首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
This study investigated the effects of a grape pomace extract (GPE) rich in phenolic compounds on brown-like adipocyte induction and adiposity in spontaneously hypertensive (SHR) and control normotensive Wistar–Kyoto (WKY) rats fed a high-fat diet (HFD). HFD consumption for 10 weeks significantly increased epididymal white adipose tissue (eWAT) in WKY but not in SHR rats. Supplementation with GPE (300 mg/kg body weight/day) reduced adipocyte diameter and increased levels of proteins that participate in adipogenesis and angiogenesis, i.e., peroxisome-proliferator activated receptor gamma (PPARγ), vascular endothelial grow factor-A (VEGF-A) and its receptor 2 (VEGF-R2), and partially increased the uncoupling protein 1 (UCP-1) in WKY. In both strains, GPE attenuated adipose inflammation. In eWAT from SHR, GPE increased the expression of proteins involved in adipose tissue “browning,” i.e., PPARγ-coactivator-1α (PGC-1α), PPARγ, PR domain containing 16 (PRDM16) and UCP-1. In primary cultures of SHR adipocytes, GPE-induced UCP-1 up-regulation was dependent on p38 and ERK activation. Accordingly, in 3T3-L1 adipocytes treated with palmitate, the addition of GPE (30 μM) activated the β-adrenergic signaling cascade (PKA, AMPK, p38, ERK). This led to the associated up-regulation of proteins involved in mitochondrial biogenesis (PGC-1α, PPARγ, PRDM16 and UCP-1) and fatty acid oxidation (ATGL). These effects were similar to those exerted by (−)-epicatechin and quercetin, major phenolic compounds in GPE. Overall, in HFD-fed rats, supplementation with GPE promoted brown-like cell formation in eWAT and diminished adipose dysfunction. Thus, winemaking residues, rich in bioactive compounds, could be useful to mitigate the adverse effects of HFD-induced adipose dysfunction.  相似文献   

5.
There are three isoforms of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) mRNA, which promotes mitochondrial biogenesis in skeletal muscles. Compared with PGC-1α-a mRNA, PGC-1α-b or PGC-1α-c mRNA is transcribed by a different exon 1 of the PGC-1α gene. In this study, effects of exercise intensity and 5-aminoimidazole-4-carboxamide-1β-d-ribofuranoside (AICAR) on isoform-specific expressions of PGC-1α were investigated. All isoforms were increased in proportion to exercise intensity of treadmill running (10-30 m/min for 30 min). Preinjection of β?-adrenergic receptor (AR) antagonist (ICI 118551) inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs, but not the increase in PGC-1α-a mRNA, in response to high-intensity exercise. Although high-intensity exercise activated α2-AMP-activated protein kinase (α2-AMPK) in skeletal muscles, inactivation of α2-AMPK activity did not affect high-intensity exercise-induced mRNA expression of all PGC-1α isoforms, suggesting that activation of α2-AMPK is not mandatory for an increase in PGC-1α mRNA by high-intensity exercise. A single injection in mice of AICAR, an AMPK activator, increased mRNAs of all PGC-1α isoforms. AICAR increased blood catecholamine concentrations, and preinjection of β?-AR antagonist inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs but not the increase in PGC-1α-a mRNA. Direct exposure of epitrochlearis muscle to AICAR increased PGC-1α-a but not the -b isoform. These data indicate that exercise-induced PGC-1α expression was dependent on the intensity of exercise. Exercise or AICAR injection increased PGC-1α-b and PGC-1α-c mRNAs via β?-AR activation, whereas high-intensity exercise increased PGC-1α-a expression by a multiple mechanism in which α2-AMPK is one of the signaling pathways.  相似文献   

6.
Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation.Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) by 1.4-fold. Treatment of human adipocytes with fatty acids and tumor necrosis factor α (TNFα) induced insulin resistance and down-regulation of mitochondrial genes, which was restored by ANP treatment. These results show that ANP regulates lipid catabolism and enhances energy dissipation through AMPK activation in human adipocytes.  相似文献   

7.
8.
9.
In adipocytes, mitochondrial uncoupling is known to trigger a triglyceride loss comparable with the one induced by TNFα, a proinflammatory cytokine. However, the impact of a mitochondrial uncoupling on the abundance/composition of mitochondria and its connection with triglyceride content in adipocytes is largely unknown. In this work, the effects of a mild mitochondrial uncoupling triggered by FCCP were investigated on the mitochondrial population of 3T3-L1 adipocytes by both quantitative and qualitative approaches. We found that mild mitochondrial uncoupling does not stimulate mitochondrial biogenesis in adipocytes but induces an adaptive cell response characterized by quantitative modifications of mitochondrial protein content. Superoxide anion radical level was increased in mitochondria of both TNFα- and FCCP-treated adipocytes, whereas mitochondrial DNA copy number was significantly higher only in TNFα-treated cells. Subproteomic analysis revealed that the abundance of pyruvate carboxylase was reduced significantly in mitochondria of TNFα- and FCCP-treated adipocytes. Functional study showed that overexpression of this major enzyme of lipid metabolism is able to prevent the triglyceride content reduction in adipocytes exposed to mitochondrial uncoupling or TNFα. These results suggest a new mechanism by which the effects of mitochondrial uncoupling might limit triglyceride accumulation in adipocytes.  相似文献   

