首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synopsis There has been disagreement as to the identity of the enzyme responsible for the peroxidate activity in luminal epithelial cells of distal ducts of salivary glands; both peroxidase and catalase could be responsible. Our immunocytochemical investigations using anti-catalase antibodies demonstrate that there are high levels of catalase in these cells in the mouse submandibular gland confirming previous enzyme histochemical studies from this laboratory. Since only relatively small amounts of lactoperoxidase are observed in ductal cells by conventional histochemistry or immunocytochemistry, there can be little doubt that the majority of the peroxidatic activity in striated and excretory duct luminal epithelial cells is due to catalase.  相似文献   

2.
The major lacrimal gland of rhesus monkeys is impalpable within the fatty connective tissue of the upper lateral quadrant of the orbit. Acini of the lacrimal glands are composed of both sparsely and heavily granulated cells that histochemically resemble serous acinar cells of the submandibular salivary gland. The cytoplasmic granules are strongly periodic acid-Schiff (PAS)-positive, and some are also stained by alcian blue for acidic mucosubstances. The lacrimal gland has a simple duct system of intralobular ducts and interlobular excretory ducts. Lymphocytes and plasma cells are common in the periductal stroma. Major lacrimal glands of rhesus monkeys are suitable for comparative and correlative studies of lacrimal and salivary diseases and radiation responses.  相似文献   

3.
Summary The duct system of the rat exorbital lacrimal gland consists of intercalated ducts, interlobular ducts and excretory ducts. The morphological changes from one type of duct to the next are gradual. At the light microscopical level this consists of a change from a bilaminar epithelium in the intercalated ducts to an epithelium, consisting of approximately three layers — which may be pseudostratified — in the excretory ducts. The basal layer of the intercalated ducts consists of myoepithelial cells, whereas the inner epithelial cells may have both a secretory and an electrolyte transporting function. The interlobular duct epithelium contains many cells with deep infoldings of the basolateral plasma membranes and associated mitochondria, suggesting a similar function to the striated duct epithelium in salivary glands. Numerous basal cells in this epithelium have tentatively been interpreted as unusual myoepithelial cells. Nerve terminals have been observed in the ductal epithelium.This work was supported by the National Health and Medical Research Council of Australia. — We wish to thank Mrs. Eva Vasak for her expert technical assistance.  相似文献   

4.
The parotid and the principal and accessory submandibular glands of the little brown bat. Myotis lucifugus (Vespertilionidae), were examined using light microscopy and staining methods for mucosubstances. The parotid gland is a compound tubuloacinar seromucous gland. Parotid gland secretory cells contain both neutral and nonsulfated acidic mucosubstances. The principal and accessory submandibular glands are compound tubuloacinar mucus-secreting glands. They contain somewhat atypical mucus-secreting demilunar cells that often appear to be interspersed between mucous tubule cells. The mucous tubule cells in both the principal and accessory submandibular glands contain sulfonmucins. Demilunar cells of the principal submandibular gland contain moderate amounts of nonsulfated acidic mucosubstances, but the corresponding cells of the accessory submandibular gland contain considerable neutral mucosubstance with very little acid mucosubstance. Intercalated ducts composed of cuboidal or low columnar epithelial cells are present in all three glands. Striated ducts in all glands are composed of columnar cells whose apices bulge into the ductal lumina. Excretory ducts are composed of simple columnar epithelium, with occasional basal cells that suggest a possible pseudostratified nature. The cells of the excretory ducts also have bulging apices. All duct types contain apical cytoplasmic secretory material that is a periodic acid-Schiff positive, neutral mucosubstance. Ductal apical secretory material is more evident in intercalated and striated ducts than in excretory ducts.  相似文献   

5.
6.
The intracellular distribution of epidermal growth factor was investigated in human parotid gland by immunogold cytochemistry at the electron-microscopy level. Epidermal growth factor immunoreactivity was demonstrated in both acini and ducts. In acinar cells, secretory granules appeared moderately stained, clearly indicating that parotid gland contributes to salivary epidermal growth factor through granule exocytosis. In ductal cells, gold particles were found to decorate numerous cytoplasmic vesicles, particularly abundant in striated duct cells. Since epidermal growth factor reactive vesicles were seen not only at the cellular apex, but nearby lateral plasma membranes as well, it leads to the hypothesis that epidermal growth factor may be discharged both apically into the saliva, and basally into the interstitium.  相似文献   

