首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Low-molecular-weight peptides involved in gene expression and cell growth have been isolated from DNA preparation from eukaryotic cells. After phosphorylation with protein kinase CKII (pCKII) these peptides are able to bind to DNA in presence of divalent cations and salt/ethanol. This finding may explain the mechanism by which the peptides exert their activity.  相似文献   

3.
4.
C2H2 zinc-finger proteins play important roles in plant development including floral organogenesis, leaf initiation, lateral shoot initiation, gametogenesis and seed development. The gene for one such protein from Arabidopsis, AtZFP1 (Arabidopsis thalianazinc-finger protein 1), is expressed at high levels in the shoot apex, including the apical meristem, developing leaves and the developing vascular system. In light-grown seedlings, AtZFP1 expression is induced about three days after germination, before the expansion of the true leaves. Dark-grown plants, in which photomorphogenesis is repressed, have no detectable AtZFP1 expression in the shoot apex. Under conditions which induce or mimic photomorphogenic development including growth in the light, shifting dark-grown plants to continuous light or growth on cytokinin in the dark, high levels of AtZFP1 expression are detected. Furthermore, AtZFP1 expression does not depend on active photosynthesis as shown by analysis of plants grown on the carotenoid biosynthetic inhibitor norflurazon. These results are discussed in relation to a possible role for AtZFP1 in shoot development, downstream of photomorphogenic activation.  相似文献   

5.
Drosophila photoreceptors are sensory neurons whose primary function is the transduction of photons into an electrical signal for forward transmission to the brain. Photoreceptors are polarized cells whose apical domain is organized into finger like projections of plasma membrane, microvilli that contain the molecular machinery required for sensory transduction. The development of this apical domain requires intense polarized membrane transport during development and it is maintained by post developmental membrane turnover. Sensory transduction in these cells involves a high rate of G-protein coupled phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] hydrolysis ending with the activation of ion channels that are members of the TRP superfamily. Defects in this lipid-signaling cascade often result in retinal degeneration, which is a consequence of the loss of apical membrane homeostasis. In this review we discuss the various membrane transport challenges of photoreceptors and their regulation by ongoing lipid signaling cascades in these cells. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

6.
《Journal of molecular biology》2019,431(24):5063-5074
The PWWP domain of DNMT3 DNA methyltransferases binds to histone H3 tails containing methylated K36, and this activity is important for heterochromatic targeting. Here, we show that the PWWP domain of mouse DNMT3A binds to H3K36me2 and H3K36me3 with a slight preference for H3K36me2. PWWP domains have also been reported to bind to DNA, and the close proximity of H3K36 and nucleosomal DNA suggests a combined binding to H3K36me2/3 and DNA. We show here that the DNMT3A PWWP domain binds to DNA with a weak preference for AT-rich sequences and that the designed charge reversal R362E mutation disrupts DNA binding. The K295E mutation, as well as K295I recently identified in paraganglioma, a rare neuroendocrine neoplasm, disrupts both DNA and H3K36me2/3 binding, which is in agreement with the proximity of K295 to residues involved in K36me2/3 methyllysine binding. Nucleosome pulldown experiments show that DNA binding and H3K36me2/3 binding are important for the interaction of the DNMT3A PWWP domain with nucleosomes. Localization studies of transiently transfected fluorescently-tagged wild-type and PWWP-mutated full-length DNMT3A indicate that both interactions contribute to the subnuclear localization of DNMT3A in mouse cells. In summary, our data demonstrate that the combined binding of the DNMT3A PWWP domain to the H3 tail containing K36me2/3 and to the nucleosomal or linker DNA is important for its chromatin interaction and subnuclear targeting of DNMT3A in living cells.  相似文献   

