首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to assess the respective contribution of the exocrine and endocrine moieties of the pancreas to the overall net uptake of selected monosaccharides by the pancreatic gland, the apparent distribution space of L-[1-14C]glucose, 3-O-[14C-methyl]-D-glucose, D-[U-14C]glucose, D-[U-14C]mannose and D-[U-14C]fructose was measured in pieces of pancreas obtained from either control rats or animals injected with streptozotocin. Although the time course for the uptake of 3-O-[14C-methyl]-D-glucose, D-[U-14C]glucose, D-[U-14C]mannose and D-[U-14C]fructose was much slower in the pieces of pancreas than that previously documented in isolated pancreatic islets, no significant difference could, as a rule, be detected between the results obtained in pancreatic pieces of control and streptozotocin rats. A comparable situation prevailed in the pancreas of animals examined 3 min after the intravenous injection of 3-O-[14C-methyl]-D-glucose. D-Glucose inhibited the uptake of 3-O-[14C-methyl]-D-glucose and that of D-[U-14C]fructose. Likewise, 3-O-methyl-D-glucose inhibited the uptake of D-[U-14C]glucose. Cytochalasin B (20 microm) also inhibited the uptake of 3-O-[14C-methyl]-D-glucose and D-[U-14C]glucose, but not that of D-[U-14C]fructose. D-Mannoheptulose hexaacetate, but not the unesterified heptose, inhibited the metabolism of tritiated and 14C-labelled D-glucose, as well as the net uptake of D-[U-14C]glucose and D-[U-14C]mannose and, to a lesser extent, that of D-[U-14C]fructose. These findings indicate that despite marked differences between endocrine and exocrine pancreatic cells in terms of both the time course for the uptake of several hexoses and the inhibition of their phosphorylation by D-mannoheptulose, little or no preferential labelling of the endocrine moiety of the pancreas by the 14C-labelled hexoses is observed, at least when judged from their distribution space in pancreatic pieces or the whole pancreatic gland. Nevertheless, the findings made with D-mannoheptulose and its hexaacetate ester raise the view that this heptose could conceivably be used to achieve a sizeable preferential labelling of the endocrine pancreas under the present experimental conditions.  相似文献   

2.
1. The conversion of [U-(14)C]glucose into carbon dioxide, cholesterol and fatty acids in liver slices and the activities of ;malic' enzyme, citrate-cleavage enzyme, NADP-linked isocitrate dehydrogenase and hexose monophosphate-shunt dehydrogenases in the soluble fraction of homogenates of liver were measured in chicks that were starved or starved then fed. 2. In newly hatched chicks the incorporation of [U-(14)C]glucose and the activity of ;malic' enzyme did not increase unless the birds were fed. The response to feeding of [U-(14)C]glucose incorporation into fatty acids increased as the starved chicks grew older. 3. Citrate-cleavage enzyme activity increased slowly even when the newly hatched chicks were unfed. On feeding, citrate-cleavage enzyme activity increased at a much faster rate. 4. In normally fed 20-day-old chicks starvation decreased the incorporation of [U-(14)C]glucose into all three end products and depressed the activities of ;malic' enzyme and citrate-cleavage enzyme. Re-feeding increased all of these processes to normal or higher-than-normal levels. 5. In both newly hatched and 20-day-old chicks starvation increased the activity of isocitrate dehydrogenase and feeding or re-feeding decreased it. 6. Very little change in hexose monophosphate-shunt dehydrogenase activity was observed during the dietary manipulations. 7. The results indicate that increased substrate delivery to the liver is the principal stimulus to the increased rate of glucose metabolism observed in newly hatched chicks. The results also suggest that changes in the activities of ;malic' enzyme and citrate-cleavage enzyme are secondary to an increased flow of metabolites through the glucose-to-fatty acid pathway and that the dehydrogenases of the hexose monophosphate shunt play a minor role in NADPH production for fatty acid synthesis.  相似文献   

