, however, exists for an isoform shift
from infancy to adulthood. DCM leads to a pronounced upregulation of PKC-β. Severe left ventricular hypertrophy in AS, however,
recruits a distinct isoform pattern, i.e., isoforms PKC-α, PKC-δ, PKC-ε, PKC-λ/-ι, and PKC-ζ are upregulated, whereas PKC-β
is not changed under this condition.
Conclusion This work gives evidence for a differential recruitment of human PKC isoforms in various forms of myocardial hypertrophy and
heart failure.
Gregor Simonis and Steffen K. Briem contributed equally to this work. 相似文献
5.
Inoue T Kobayashi K Inoguchi T Sonoda N Fujii M Maeda Y Fujimura Y Miura D Hirano K Takayanagi R 《The Journal of biological chemistry》2011,286(37):32045-32053
We examined the effects of adipose triglyceride lipase (ATGL) on the initiation of atherosclerosis. ATGL was recently identified as a rate-limiting triglyceride (TG) lipase. Mutations in the human ATGL gene are associated with neutral lipid storage disease with myopathy, a rare genetic disease characterized by excessive accumulation of TG in multiple tissues. The cardiac phenotype, known as triglyceride deposit cardiomyovasculopathy, shows massive TG accumulation in both coronary atherosclerotic lesions and the myocardium. Recent reports show that myocardial triglyceride content is significantly higher in patients with prediabetes or diabetes and that ATGL expression is decreased in the obese insulin-resistant state. Therefore, we investigated the effect of decreased ATGL activity on the development of atherosclerosis using human aortic endothelial cells. We found that ATGL knockdown enhanced monocyte adhesion via increased expression of TNFα-induced intercellular adhesion molecule-1 (ICAM-1). Next, we determined the pathways (MAPK, PKC, or NFκB) involved in ICAM-1 up-regulation induced by ATGL knockdown. Both phosphorylation of PKC and degradation of IκBα were increased in ATGL knockdown human aortic endothelial cells. In addition, intracellular diacylglycerol levels and free fatty acid uptake via CD36 were significantly increased in these cells. Inhibition of the PKC pathway using calphostin C and GF109203X suppressed TNFα-induced ICAM-1 expression. In conclusion, we showed that ATGL knockdown increased monocyte adhesion to the endothelium through enhanced TNFα-induced ICAM-1 expression via activation of NFκB and PKC. These results suggest that reduced ATGL expression may influence the atherogenic process in neutral lipid storage diseases and in the insulin-resistant state. 相似文献
6.
7.
The sphingolipids biosynthesis pathway generates bioactive molecules crucial to the regulation of physiological processes. We have recently reported that DAG (diacylglycerol) generated during sphingomyelin synthesis, plays an important role in PKC (protein kinase C) activation, necessary for the transit through the cell cycle (G1 to S transition) and cell proliferation (Cerbon and Lopez-Sanchez, 2003. Diacylglycerol generated during sphingomyelin synthesis is involved in protein kinase C activation and cell proliferation in Madin-Darby canine kidney cells. Biochem. J. 373, 917-924). Since pathogenic Entamoeba invadens synthesize the sphingolipids inositol-phosphate ceramide (IPC) and ethanolamine-phosphate ceramide (EPC) as well as sphingomyelin (SM), we decided to investigate when during growth initiation, the synthesis of sphingolipids takes place, DAG is generated and PKC is activated. We found that during the first 6 h of incubation there was a significant increase in the synthesis of all three sphingolipids, accompanied by a progressive increment (up to 4-fold) in the level of DAG, and particulate PKC activity was increased 4-8 times. The enhanced DAG levels coincided with decrements in the levels of sphingoid bases, conditions adequate for the activation of PKC. Moreover, we found that inhibition of sphingolipid synthesis with myriocin, specific inhibitor of the synthesis of sphinganine, reduce DAG generation, PKC activation and cell proliferation. All these inhibitory processes were restored by metabolic complementation with exogenous d-erythrosphingosine, indicating that the DAG generated during sphingolipid synthesis was necessary for PKC activation and cell proliferation. Also, we show that PI (phosphatidylinositol), PE (phosphatidylethanolamine) and PC (phosphatidylcholine) are the precursors of their respective sphingolipids (IPC, EPC and SM), and therefore sources of DAG to activate PKC. 相似文献
8.
Systemic changes during diabetes such as high glucose, dyslipidemia, hormonal changes and low grade inflammation, are believed to induce structural and functional changes in the cardiomyocyte associated with the development of diabetic cardiomyopathy. One of the hallmarks of the diabetic heart is increased oxidative stress. NADPH-oxidases (NOXs) are important ROS-producing enzymes in the cardiomyocyte mediating both adaptive and maladaptive changes in the heart. NOXs have been suggested as a therapeutic target for several diabetic complications, but their role in diabetic cardiomyopathy is far from elucidated. In this review we aim to provide an overview of the current knowledge regarding the understanding of how NOXs influences cardiac adaptive and maladaptive processes in a “diabetic milieu”. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers. 相似文献
9.
10.
