首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
1. Phytoplankton dynamics, food chain changes and resilience in Lake Zwemlust, a shallow lake in The Netherlands, are described for the period 1986–94.
2. After biomanipulation in 1987, the lake moved through two alternative states, while the external nutrient loadings were maintained. A clear-water phase, mostly dominated by macrophytes, persisted from 1987 to 1991, and a rather turbid state, dominated by algae, occurred in the summers of 1992–94, after several consecutive and sustained perturbations affecting different parts of the food web in the lake. These two periods were characterized by different community structures.
3. The phytoplankton assemblage gradually changed in a pattern that reverted in later years towards that of the pre-biomanipulation stage, although the same species composition was not regained. This agrees with some mathematical models. During the clear-water phase, nutrient shortage, light climate and zooplankton feeding selected in favour of small, high surface : volume ratio and rapidly reproducing algae. However, in mid-summer of 1992–94, nutrient availability and cladoceran grazing on edible algae favoured cyanophytes.
4. Nutrients were transferred to higher trophic levels or lost from the system at relatively high rates when the lake was in a piscivore–macrophyte-dominated state, while they tended to accumulate in the algae in a planktivore-dominated chain without macrophytes. The role of weed beds was central for nutrient competition (mostly nitrogen) with algae, as well as a refuge and a base for alternative food sources to grazers. Weed beds seemed to have a strong effect in increasing connectedness, resilience and stability of the lake community.
5. The complete return of Zwemlust to a turbid state dominated by phytoplankton seems to have depended upon turnover of the limiting nutrient, which was retarded by macrophytes and stimulated by planktivorous fish and waterfowl.  相似文献   

2.
SUMMARY 1. Removal of zooplanktivorous fish (mainly bream) in 1987 from a shallow eutrophic lake in the Netherlands, Lake Zwemlust, resulted in a quick switch from a turbid state with cyanobacteria blooms to a clear state dominated by macrophytes.
2. The clear state was not stable in the long term, however, because of high nutrient loadings.
3. In 1999, another removal of zooplanktivorous fish (mainly rudd) had similar effects as in 1987, although macrophytes returned more slowly.
4. In the years directly following both interventions there was a 'transition period' of very clear water with high densities of zooplanktonic grazers in the absence of macrophytes; low oxygen concentrations indicate that during those years primary production was low relative to heterotrophic activity.
5. The transition period appears to provide the light climate necessary for the return of macrophytes.
6. Reduction of nutrient loading is necessary to improve water quality in Lake Zwemlust in the long term. In the short term, repeated fish stock reduction is a reasonable management strategy to keep Lake Zwemlust clear.  相似文献   

3.
The amount of terrestrial particulate organic matter (t-POM) entering lakes is predicted to increase as a result of climate change. This may especially alter the structure and functioning of ecosystems in small, shallow lakes which can rapidly shift from a clear-water, macrophyte-dominated into a turbid, phytoplankton-dominated state. We used the integrative ecosystem model PCLake to predict how rising t-POM inputs affect the resilience of the clear-water state. PCLake links a pelagic and benthic food chain with abiotic components by a number of direct and indirect effects. We focused on three pathways (zoobenthos, zooplankton, light availability) by which elevated t-POM inputs (with and without additional nutrients) may modify the critical nutrient loading thresholds at which a clear-water lake becomes turbid and vice versa. Our model results show that (1) increased zoobenthos biomass due to the enhanced food availability results in more benthivorous fish which reduce light availability due to bioturbation, (2) zooplankton biomass does not change, but suspended t-POM reduces the consumption of autochthonous particulate organic matter which increases the turbidity, and (3) the suspended t-POM reduces the light availability for submerged macrophytes. Therefore, light availability is the key process that is indirectly or directly changed by t-POM input. This strikingly resembles the deteriorating effect of terrestrial dissolved organic matter on the light climate of lakes. In all scenarios, the resilience of the clear-water state is reduced thus making the turbid state more likely at a given nutrient loading. Therefore, our study suggests that rising t-POM input can add to the effects of climate warming making reductions in nutrient loadings even more urgent.  相似文献   

4.
The modelPCLAKE describes the phosphorus and nitrogen cycles within a shallow lake ecosystem, including the sediment and a simplified biological food web. All components are modelled in a generalized way rather than a very detailed one. This model has been applied to Lake Zwemlust, a small biomanipulated lake in The Netherlands. Formerly, this highly eutrophic lake was dominated by cyanobacteria and devoid of macrophytes. Biomanipulation was carried out in 1987 by pumping-out of the water, removal of all fish, and refilling of the lake with seepage water. The lake was restocked with some rudd, pike, zooplankton and seedlings of macrophytes, and then monitored up to 1992. Macrophytes developed rather quickly and reached their maximum biomass during the six-years period in 1989. Despite the continuously high nutrient (N and P) loading, algal biomass remained low due to nitrogen limitation, caused by competition with the macrophytes. From 1990 onwards, the macrophytes declined again and a species shift occurred, following an increase of herbivorous birds on the lake and the development of herbivorous fishes.Model simulations grossly reproduced the observed developments in Lake Zwemlust before and after the biomanipulation measures. The existence of multiple steady states at the same trophic state and the possible shift between them could be simulated well. This study also demonstrates the interrelation between system structure and the distribution and cycling of nutrients. It is concluded, that within general boundary conditions set by the trophic state of the system, the food web structure determines the actual nutrient flows and the occurrence of nutrient limitations of the primary producers. It is shown that both aspects can be integrated in one mathematical model. The long-term stability of the macrophyte dominance in the lake is discussed.  相似文献   