3.
Previously we observed what appeared to be augmented D-glucose transport across the pulmonary epithelium. To investigate this phenomenon we placed fluid containing L-[3H]glucose and D-[U-14C]glucose in the alveoli of isolated Ringer-perfused lungs from 4-wk-old rabbits. The appearance of radioactivity in recirculating glucose-free perfusate was measured. 3H appearing in the perfusate was associated with L-glucose. 14C, however, was associated with three compounds, with approximate molecular weights of 180 (glucose), 300, and 560. The nonglucose species were not identified. This 14C movement was inhibited by phlorizin, but not phloretin, in the alveolar fluid. A similar pattern of 14C movement occurred when D-[U-14C]glucose was replaced with 2-deoxy-D-[U14C]-glucose, but not with methyl-alpha-D-[U-14C]glucopyranoside. The activation energy of the 14C metabolism-transport process was found to be 34 kcal/mol, and L-glucose transport showed an unusual temperature dependence, with maximum conductance at 15 degrees C. It appears that some D-glucose crosses the pulmonary epithelium as does L-glucose. However, most enters epithelial cells and is incorporated into larger molecules which enter the vascular but not the alveolar space.  相似文献   

4.
1. In human erythrocytes, alpha-D-[U-14C]glucose is more efficiently oxidized than beta-D-[U-14C]glucose at a low concentration of the hexose (0.1 mM), but not so at higher glucose concentrations. 2. This unexpected situation may be attributable in part to the lower Km of hexokinase for alpha- than beta-D-glucose, this difference in affinity compensating for the higher maximal velocity found with the beta- rather than alpha-anomer. 3. A contributive role for aldose reductase in the anomeric control of D-glucose 6-phosphate circulation in the pentose phosphate pathway should not be ruled out, since aldose reductase inhibitors decrease the production of 14CO2 by erythrocytes exposed to D-[U-14C]glucose. 4. Nevertheless, the essential role of hexokinase in such an anomeric control is supported by the finding that, in the presence of menadione, which augments considerably D-[U-14C]glucose oxidation but fails to affect D-[5-3H]glucose utilization, the anomeric alpha/beta ratio in 14CO2 production from D-[U-14C]glucose follows, at increasing concentrations of the hexose, the same pattern as that found for its phosphorylation.  相似文献   

5.
1. The effect of 2-tetradecylglycidic acid (TDGA), a potent, specific inhibitor of long-chain fatty acid oxidation, on fatty acid and glucose oxidation by isolated rat soleus muscle was studied. 2. TDGA inhibited [1-14C]palmitate oxidation by soleus muscle in a concentration-dependent manner. 3. TDGA inhibited the activity of soleus muscle mitochondrial carnitine palmitoyltransferase A (CPT-A). 4. Added palmitate (0.5 mM) significantly inhibited D-[U-14C]glucose oxidation and, under conditions where TDGA inhibited palmitate oxidation, the oxidation of D-[U-14C]glucose by isolated soleus muscle was significantly stimulated. 5. TDGA stimulation of glucose oxidation was reversed by octanoate, a medium-chain fatty acid whose oxidation is not inhibited by TDGA. 6. When nondiabetic rats were treated with TDGA (10 mg/kg p.o./day x 3 days), fasting plasma glucose was significantly lowered and the ability of isolated contralateral soleus muscles to oxidize palmitate was inhibited while glucose oxidation was significantly stimulated.  相似文献   

6.
The isotopic discrimination, diastereotopic specificity and intramolecular hydrogen transfer characterizing the reaction catalyzed by phosphomannoisomerase are examined. During the monodirectional conversion of D-[2-3H]mannose 6-phosphate to D-fructose 6-phosphate and D-fructose 1,6-bisphosphate, the reaction velocity is one order of magnitude lower than with D-[U-14C]mannose 6-phosphate and little tritium (less than 6%) is transferred intramolecularly. Inorganic phosphate decreases the reaction velocity but favours the intramolecular transfer of tritium. Likewise, when D-[1-3H]fructose 6-phosphate prepared from D-[1-3H]glucose is exposed solely to phosphomannoisomerase, the generation of tritiated metabolites is virtually restricted to 3H2O and occurs at a much lower rate than the production of D-[U-14C]mannose 6-phosphate from D-[U-14C]fructose 6-phosphate. However, no 3H2O is formed when D-[1-3H]fructose 6-phosphate generated from D-[2-3H]glucose is exposed to phosphomannoisomerase, indicating that the diastereotopic specificity of the latter enzyme represents a mirror image of that of phosphoglucoisomerase. Advantage is taken of such a contrasting enzymic behaviour to assess the back-and-forth flow through the reaction catalyzed by phosphomannoisomerase in intact cells exposed to D-[1-3H]glucose, D-[5-3H]glucose or D-[6-3H]glucose. Relative to the rate of glycolysis, this back-and-forth flow amounted to approx. 4% in human erythrocytes and rat parotid cells, 9% in tumoral cells of the RINm5F line and 47% in rat pancreatic islets.  相似文献   