Bradlee L. Heckmann Xiaodong ZhangXitao Xie Jun Liu 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(2):276-281
The G0/G1 switch gene 2 (G0S2) was originally identified in blood mononuclear cells following induced cell cycle progression. Translation of G0S2 results in a small basic protein of 103 amino acids in size. It was initially believed that G0S2 mediates re-entry of cells from the G0 to G1 phase of the cell cycle. Recent studies have begun to reveal the functional aspects of G0S2 and its protein product in various cellular settings. To date the best-known function of G0S2 is its direct inhibitory capacity on the rate-limiting lipolytic enzyme adipose triglyceride lipase (ATGL). Other studies have illustrated key features of G0S2 including sub-cellular localization, expression profiles and regulation, and possible functions in cellular proliferation and differentiation. In this review we present the current knowledge base regarding all facets of G0S2, and pose a variety of questions and hypotheses pertaining to future research directions. 相似文献
11.
Adam M. Lopez Kenneth S. Posey Stephen D. Turley 《Biochemical and biophysical research communications》2014
Sterol O-acyltransferase 2 (SOAT2), also known as ACAT2, is the major cholesterol esterifying enzyme in the liver and small intestine (SI). Esterified cholesterol (EC) carried in certain classes of plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease (WD) or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to what effect the loss of SOAT2 function might have on tissue EC sequestration in LAL-deficient mice. When weaned at 21 days, Lal−/−:Soat2+/+ mice had a whole liver cholesterol content (mg/organ) of 24.7 mg vs 1.9 mg in Lal+/+:Soat2+/+ littermates, with almost all the excess sterol being esterified. Over the next 31 days, liver cholesterol content in the Lal−/−:Soat2+/+ mice increased to 145 ± 2 mg but to only 29 ± 2 mg in their Lal−/−:Soat2−/− littermates. The level of EC accumulation in the SI of the Lal−/−:Soat2−/− mice was also much less than in their Lal−/−:Soat2+/+ littermates. In addition, there was a >70% reduction in plasma transaminase activities in the Lal−/−:Soat2−/− mice. These studies illustrate how the severity of disease in a mouse model for CESD can be substantially ameliorated by elimination of SOAT2 function. 相似文献
12.
13.
Werner J. Kovacs Khanichi N. Charles Katharina M. Walter Janis E. Shackelford Thomas M. Wikander Michael J. Richards Steven J. Fliesler Skaidrite K. Krisans Phyllis L. Faust 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2012,1821(6):895-907
Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. We previously demonstrated that peroxisomes are critical for maintaining cholesterol homeostasis, using peroxisome-deficient Pex2−/− mice on a hybrid Swiss Webster × 129S6/SvEv (SW/129) genetic background. Peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, leading to dysregulation of the endogenous sterol response mechanism. Herein, we demonstrate a more profound dysregulation of cholesterol homeostasis in newborn Pex2−/− mice congenic on a 129S6/SvEv (129) genetic background, and substantial differences between newborn versus postnatal Pex2−/− mice in factors that activate ER stress. These differences extend to relationships between activation of genes regulated by SREBP-2 versus PPARα. The SREBP-2 pathway is induced in neonatal Pex2−/− livers from 129 and SW/129 strains, despite normal hepatic cholesterol levels. ER stress markers are increased in newborn 129 Pex2−/− livers, which occurs in the absence of hepatic steatosis or accumulation of peroxins in the ER. Moreover, the induction of SREBP-2 and ER stress pathways is independent of PPARα activation in livers of newborn 129 and SW/129 Pex2−/− mice. Two-week-old wild-type mice treated with the peroxisome proliferator WY-14,643 show strong induction of PPARα-regulated genes and decreased expression of SREBP-2 and its target genes, further demonstrating that SREBP-2 pathway induction is not dependent on PPARα activation. Lastly, there is no activation of either SREBP-2 or ER stress pathways in kidney and lung of newborn Pex2−/− mice, suggesting a parallel induction of these pathways in peroxisome-deficient mice. These findings establish novel associations between SREBP-2, ER stress and PPARα pathway inductions. 相似文献
14.
Ida Coordt Elle 《FEBS letters》2010,584(11):2183-241
The nematode Caenorhabditis elegans (C. elegans) has during the last decade emerged as an invaluable eukaryotic model organism to understand the metabolic and neuro-endocrine regulation of lipid accumulation. The fundamental pathways of food intake, digestion, metabolism, and signalling are evolutionary conserved between mammals and worms making C. elegans a genetically and metabolically extremely tractable model to decipher new regulatory mechanisms of lipid storage and to understand how nutritional and genetic perturbations can lead to obesity and other metabolic diseases. Besides providing an overview of the most important regulatory mechanisms of lipid accumulation in C. elegans, we also critically assess the current methodologies to monitor lipid storage and content as various methods differ in their applicability, consistency, and simplicity. 相似文献
15.