5.
Biomanipulation was carried out in order to improve the water quality of the small hypertrophic Lake Zwemlust (1.5 ha; mean depth 1.5 m). In March 1987 the lake was drained to facilitate the elimination of fish. Fish populations were dominated by planktivorous and benthivorous species (total stock c. 1500 kg) and were collected by seine- and electro-fishing. The lake was subsequently re-stocked with 1500 northern pike fingerlings (Esox lucius L.) and a low density of adult rudd (Scardinius erythrophthalmus). The offspring of the rudd served as food for the predator pike. Stacks of Salix twigs, roots of Nuphar lutea and plantlets of Chara globularis were brought in as refuge and spawning grounds for the pike, as well as shelter for the zooplankton.The impact of this biomanipulation on the light penetration, phytoplankton density, macrophytes, zooplankton and fish communities and on nutrient concentrations was monitored from March 1987 onwards. This paper presents the results in the first year after biomanipulation.The abundance of phytoplankton in the first summer (1987) after this biomanipulation was very low, and consequently accompanied by increase of Secchi-disc transparency and drastic decline of chlorophyll a concentration.The submerged vegetation remained scarce, with only 5 % of the bottom covered by macrophytes at the end of the season.Zooplankters became more abundant and there was a shift from rotifers to cladocerans, comprised mainly of Daphnia and Bosmina species, the former including at least 3 species.The offspring of the stocked rudd was present in the lake from the end of August 1987. Only 19% of the stocked pike survived the first year.Bioassays and experiments with zooplankton community grazing showed that the grazing pressure imposed by the zooplankton community was able to keep chlorophyll a concentrations and algal abundance to low levels, even in the presence of very high concentrations of inorganic N and P. The total nutrient level increased after biomanipulation, probably due to increased release from the sediment by bioturbation, the biomass of chironomids being high.At the end of 1987 Lake Zwemlust was still in an unstable stage. A new fish population dominated by piscivores, intended to control the planktivorous and benthivorous fish, and the submerged macrophytes did not yet stabilize.  相似文献   

6.
SUMMARY 1. Pelagic and epipelic microalgal production were measured over a year in a pre-defined area (depth 0.5 m) in each of two lakes, one turbid and one with clear water. Further estimates of epiphytic production within reed stands were obtained by measuring production of periphyton developed on artificial substrata.
2. Total annual production of phytoplankton and epipelon was 34% greater in the turbid lake (190 g C m−2 year−1) than in the clearwater lake (141 g C m−2 year−1). However, the ratio of total production to mean water column TP concentration was two fold greater in the clearwater lake.
3. Phytoplankton accounted for the majority of the annual production (96%) in the turbid lake, while epipelic microalgal production dominated (77%) in the clear lake. The relative contribution of epipelic algae varied over the year, however, and in the turbid lake was higher in winter (11–25%), when the water was relatively clear, than during summer (0.7–1.7%), when the water was more turbid. In the clearwater lake, the relative contribution of epipelon was high both in winter, when the water was most clear, and in mid-summer, when phytoplankton production was constrained either by nutrients or grazing.
4. Compared with pelagic and epipelic primary production, epiphytic production within a reed stand was low and did not vary significantly between the lakes.
5. The study supports the theory of a competitive and compensatory trade-off between primary producers in lakes with contrasting nutrient concentrations, resulting in relatively small differences in overall production between clear and turbid lakes when integrating over the season and over different habitats.  相似文献   

7.
Ozimek  Teresa  Gulati  Ramesh D.  van Donk  Ellen 《Hydrobiologia》1990,200(1):399-407
Lake Zwemlust (area 1.5 ha, Zm 1.5 m) has been the object of an extensive limnological study since its biomanipulation involving removal of planktivorous fish (bream) in March 1987 and emptying of the lake. In the subsequent summer period of 1987 the Secchi depth increased to the lake bottom (2.5 m), compared withca 30 cm in the earlier summers. The reaction of submerged macrophytes to improving under-water light climate was rapid. In summer 1987, besides the introducedChara globularis, 5 species of submerged macrophytes occurred and colonized 10% of the lake area. In 1988 and 1989 only quantitative changes were observed; new species did not appear, but the area colonized by macrophytes increased by 7 and 10 times, respectively.Elodea nuttallii was dominant among the macrophytes andMougeotia sp. among the filamentous green algae. Their abundance, contributed to transient N-limination of phytoplankton causing a persistent clear water phase in 1988 and 1989, unlike in 1987 when zooplankton grazing contributed chiefly to the water clarity. Laboratory bioassays on macrophytes confirmed nitrogen limitation.  相似文献   