7.
Ornithine aminotransferase (L-ornithine:2-oxo-acid aminotransferase (EC 2.6.1.13)) has been purified to homogeneity from last instar larvae of the tobacco hornworm, Manduca sexta (Sphingidae). This enzyme is a 144,000-Da tetramer constructed from 36,000-Da protomeric units. It has a high aspartate/asparagine and glutamate/glutamine content and 2 cysteine residues/subunit. All 8 cysteine residues can react with N-ethylmaleimide to inactivate the enzyme. Maintenance of the enzyme in the presence of 2-mercaptoethanol and dithiothreitol maximizes enzymatic activity and improves storage conditions, presumably by protecting these sulfhydryl groups. The apparent Km values for L-ornithine and 2-oxoglutaric acid are 2.3 and 3.2 mM, respectively. The turnover number is 2.0 +/- 0.1 mumol min-1 mumol-1. L-Canaline (L-2-amino-4-(aminooxy)butyric acid) is a potent ornithine aminotransferase inhibitor. Reaction of the enzyme with L-[U-14C]canaline produces an enzyme-bound, covalently linked, radiolabeled canaline-pyridoxal phosphate oxime. The L-[U-14C]canaline-pyridoxal phosphate oxime has been isolated from canaline-treated enzyme. Dialysis of canaline-inactivated ornithine aminotransferase against free pyridoxal phosphate slowly reactivates the enzyme as the oxime is replaced by pyridoxal phosphate. Analysis of L-[U-14C]canaline binding to ornithine aminotransferase reveals the presence of 4 mol of pyridoxal phosphate/mol of enzyme.  相似文献   

8.
In human erythrocytes, in which the fractional turnover rate of glucose 6-phosphate is rather low, menadione increases to almost the same relative extent the oxidation of D-[U-14C]glucose and D-[U-14C]galactose. However, in pancreatic tumoral islet cells (RINm5F line), in which the fractional turnover rate of glucose 6-phosphate is considerably higher, menadione increases the oxidation of D-[1-14C]glucose but not that of D-[1-14C]galactose. These results suggest that alpha-D-glucose 6-phosphate generated from exogenous D-galactose is channeled preferentially into the glycolytic rather than pentose phosphate pathway. Such was no more the case, however, when the RINm5F cells were exposed simultaneously to both D-glucose and D-galactose.  相似文献   

9.
Cationic amino acids were recently found to stimulate amylase release from rat parotid cells. The possible relevance of their oxidative catabolism to such a secretory stimulation was investigated. D-Glucose, which was efficiently metabolized in parotid cells and which augmented O2 uptake above basal value, failed to affect basal or stimulated amylase release. L-Arginine, L-lysine and L-histidine failed to stimulate the oxidation of either exogenous D-[6-14C]glucose or endogenous nutrients in cells pre-labelled with [U-14C]palmitate or L-[U-14C]glutamine. The oxidation of L-[U-14C]arginine, L-[U-14C]ornithine, L-[U-14C]lysine and L-[U-14C]histidine, all tested at a 10 mM concentration, was much lower than that of D-[U-14C]glucose (5.6 mM). These findings argue against the view that the stimulation of amylase release by cationic amino acids would be related to their role as a source of energy in the parotid cells.  相似文献   