7.
The present study deals with immunohistochemical localization of PTHrP in bank vole, pine vole and white mouse submandibular glands. PTHrP immunoreactivity was observed in epithelial cells of all ductal segments (intercalated, striated, interlobular and main excretory ducts) of the salivary glands in all the three animal species tested. We also found PTHrP expression in myoepithelial cells surrounding the mucous alveoli of submandibular glands in those animals. The reaction was less intense than that found in the epithelial cells of excretory ducts. We occasionally observed a very slight positive reaction for PTHrP in smooth muscle cells of small blood vessels. We also found PTHrP expression in the neurons of ganglion in the submandibular gland.  相似文献   

8.
Light-microscopy showed parotid serous acinar cells to contain neutral mucin, serous and mucous acinar cells of submandibular gland and intercalary ductal cells of both glands to contain acid and neutral mucins, and cells of striated ducts and excretory ducts to contain neutral mucin. Mucins were demonstrated ultrastructurally in a portion of the components of secretory granules of acinar cells and intercalary ductal cells, and in secretory granules of striated and excretory ductal cells. The mucins were all stained by techniques that reveal 1,2-glycols. Secretory granules of submandibular mucous and serous acinar cells and intercalary ductal cells were stained variably by the low iron-diamine technique for acid mucin, and those of mucous acinar cells by the high iron-diamine technique for sulphomucins mucin and possibly consisted of protein. The results suggest that one type of cell may be able to produce a range of secretory products and to package them variously into secretory granules.  相似文献   

9.
The enzyme Na+,K+-ATPase was localized immunohistochemically in major salivary glands of mouse, rat, and human and in exorbital lacrimal glands of the rodents. Immunoreactive Na+,K+-ATPase was abundant in the basolateral membranes of all epithelial cells lining striated and intra- and interlobular ducts of all glands. Reactivity of intercalated ducts varied among gland type and species. Cells lining granular ducts in rodent submandibular gland showed a heterogeneous staining pattern in rat but stained homogeneously in mouse. Secretory cells varied greatly in their content of immunoreactive Na+,K+-ATPase. As with all duct cells, staining was present only at the basolateral surface and was never observed at the luminal surface of reactive secretory cells. Mucous cells failed to show any reactivity in any gland examined. Serous cells showed a gradient of immunostaining intensity ranging from strongly positive in demilunes of human sublingual gland to negative in rat submandibular gland and lacrimal glands of rats and mice. The presence of basolaterally localized Na+,K+-ATPase in most serous cells but not in mucous cells suggests that the enzyme contributes to the ion and water content of copious, low-protein serous secretions. The intense immunostaining of cells in most if not all segments of the duct system supports the idea that the ducts are involved with modification of the primary saliva, and extends this concept to include all segments of the duct system.  相似文献   

10.
Magainins, antimicrobial peptides secreted by granular glands of frog skin, may be related to the high resistance to infections of this epithelial surface. The oral mucosa of healthy individuals is another tissue in which infection is not frequent, probably owing to the activity of potent salivary and mucosal defense mechanisms. To investigate if magainin-like factors are a component of these oral defense mechanisms, human and animal minor (mucosal) and major salivary glands were examined by immunohistochemistry, using a polyclonal rabbit anti-magainin antibody. Cryostat sections of (para) formaldehyde-fixed tissues were incubated with the antibody and then stained with fluorescein-complexed anti-rabbit IgG. Specific staining was observed in the apical portion of the cytoplasm of ductal epithelial cells of human submandibular and labial salivary glands. Diffuse staining was present in submandibular acinar cells. Bovine, rat, hamster, and mouse tissues were unreactive. The presence of magainin-like substances in human salivary gland duct cells is consistent with reports of the occurrence of other biologically active substances in salivary gland ducts.  相似文献   