PLIN1, a lipid droplet associated protein, has been implicated in playing a key role in the regulation of lipolysis and lipid storage in adipocytes. PLIN1 is found to be highly expressed in Leydig cells of testis, suggesting a potential role in steroidogenesis and spermatogenesis. In this study, we showed that PLIN1 was expressed in testis and that its mRNA levels declined significantly with development. To investigate the role of PLIN1, we take advantage of PLIN1-null mice. We found that the number of seminiferous tubules containing round spermatids was significantly increased at P21 (postnatal day 21). Furthermore, microarray analysis showed that there were 538 differentially expressed genes between PLIN1-null and wild-type mice at P21. The up-regulated genes in knockout mice were enriched in spermatogenesis by Gene Ontology classification. Among them, Prm1 and Wbp2nl are important for spermatogenesis which were confirmed by real-time PCR. Unexpectedly, the levels of serum testosterone and serum 17β-estradiol as well as steroidogenic genes are not altered in the PLIN1-null mice. Compared to the wild-type mice, no significant difference of fertility was found in the PLIN1-null mice. Therefore, these findings indicated that PLIN1 disruption leads to the increase of round spermatid-containing seminiferous tubules at the meiotic stage of the first wave of spermatogenesis through regulating spermatogenic related genes. 相似文献
16.
Alpha-tocopherol transfer protein (ATTP) null mice (ATTP(-/-)) have a systemic deficiency of alpha-tocopherol (AT). The heart AT levels of ATTP(-/-) are <10% of those in ATTP(+/+) mice. The genomic responses of heart to AT deficiency were determined in 3 months old male ATTP(-/-) mice and compared with their ATTP(+/+) littermate controls using Affymetrix 430A 2.0 high density oligonucleotide arrays. Differential analysis of approximately 13000 genes identified repression of genes related to immune system and activation of genes related to lipid metabolism and inflammation with no significant change in the expression of classical antioxidant genes (catalase, superoxide dismutase, glutathione peroxidase) in ATTP(-/-) as compared to ATTP(+/+) mice. The present data identifies novel classes of AT sensitive genes in heart tissue. 相似文献
17.
18.
《Journal of lipid research》2023,64(8):100405
Alpha/beta hydrolase domain-containing protein 4 (ABHD4) catalyzes the deacylation of N-acyl phosphatidyl-ethanolamine (NAPE) and lyso-NAPE to produce glycerophospho-N-acyl ethanolamine (GP-NAE). Through a variety of metabolic enzymes, NAPE, lyso-NAPE, and GP-NAE are ultimately converted into NAE, a group of bioactive lipids that control many physiological processes including inflammation, cognition, food intake, and lipolysis (i.e., oleoylethanolamide or OEA). In a diet-induced obese mouse model, adipose tissue Abhd4 gene expression positively correlated with adiposity. However, it is unknown whether Abhd4 is a causal or a reactive gene to obesity. To fill this knowledge gap, we generated an Abhd4 knockout (KO) 3T3-L1 pre-adipocyte. During adipogenic stimulation, Abhd4 KO pre-adipocytes had increased adipogenesis and lipid accumulation, suggesting Abhd4 is responding to (a reactive gene), not contributing to (not a causal gene), adiposity, and may serve as a mechanism for protecting against obesity. However, we did not observe any differences in adiposity and metabolic outcomes between whole-body Abhd4 KO or adipocyte-specific Abhd4 KO mice and their littermate control mice (both male and female) on chow or a high-fat diet. This might be because we found that deletion of Abhd4 did not affect NAE such as OEA production, even though Abhd4 was highly expressed in adipose tissue and correlated with fasting adipose OEA levels and lipolysis. These data suggest that ABHD4 regulates adipocyte differentiation in vitro but does not affect adipose tissue lipid metabolism in mice despite nutrient overload, possibly due to compensation from other NAPE and NAE metabolic enzymes. 相似文献
19.
Fabiana Rodrigues Silva Gasparin Fernando Olinto Carreño Juliana Moraes Mewes Eduardo Hideo Gilglioni Clairce Luzia Salgueiro Pagadigorria Maria Raquel Marçal Natali Karina Sayuri Utsunomiya Rodrigo Polimeni Constantin Amanda Tomie Ouchida Carlos Curti Ingrid C. Gaemers Ronald Petrus Johannes Oude Elferink Jorgete Constantin Emy Luiza Ishii-Iwamoto 《生物化学与生物物理学报:疾病的分子基础》2018,1864(7):2495-2509
20.
Kühnlein RP 《Progress in lipid research》2011,50(4):348-356
Intracellular lipid droplets have long been misconceived as evolutionarily conserved but functionally frugal components of cellular metabolism. An ever-growing repertoire of functions has elevated lipid droplets to fully-fledged cellular organelles. Insights into the multifariousness of these organelles have been obtained from a range of model systems now employed for lipid droplet research including the fruit fly, Drosophila melanogaster. This review summarizes the progress in fly lipid droplet research along four main avenues: the role of lipid droplets in fat storage homeostasis, the control of lipid droplet structure, the lipid droplet surface as a dynamic protein-association platform, and lipid droplets as mobile organelles. Moreover, the research potential of the fruit fly model is discussed with respect to the prevailing general questions in lipid droplet biology. 相似文献