10.
The appearance of plasma [14C]glucose in the inferior cava vein after a pulse of 0.2 mmol of [U-14C]L-alanine or [U-14C]glycerol/200 g body wt given through the portal vein was studied in fed 21 day pregnant rats and virgin controls under pentobarbital anesthesia. In both groups values were much higher when [U-14C]glycerol was the administered tracer than when [U-14C]L-alanine, and they were augmented in pregnant versus virgin animals at 1 min when receiving [U-14C]glycerol and at 2 min when receiving [U-14C]L-alanine. 20 min after the tracers rats receiving [U-14C]glycerol showed much higher liver [14C]glycogen and [14C]glyceride glycerol than those receiving [U-14C]L-alanine. Radioactivity present in liver as [14C]glyceride glycerol was greater in pregnant than in virgin rats receiving [U-14C]glycerol whereas radioactivity corresponding to [14C]fatty acids was lower in the former group receiving either tracer. At 20 min after maternal treatments fetuses showed lower plasma [14C]glycerol than [14C]alanine values but plasma [14C]glucose and liver [14C]glycogen values were much greater in fetuses from mothers receiving [U-14C]glycerol than [U-14C]L-amine. Besides showing the higher gluconeogenic efficiency in pregnant than in virgin rats, results indicate that at late gestation glycerol is used as a preferential substrate for both glucose and glyceride glycerol synthesis in liver.  相似文献   

11.
Lipids from the archaebacterium Sulfolobus solfataricus are based on 72-membered macrocyclic tetraethers made up from two C40 diol units differently cyclized and either two glycerol moieties or one glycerol moiety and a unique branched-chain nonitol named calditol (glycerodialkylnonitol tetraethers, GDNTs). To elucidate the biosynthesis of calditol and related tetraethers, labelled precursors, [U-14C,1(3)-3H]glycerol, [U-14C,2-3H]glycerol, D-[1-14C,6-3H]glucose, D-[6-14C,1-3H]glucose, D-[1-14C,2-3H]glucose, D-[1-14C,6-3H]fructose and D-[1-14C]galactose, were fed to S. solfataricus. Without regard to stereochemistry or phosphorylation, incorporation experiments provided evidence that the biosynthesis of calditol occurs via an aldolic condensation between dihydroxyacetone and fructose, through a 2-oxo derivative of calditol as an intermediate. The latter is in turn reduced and then alkylated to yield the GDNTs. The biogenetic origins of both glycerol and C40 isoprenoid moieties of GDNTs are also discussed.  相似文献   

12.
1. In pancreatic islets, a rise in glucose concentration is known to increase the ratio between D-[6-14C]glucose oxidation and D-[5-3H]glucose utilization. The opposite situation was found to prevail in parotid cells. 2. In rat pancreatic islets, D-glucose caused a concentration-related stimulation of 3H2O production from [2-3H]glycerol, but failed to affect 3H2O production from [1(3)-3H]glycerol or 14CO2 production from [U-14C]glycerol. At the low concentration used in most of these experiments (i.e. 1.0 mM), glycerol failed to affect D-[U-14C]glucose oxidation. 3. These findings suggest that the preferential stimulation by D-glucose of mitochondrial oxidative events in pancreatic islets represents an unusual situation in secretory cells and involves an accelerated circulation in the glycerol phosphate shuttle.  相似文献   

13.
The fate of the C1 and C2 of glucose-derived acetyl residues was examined in rat pancreatic islets. The production of 14CO2 from D-[2-14C]glucose exceeded that from D-[6-14C]glucose, in the same manner as the oxidation of [1-14C]acetate exceeded that of [2-14C]acetate. The difference in 14CO2 output from D-[2-14C]glucose and D-[6-14C]glucose was matched by complementary differences in the generation of 14C-labeled acidic metabolites and amino acids. Even the production of 14C-labeled L-lactate was somewhat higher in the case of D-[6-14C]glucose than D-[2-14C]glucose. The ratio between D-[2-14C]glucose and D-[6-14C]glucose oxidation progressively decreased at increasing concentrations of the hexose (2.8, 7.0, and 16.7 mM), was higher after 30 than 120 min incubation, and was decreased in the presence of a nonmetabolized analogue of L-leucine. These findings are consistent with the view that the difference between D-[6-14C]glucose and D-[2-14C]glucose oxidation is mainly attributable to the inflow into the Krebs cycle of unlabeled metabolites generated from endogenous nutrients, this being compensated by the exit of partially labeled metabolites from the same cycle. The present results also indicate that the oxidation of glucose-derived acetyl residues relative to their generation in the reaction catalyzed by pyruvate dehydrogenase is higher than that estimated from the ratio between D-[6-14C]glucose and D-[3,4-14C]glucose conversion to 14CO2.  相似文献   