11.
Carbonic anhydrase (CA) III was demonstrated immunocytochemically in epithelium in some regions of salivary gland ducts, colon, bronchi, and male genital tract and in adipocytes, in addition to skeletal muscle and liver where the isozyme was previously localized. Basal cells beneath the submandibular gland's excretory ducts in guinea pig stained for CA III. Carbonic anhydrase III occurred alone in some and with CA II in other sites but was often absent from CA-II-containing types of cells. This was exemplified by CA III's abundance in CA-II-positive proximal colon and its sparsity in the CA-II-rich distal colon of the mouse. Striated ducts in guinea pig, but not mouse salivary glands, stained darker for CA and appeared accordingly to function more actively in ion transport compared with excretory ducts. Carbonic anhydrase content varied among genera in liver and pancreas and between mouse species and strains in salivary glands and kidney. Newly observed murine sites of CA II activity included Auerbach's plexus and a population of leukocytes infiltrating the lamina propria in small intestine, and several types of cells in the male genital tract. In immunoblot tests, antisera to CA III showed no cross reactivity with antisera to CA II, but those to CA II disclosed weak cross reactivity with CA III.  相似文献   

12.
The paper deals with the development of the salivary gland system in Melipona quadrifasciata anthidioides, which begins in the prepupal stage. The silk glands degenerate by autolysis at the end of the larval stage. Degeneration is characterized by cytoplasmic vacuolization and pycnosis of the nuclei of the secretory cells. The glandular secretory portion of degenerated silk glands separates from the excretory ducts. The salivary glands develop from the duct of the larval silk glands. The thoracic salivary glands develop from the ducts of the secretory tubules and the head salivary glands from the terminal excretory duct. The mandibular glands appear in the prepupa as invaginations of mandibular segments, and their differentiation to attain the adult configuration occurs during pupation. The hypopharyngeal glands have their origin from evaginations of the ventral anterior portion of the pharynx. A long tubule first appears with walls formed by more than one cellular layer. Then some cells separate from the lumen of the duct, staying attached to it by a cuticular channel in part intracellular. The initial duct constitutes the axial duct, in which the channel of the secretory cells opens. During the development of salivary and mandibular glands, they recapitulate primitive stages of the phylogeny of the bees. During the development of salivary glands system, mitosis accounts for only part of the growth. Most of the growth occurs by increase in size of cells rather than by cell division. In brown-eyed and pigmented pupae six days before emergence, the salivary gland system is completely developed, although not yet functioning.  相似文献   

13.
Glycoconjugates associated with the basal cell layer of various types of epithelia in the mouse and rat were examined histochemically with a battery of lectin-horseradish peroxidase (HRP) conjugates of differing sugar binding specificities. Basal cells in paraffin sections of composite tissue blocks stained with an isolectin from Griffonia simplicifolia (GSA I-B4) specific for terminal alpha-galactose residues but failed to react with the other lectins. Basal cells in epithelium lining striated and excretory ducts of salivary and lacrimal glands, tongue, esophagus, trachea, renal calyx, ureter, urinary bladder, urethra, epididymis and vas deferens stained selectively and intensely for content of a glycoconjugate with terminal alpha-galactose. This galacto-conjugate appeared associated with the plasmalemma of basal cells. Basal cells with a galactocalyx formed an intermittent to continuous layer generally increasing in prevalence distally in glandular duct systems. A minor population of pyramido-columnar cells with cytosolic GSA I-B4 reactivity occurred in striated ducts and appeared less numerous in intralobular excretory ducts and more prevalent in extraglandular ducts. In trachea and renal pelvis, the GSA I-B4 positive cell profiles ranged from low cuboidal to tall pyramidal in contour, but the latter appeared not to reach the lumen. In contrast, no GSA I-B4 positive basal cells were seen in any segment of the pancreatic or bile ducts or in the epithelium of the gastrointestinal tract. These findings suggest that the basal cells found in similar sites in different epithelia and possessing in common a unique alpha-galactoconjugate may function in a manner common to all and not simply in providing progenitor cells for epithelial renewal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Immunocytochemistry of myoepithelial cells in the salivary glands   总被引:3,自引:0,他引:3  
MECs are distributed on the basal aspect of the intercalated duct and acinus of human and rat salivary glands. However, they do not occur in the acinus of rat parotid glands, and sometimes occur in the striated duct of human salivary glands. MECs, as the name implies, have structural features of both epithelial and smooth muscle cells. They contract by autonomic nervous stimulation, and are thought to assist the secretion by compressing and/or reinforcing the underlying parenchyma. MECs can be best observed by immunocytochemistry. There are three types of immunocytochemical markers of MECs in salivary glands. The first type includes smooth muscle protein markers such as -SMA, SMMHC, h-caldesmon and basic calponin, and these are expressed by MECs and the mesenchymal vasculature. The second type is expressed by MECs and the duct cells and includes keratins 14, 5 and 17, 1β1 integrin, and metallothionein. Vimentin is the third type and, in addition to MECs, is expressed by the mesenchymal cells and some duct cells. The same three types of markers are used for studying the developing gland.