10.
Sirt1 is the most prominent and extensively studied member of sirtuins, the family of mammalian class III histone deacetylases heavily implicated in health span and longevity. Although primarily a nuclear protein, Sirt1’s deacetylation of Peroxisome proliferator-activated receptor Gamma Coactivator-1α (PGC-1α) has been extensively implicated in metabolic control and mitochondrial biogenesis, which was proposed to partially underlie Sirt1’s role in caloric restriction and impacts on longevity. The notion of Sirt1’s regulation of PGC-1α activity and its role in mitochondrial biogenesis has, however, been controversial. Interestingly, Sirt1 also appears to be important for the turnover of defective mitochondria by mitophagy. I discuss here evidences for Sirt1’s regulation of mitochondrial biogenesis and turnover, in relation to PGC-1α deacetylation and various aspects of cellular physiology and disease.  相似文献   

11.
12.
13.
14.
15.
16.
The functional induction of brown-like adipocytes in white adipose tissue (WAT) provides a defense against obesity. The aim of this study was to analyze the effects of milk fat globule membrane (MFGM) and its component phosphatidylcholine (PC) on the brown remodeling of WAT. Male C57BL/6 J mice were fed a high-fat diet (HFD) for 8 weeks and then fed HFD for another 8 weeks with MFGM. In vitro studies were performed in C3H10T1/2 pluripotent stem cells, 3T3-L1 pre-adipocytes and differentiated inguinal WAT stromal vascular cells (SVCs) to determine the role of MFGM and PC on the formation of brown-like adipocytes. MFGM decreased fasting glucose and serum insulin levels in HFD-fed mice. MFGM improved glucose tolerance and insulin sensitivity, and induced browning of inguinal WAT. MFGM and its component PC stimulated transformation of brown-like adipocytes in C3H10T1/2 pluripotent stem cells, 3T3-L1 adipocytes and SVCs by increasing the protein expression of UCP1, PGC-1α, PRDM16 as well as the mRNA expression of other thermogenic genes and beige cell markers. MFGM and PC also increased mitochondrial DNA (mtDNA) copy number, mitochondrial density and oxygen consumption rate and up-regulated the mRNA expression of mitochondria-biogenesis-related genes in vitro. PPARα inhibitor GW6471 treatment or knockdown of PPARα using lentivirus-expressing shRNA inhibited the PC-induced increase in the protein expression of UCP1, PGC-1α and PRDM16 in C3H10T1/2 pluripotent stem cells and 3T3-L1 adipocytes, indicating the potential role of PPARα in PC-mediated brown-like adipocyte formation. In conclusion, MFGM and milk PC induced adipose browning, which has major protective effects against obesity and metabolic dysfunction.  相似文献   

17.

Background

Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1α induces several key reactive oxygen species (ROS)-detoxifying enzymes, but the molecular mechanism underlying this is not well understood.

Results

Here we show that PGC-1α strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1α led to decreased Sirt3 gene expression. PGC-1α activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR) binding element (ERRE) (−407/−399) mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRα bound to the identified ERRE and PGC-1α co-localized with ERRα in the mSirt3 promoter. Knockdown of ERRα reduced the induction of Sirt3 by PGC-1α in C2C12 myotubes. Furthermore, Sirt3 was essential for PGC-1α-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1α in C2C12 myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1α on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1α on mitochondrial biogenesis in C2C12 myotubes.

Conclusion

Our results indicate that Sirt3 functions as a downstream target gene of PGC-1α and mediates the PGC-1α effects on cellular ROS production and mitochondrial biogenesis. Thus, SIRT3 integrates cellular energy metabolism and ROS generation. The elucidation of the molecular mechanisms of SIRT3 regulation and its physiological functions may provide a novel target for treating ROS-related disease.  相似文献   

18.
Erectile function is critically dependent upon the activation of the endothelial nitric oxide synthase (eNOS) in the smooth muscle cells of penile corpus cavernosum tissue. Nebivolol is a β1-selective β-adrenoceptor blocker (β-ARB) with additional vasodilating properties, which have been attributed to eNOS-activation. Our study investigated whether nebivolol is able to increase eNOS activity in erectile tissue. Murine penile tissue was incubated in an organ bath under control conditions and in the presence of nebivolol or metoprolol. Immunofluorescence staining was performed using specific antibodies against eNOS-activation or eNOS-serine 1177 phosphorylation. Corpus cavernosum smooth muscle tissue was identified using a smooth muscle actin antibody. In addition, slices of murine erectile tissue were incubated with diaminofluorescein (DAF), a specific fluorescence marker for NO-liberation. Under control conditions and after application of metoprolol, we observed a small eNOS-activation and serine 1177-phosphorylation in murine corpus cavernosum tissue. A significant increase in eNOS-activation and serine 1177-phosphorylation of eNOS was observed only in the presence of nebivolol (10 μM). These alterations of the eNOS protein induced after application of nebivolol were associated with a time-dependent increase in DAF fluorescence in murine erectile tissue. We conclude that β-adrenoceptor blockers differentially influence erectile tissue. Since cardiovascular diseases are often associated with the development of erectile dysfunction, the nebivolol-induced eNOS-activation in corpus cavernosum may be beneficial when treating patients suffering from cardiovascular disease.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号