7.
8.
9.
Satomi Miwa 《BBA》2005,1709(3):214-219
The topology of superoxide generation by sn-glycerol 3-phosphate dehydrogenase and complex III in intact Drosophila mitochondria was studied using aconitase inactivation to measure superoxide production in the matrix, and hydrogen peroxide formation in the presence of superoxide dismutase to measure superoxide production from both sides of the membrane. Aconitase inactivation was calibrated using the known rate of matrix superoxide production from complex I. Glycerol phosphate dehydrogenase generated superoxide about equally to each side of the membrane, whereas centre o of complex III in the presence of antimycin A generated superoxide about 30% on the cytosolic side and 70% on the matrix side.  相似文献   

10.
DMRP, an ABC transporter encoded by the dMRP/CG6214 gene, is the Drosophila melanogaster orthologue of the “long” human multidrug resistance-associated proteins (MRP1/ABCC1, MRP2/ABCC2, MRP3/ABCC3, MRP6/ABCC6, and MRP7/ABCC10). In order to provide a detailed biochemical characterisation we expressed DMRP in Sf9 insect cell membranes. We demonstrated DMRP as a functional orthologue of its human counterparts capable of transporting several human MRP substrates like β-estradiol 17-β-d-glucuronide, leukotriene C4, calcein, fluo3 and carboxydichlorofluorescein. Unexpectedly, we found DMRP to exhibit an extremely high turnover rate for the substrate transport as compared to its human orthologues. Furthermore, DMRP showed remarkably high basal ATPase activity (68-75 nmol Pi/mg membrane protein/min), which could be further stimulated by probenecid and the glutathione conjugate of N-ethylmaleimide. Surprisingly, this high level basal ATPase activity was inhibited by the transported substrates. We discussed this phenomenon in the light of a potential endogenous substrate (or activator) present in the Sf9 membrane.  相似文献   

11.
Many techniques in molecular biology require the use of pure nucleic acids in general and circular DNA (plasmid or mitochondrial) in particular. We have developed a method to separate these circular molecules from a mixture containing different species of nucleic acids using rolling circle amplification (RCA). RCA of plasmid or genomic DNA using random hexamers and bacteriophage Phi29 DNA polymerase has become increasingly popular for the amplification of template DNA in DNA sequencing protocols. Recently, we reported that the mutant single-stranded DNA binding protein (SSB) from Thermus thermophilus (TthSSB) HB8 eliminates nonspecific DNA products in RCA reactions. We developed this method for separating circular nucleic acids from a mixture having different species of nucleic acids. Use of the mutant TthSSB resulted in an enhancement of plasmid or mitochondrial DNA content in the amplified product by approximately 500×. The use of mutant TthSSB not only promoted the amplification of circular target DNA over the background but also could be used to enhance the amplification of circular targets over linear targets.  相似文献   

12.
13.
14.
DnaA protein has the sole responsibility of initiating a new round of DNA replication in prokaryotic organisms. It recognizes the origin of DNA replication, and initiates chromosomal DNA replication in the bacterial genome. In Gram-negative Escherichia coli, a large number of DnaA molecules bind to specific DNA sequences (known as DnaA boxes) in the origin of DNA replication, oriC, leading to the activation of the origin. We have cloned, expressed, and purified full-length DnaA protein in large quantity from Gram-positive pathogen Bacillus anthracis (DnaABA). DnaABA was a highly soluble monomeric protein making it amenable to quantitative analysis of its origin recognition mechanisms. DnaABA bound DnaA boxes with widely divergent affinities in sequence and ATP-dependent manner. In the presence of ATP, the KD ranged from 3.8 × 10−8 M for a specific DnaA box sequence to 4.1 × 10−7 M for a non-specific DNA sequence and decreased significantly in the presence of ADP. Thermodynamic analyses of temperature and salt dependence of DNA binding indicated that hydrophobic (entropic) and ionic bonds contributed to the DnaABA·DNA complex formation. DnaABA had a DNA-dependent ATPase activity. DNA sequences acted as positive effectors and modulated the rate (Vmax) of ATP hydrolysis without any significant change in ATP binding affinity.  相似文献   