Development of MECs starts after the establishment of an extensively branched system of cellular cords each of which terminates as a spherical cell mass, a terminal bud. The pluripotent stem cell generates the acinar progenitor in the terminal bud and the ductal progenitor in the cellular cord. The acinar progenitor differentiates into MECs, acinar cells and intercalated duct cells, whereas the ductal progenitor differentiates into the striated and excretory duct cells. Both in the terminal bud and in the cellular cord, the immediate precursors of all types of the epithelial cells appear to express vimentin. The first identifiable MECs are seen at the periphery of the terminal bud or the immature acinus (the direct progeny of the terminal bud) as somewhat flattened cells with a single cilium projecting toward them. They express vimentin and later -SMA and basic calponin. At the next developmental stage, MECs acquire cytoplasmic microfilaments and plasmalemmal caveolae but not as much as in the mature cell. They express SMMHC and, inconsistently, K14. This protein is consistently expressed in the mature cell. K14 is expressed by duct cells, and vimentin is expressed by both mesenchymal and epithelial cells.

After development, the acinar progenitor and the ductal progenitor appear to reside in the acinus/intercalated duct and the larger ducts, respectively, and to contribute to the tissue homeostasis. Under unusual conditions such as massive parenchymal destruction, the acinar progenitor contributes to the maintenance of the larger ducts that result in the occurrence of striated ducts with MECs. The acinar progenitor is the origin of salivary gland tumors containing MECs. MECs in salivary gland tumors are best identified by immunocytochemistry for -SMA. There are significant numbers of cells related to luminal tumor cells in the non-luminal tumor cells that have been believed to be neoplastic MECs.  相似文献   


15.
Carbonic anhydrase (CA) was purified from the saliva of pilocarpine-treated rats by inhibitor-affinity chromatography, and its localization in the rat submandibular gland was studied by the indirect immunoperoxidase technique using a monoclonal antibody (MAb) raised against the enzyme. SDS-polyacrylamide gel electrophoresis of the CA VI gave three bands of 33, 39, and 42 KD. Enzyme digestion experiment showed that the 42 KD molecule was degraded into the 39 KD molecule and the 39 KD molecule into the 33 KD molecule. The cleavage of the 42 KD molecule was independent and that of the 39 KD molecule was dependent on endo-beta-N-acetylglucosaminidase F. The 42 KD molecule was detected in the CA purified from the pilocarpine-treated but not the untreated salivary gland. The MAb recognized all the three components of the enzyme. Immunostaining for CA VI was seen in the cytosol and secretory granules of serous acinar cells and in the duct luminal contents. Staining specific for erythrocyte CA (CA I and CA II) was observed in the cytosol of the epithelial cells of granular, striated, and excretory ducts. Among these duct cells, the agranular varieties in the granular and excretory ducts were essentially devoid of the immunoreactivity.  相似文献   