14.
Dichloroacetate (an activator of pyruvate dehydrogenase) stimulates 14CO2 production from [U-14C]glucose, but not from [U-14C]glutamate, [U-14C]aspartate, [U-14C]- and [1-14C]-valine and [U-14C]- and [1-14C]-leucine. It is concluded (1) that pyruvate dehydrogenase is not rate-limiting in the oxidation to CO2 of amino acids that are metabolized to tricarboxylic acid-cycle intermediates, and (2) that carbohydrate (and not amino acids) is the main carbon precursor in alanine formation in muscle.  相似文献   

15.
The relationship between glycolysis and respiration was examined in a model of pancreatic B-cell dysfunction, namely in tumoral insulin-producing cells of the RINm5F line. A rise in D-glucose concentration from 2.8 to 16.7 mM increased the utilization of D-[5-3H]glucose and production of [14C]lactate from D-[U-14C]glucose, whereas decreasing the oxidation of either D-[U-14C]glucose or D-[6-14C]glucose. Whereas 2.8 mM D-glucose augmented O2 uptake above basal value, a further rise in D-glucose concentration to 16.7 mM decreased respiration, which remained higher, however, than basal value. Whether at low or high concentration, D-glucose exerted a pronounced sparing action upon the oxidation of endogenous nutrients in cells prelabeled with either L-[U-14C]glutamine or [14C]palmitate and, nevertheless, augmented above basal value the rate of lipogenesis, ATP/ADP content, adenylate charge, and cytosolic NADH/NAD+ and NADPH/NADP+ ratios. The generation of ATP resulting from the catabolism of either exogenous D-glucose or endogenous nutrients was not affected by the rise in hexose concentration from 2.8 to 16.7 mM. Thus, in sharp contrast with the situation found in normal islet cells, a rise in D-glucose concentration, instead of stimulating mitochondrial oxidative events, caused, through a Crabtree effect, inhibition of hexose oxidation and O2 consumption in tumoral islet cells.  相似文献   

16.
Acivicin inhibits gamma-glutamyl transpeptidase activity in human keratinocytes in culture. Treatment of these cells with acivicin produces a decrease in the uptake of L-[U-14C]alanine, 2-amino-[1-14C]-isobutyrate, L-[U-14C]leucine and 1-aminocyclopentane-1-[14C]carboxylate. D-[U-14C]glucose uptake is not affected by the presence of acivicin. These results support, for the first time in vitro, the hypothesis that the gamma-glutamyl cycle may be involved in amino acid uptake by human cells.  相似文献   

17.
Glucose metabolism by Lactobacillus divergens   总被引:3,自引:0,他引:3  
Earlier studies on the fermentation of D-[1-14C]- and D-[3,4-14C]glucose by Lactobacillus divergens showed that lactate was the major fermentation product and that it was probably produced by glycolysis. It was therefore recommend that L. divergens be reclassified as a homofermentative organism. In the present investigation, products of D-[1-14C]-,D-[2-14C]- and D-[3,4-14C]glucose fermented by L. divergens were isolated, and their specific radioactivities and the distribution patterns of radioactivity in their C-atoms were determined. The positional labelling patterns of the fermentation products, their specific radioactivities and their concentrations confirmed that glucose is degraded via the glycolytic pathway. Some secondary decarboxylation/dissimilation of pyruvate to acetate, formate and CO2 was also observed. These results provide conclusive proof that L. divergens is indeed a homofermentative organism. Results obtained with D-[U-14C]glucose showed that approximately three-quarters of the lactate but less than 10% each of the formate and acetate were produced from glucose. The remainder was presumably derived to a varying degree from endogenous non-glucose sources such as fructose and/or amino acids.  相似文献   