15.
Actin-related protein 5 (ARP5) is a conserved subunit of the INO80 chromatin-remodeling complex in yeast and mammals. We have characterized the expression and subcellular distribution of Arabidopsis thaliana ARP5 and explored its role in the epigenetic control of multicellular development and DNA repair. ARP5-specific monoclonal antibodies localized ARP5 protein to the nucleoplasm of interphase cells in Arabidopsis and Nicotiana tabacum. ARP5 promoter-reporter fusions and the ARP5 protein are ubiquitously expressed. A null mutant and a severe knockdown allele produced moderately dwarfed plants with all organs smaller than the wild type. The small and slightly deformed organs such as leaves and hypocotyls were composed of small-sized cells. The ratio of leaf stomata to epidermal cells was high in the mutant, which also exhibited a delayed stomatal development compared with the wild type. Mutant plants were hypersensitive to DNA-damaging reagents including hydroxyurea, methylmethane sulfonate, and bleocin, demonstrating a role for ARP5 in DNA repair. Interestingly, the hypersensitivity phenotype of ARP5 null allele arp5-1 is stronger than the severe knockdown allele arp5-2. Moreover, a wild-type transgene fully complemented all developmental and DNA repair mutant phenotypes. Despite the common participation of both ARP4 and ARP5 in the INO80 complex, ARP4- and ARP5-deficient plants displayed only a small subset of common phenotypes and each displayed novel phenotypes, suggesting that in Arabidopsis they have both shared and unique functions.  相似文献   

16.
Ecdysteroid is a crucial steroid hormone in insects, especially during metamorphosis. Here, we show that the Drosophila membrane steroid binding protein (Dm_MSBP) is a novel structural homolog of the vertebrate membrane-bound receptor component for progesterone. Dm_MSBP exhibited binding affinity to ecdysone when expressed on the cell surface of Drosophila S2 cells. In S2 cells, the stable overexpression of Dm_MSBP suppressed the growth arrest triggered by 20-hydroxyecdysone and prevented the temporal activation of extracellular signal-regulated kinase proteins. These results suggest that Dm_MSBP is a membranous suppressor to ecdysteroid and blocks the signaling by binding it in extracellular fluid.  相似文献   

17.
DNA unwinding factor (DUF) was discovered as an essential DNA replication factor in Xenopus egg extracts. DUF consists of an HMG protein and a homolog of Cdc68p/Spt16p, and has the capability of unwinding dsDNA. Here we have examined the interaction of DUF with chromatin. DUF was incorporated into chromatin assembled from sperm heads and from plasmid DNA in egg extracts. It was revealed that the chromatin assembled in egg extracts immunodepleted of DUF is less sensitive to micrococcal nuclease (NNase) digestion than that assembled in control extracts, indicating that chromatin containing DUF has more decompact structure than that without DUF. Also we found that DUF has a high affinity for core histones in vitro. We suggest that the function of DUF may be to make the chromatin structure accessible to replication factors.  相似文献   

18.
19.
20.
Chromatin fluidity, which is one of the indicators of higher-order structures in chromatin, is associated with cell differentiation. However, little is known about the relationships between chromatin fluidity and cell differentiation status in embryonic development. We established an in vitro reconstitution system that uses isolated nuclei and cytoplasmic extracts of Xenopus embryos and a fluorescence recovery after photobleaching assay to measure the fluidities of heterochromatin protein 1 (HP1) and histone H1 during development. The HP1 and H1 fluidities of nuclei isolated from the tailbuds of early tadpole stage (stage 32) embryos in the cytoplasmic extracts of eggs and of late blastula stage (stage 9) embryos were higher than those in the cytoplasmic extracts of mid-neurula stage (stage 15) embryos. The HP1 fluidities of nuclei isolated from animal cap cells of early gastrula stage (stage 10) embryos and from the neural plates of neural stage (stage 20) embryos were higher than those isolated from the tailbuds of stage 32 embryos in egg extracts, whereas the HP1 fluidities of these nuclei were the same in the cytoplasmic extracts of stage 15 embryos. These results suggest that chromatin fluidity is dependent upon both cytoplasmic and nuclear factors and decreases during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号