16.
Summary Glycoprotein secretion in the mouse submandibular gland was investigated by light microscope radioautography of semi-thin sections after the administration of L-3H-fucose. The incorporation of the precursor in the acini was negligible. 3H-fucose was taken up in the paranuclear region of the cells lining the intercalated, secretory, striated and excretory ducts. This labeling pattern was interpreted as addition of the precursor to glycoproteins within the Golgi apparatus. Incorporation in the intercalated duct was restricted to the cells with fine cytoplasmic granules. The glycoproteins synthesized by the intercalated and secretory ducts were transported to the saliva by the secretion granules. It is assumed that the glycoproteins synthesized in the striated and excretory ducts are plasma membrane glycoproteins which seem to renew continuously. Quantitation of the radioautographs supplied data concerning the incorporation of 3H-fucose into newly synthesized glycoproteins as well as the renewal of the labeled macromolecules in each duct.  相似文献   

17.
The present study deals with immunohistochemical localization of PTHrP in sublingual glands of white mouse, bank vole, and common vole. PTHrP immunoreactivity was observed in epithelial cells of striated, interlobular and main excretory ducts of the salivary glands in all the three animal species tested. However, we found no positive reaction for PTHrP in epithelial cells of the intercalated ducts. In striated duct cells, the reaction intensity was species-dependent. In bank vole and common vole, the reaction was very strong, while in white mouse very weak. In the remaining segments of excretory ducts (interlobular and main excretory duct) we found no species-related differences in the reaction intensity or character. Myoepithelial cells surrounding ducts and mucous tubules with serous demilunes in sublingual glands were also PTHrP-negative in all the three animal species tested.  相似文献   

18.
We have studied the transduction of TAT-HA-beta-galactosidase fusion protein into two cell lines of rat salivary gland origin, A5 and C6-21, into cells of fetal mouse submandibular glands in organ culture, and into rat submandibular gland after retrograde duct injection, using a histochemical method to demonstrate beta-galactosidase activity. Transduction of the fusion protein into A5 and C6-21 cells was concentration- and time-dependent. Therefore, the intensity of the beta-galactosidase staining, which was cytoplasmic, was less after 1 hr of exposure compared to exposures up to 24 hr. However, the fusion protein was transduced into 100% of both types of cultured cells. When explants of mouse fetuses at 13 days of gestation were exposed to the fusion proteins, both epithelial and mesenchymal cells were stained for the enzyme, with a conspicuous accumulation of the reaction product at perinuclear cytoplasmic regions. The histochemical staining of the mesenchymal cells was more intense compared to that seen in epithelial cells. TAT-HA-beta-galactosidase fusion protein was also delivered to rat submandibular glands by retrograde duct injection. Histochemical staining for beta-galactosidase activity of cryostat sections prepared from the injected glands revealed that the transduction of the fusion protein was also time- and dose-dependent. In the glands of rats sacrificed from 10 min to 1 hr after the retrograde injection, essentially all acinar and duct cells showed cytoplasmic staining. The intensity of the staining then declined, and was not seen in the glands of rats killed 24 hr after the injection of the fusion proteins. These results indicate that a full-length, active TAT fusion protein can be targeted to salivary gland cells both in vitro and in vivo to analyze physiological, developmental, and pathophysiological processes.  相似文献   

19.
Summary Peroxidase activity has been localized to duct cells of the submandibular salivary gland of the hamster using a 3,3-diaminobenzidine (DAB)-H2O2 medium. In cryostat sections of glutaraldehyde-fixed tissue the enzyme activity is found in the proximal part of the duct system of the gland. In Epon sections studied in the light microscope or thin sections studied in the electron microscope the peroxidase activity is observed in cytoplasmic granules in cells of the convoluted tubules of the ducts. No activity is seen in the acini or in cells of the intralobular striated ducts. The submandibular gland of the rat was negative with respect to peroxidase reaction. The findings are discussed with special reference to the possible correlation between peroxidase activity and iodine metabolism in salivary glands.  相似文献   

20.
The localization of kallikrein in human exocrine organs was studied with a direct immunofluorescence method. In the submandibular and parotid salivary glands, kallikrein was found apically in the striated duct cells whereas it was absent from the main excretory ducts or present only as a weak luminal rim. Kallikrein was not found in the acinar cells or in cells of the intercalated ducts. In the pancreas, kallikrein-specific fluorescence was seen in the granular portion of the acinar cells, whereas the islets of Langerhans and ductal cells were unstained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号