18.
Branched-chain amino acid metabolism in hemidiaphragms from 40 h-starved rats is influenced by the provision of glucose as co-substrate. Glucose inhibits 14CO2 production from [l-14C]valine and [U-14C]valine but stimulates 14CO2 production from [l-14C]leucine, [U-14C]leucine and [U-14C]isoleucine. In the presence of glucose, ketone bodies inhibit alanine release and 14CO2 production from [l-14C]valine, [l-14C]leucine and [U-14C]isoleucine, but inhibition is not observed in the absence of glucose as cosubstrate. Glucose-dependent inhibition by ketone bodies of branched-chain amino acid oxidation via inhibition of the branched-chain 2-oxo acid dehydrogenase complex or branched-chain amino acid aminotransferase may account in part for the reported hypoalanaemic action of ketone bodies in vivo.  相似文献   

19.
In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. The present work investigates the nature of the diffusive glucose transport in Olea europaea cell cultures. In this system, glucose uptake is mediated by a glucose-repressible, H(+) -dependent active saturable transport system that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. In glucose-sufficient cells, initial velocities of D- and L-[U-(14)C]glucose uptake were equal and obeyed linear concentration dependence up to 100 mM sugar. In sugar starved cells, where glucose transport is mediated by the saturable system, countertransport of the sugar pairs 3-O-methyl-D-glucose/D-[U-(14)C]glucose and 3-O-methyl-D-glucose/3-O-methyl-D-[U-(14)C]glucose was demonstrated. This countertransport was completely absent in glucose-sufficient cells, indicating that linear glucose uptake is not mediated by a typical sugar permease. The endocytic inhibitors wortmannin-A and NH(4)Cl inhibited neither the linear component of D- and L-glucose uptake nor the absorption of the nonmetabolizable glucose analog 3-O-methyl-D-[U-(14)C]glucose, thus excluding the involvement of endocytic mediated glucose uptake. Furthermore, the formation of endocytic vesicles assessed with the marker FM1-43 proceeded at a very slow rate. Activation energies for glucose transport in glucose sufficient cells and plasma membrane vesicles were 7 and 4 kcal mol(-1), respectively, lower than the value estimated for diffusion of glucose through the lipid bilayer of phosphatidylethanolamine liposomes (12 kcal mol(-1)). Mercury chloride inhibited both the linear component of sugar uptake in sugar sufficient cells and plasma membrane vesicles, and the incorporation of the fluorescent glucose analog 2-NBDG, suggesting protein-mediated transport. Diffusive uptake of glucose was inhibited by a drop in cytosolic pH and stimulated by the protein kinase inhibitor staurosporine. The data demonstrate that the low-affinity, high-capacity, diffusional component of glucose uptake occurs through a channel-like structure whose transport capacity may be regulated by intracellular protonation and phosphorylation/dephosphorylation.  相似文献   

20.
The effect of the excitotoxin kainic acid on glutamate and glutamine metabolism was studied in cerebellar slices incubated with D-[2-14C]glucose, [U-14C]gamma-aminobutyric acid, [3H]acetate, [U-14C]glutamate, and [U-14C]glutamine as precursors. Kainic acid (1 mM) strongly inhibited the labeling of glutamine relative to that of glutamate from all precursors except [2-14C]glucose and [U-14C]glutamine. Kainic acid did not inhibit glutamine synthetase directly. The data indicate that in the cerebellum kainic acid inhibits the synthesis of glutamine from the small pool of glutamate that is thought to be associated with glial cells. Kainic acid also markedly stimulated the efflux of glutamate from cerebellar slices and this release was not sensitive to tetrodotoxin. Kainic acid stimulated efflux of both glucose- and acetate-labeled glutamate. In contrast, veratridine released glucose-labeled glutamate preferentially via a tetrodotoxin-sensitive mechanism. Kainic acid did not release [U-14C]glutamate from synaptosomal fractions. These results suggest that the bulk of the glutamate released from cerebellar slices by kainic acid comes from nonsynaptic pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号