8.
In two years after biomanipulation of Lake Zwemlust (The Netherlands), macrophytes (helophytes, elodeids) and filamentous algae developed luxuriantly in the lake. They influenced the structure of macroinvertebrate communities inhabiting them. Macrophytes and algae, by changing environmental and trophic conditions, also affected the composition of macrozoobenthos. Vascular plants served as an important source of food for zoobenthos and phytofauna, mainly after they were decomposed. Filamentous algae were consumed readily alive by many animals. Invertebrates appeared to be important as a potential nutrient source for hydrophytes.  相似文献   

9.
Responses to food web manipulation in a shallow waterfowl lake   总被引:4,自引:4,他引:0  
Hanson  Mark A.  Butler  Malcolm G. 《Hydrobiologia》1994,275(1):457-466
The effects of fish stock reduction have been studies in 3 Dutch lakes (Lake Zwemlust, Lake Bleiswijkse Zoom and Lake Noorddiep) and 1 Danish lake (Lake Væng) during 4–5 years. A general response id described. The fish stock reduction led in general to a low fish stock, low chlorophyii-a, high transparency and high abunuance of macrophytes. Large Daphnia became abundant, but their density decreased, due to food limitation and predation by fish. The total nitrogen concentration became low due to N-uptake by macrophytes and enhanced denitrification. In Lake Bleiswijkse Zoom the water transparency deteriorated and the clear water state was not stable. The fish stock increased and the production of young fish in summer was high. lear water occurred only in spring. Large daphnids were absent in summer and the macrophytes decreased.In Lake Zwemlust, Lake Væng and Lake Noorddiep the water remained clear during the first five years. In summer of the sixth year (1992) transparency decreased in Lake Zwemlust (with high P-concentration of 1.0 mg P l-1). Also in Lake Væng (with a low nutrient concentration of 0.15 mg P.-1) a short term turbid stage (1.5 month) occurred in summer 1992 after a sudden collapse of the macrophytes. Deterioration of the water quality seems to start in summer and seems related to a collapse in macrophytes. At a low planktivorous fishstock (e.g. Lake Væng)thhe duration of the turbid state is shorter. than in presence of a high planktivorous fish biomass (e.g. Lake Zwemlust, and later years of Lake Bleiswijkse Zoom).  相似文献   

10.
Temperate shallow meso- to eutrophic lakes can exist in one of two alternative states with contrasting foodwebs, referred to as the clear-water and the turbid state. We describe the planktonic ciliate communities of such lakes based on a survey of 66 northwestern European lakes. Ciliates were enumerated and identified to species level according to the quantitative protargol staining technique. Ciliate biomass was on average twice as high in the turbid than in the clear-water lakes. The ciliate communities were dominated by oligotrichs and protostomatids, and no differences in functional composition or α-diversity could be detected between turbid and clear-water lakes, although β-diversity tended to be higher in the latter. At the species level, however, community structure strongly differed between turbid and clear-water lakes, and several indicator species could be identified for the different lake categories. Variation partitioning showed that nutrient status did not explain ciliate community structure independent of the alternative states, while lake area was identified as an additional structuring factor for the ciliate communities. These results stress the importance of the ecosystem structure in shaping ciliate communities in temperate shallow lakes and suggest that nutrient status has little direct effect on ciliate community structure in such lakes.  相似文献   

11.
The phylogenetic composition of bacterioplankton communities in the water column of four shallow eutrophic lakes was analyzed by partially sequencing cloned 16S rRNA genes and by PCR-DGGE analysis. The four lakes differed in nutrient load and food web structure: two were in a clearwater state and had dense stands of submerged macrophytes, while two others were in a turbid state characterized by the occurrence of phytoplankton blooms. One turbid and one clearwater lake had very high nutrient levels (total phosphorus > 100 microg/l), while the other lakes were less nutrient rich (total phosphorus < 100 microg/l). Cluster analysis, multidimensional scaling and ANOSIM (analysis of similarity) were used to investigate differences among the bacterial community composition in the four lakes. Our results show that each lake has its own distinct bacterioplankton community. The samples of lake Blankaart differed substantially from those of the other lakes; this pattern was consistent throughout the year of study. The bacterioplankton community composition in lake Blankaart seems to be less diverse and less stable than in the other three lakes. Clone library results reveal that Actinobacteria strongly dominated the bacterial community in lake Blankaart. The relative abundance of Betaproteobacteria was low, whereas this group was dominant in the other three lakes. Turbid lakes had a higher representation of Cyanobacteria, while clearwater lakes were characterized by more representatives of the Bacteroidetes. Correlating our DGGE data with environmental parameters, using the BIOENV procedure, suggests that differences are partly related to the equilibrium state of the lake.  相似文献   

12.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

13.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

14.
1. The alternative state theory claims that shallow lakes may have either clear water, and be dominated by submerged macrophytes, or turbid water and be dominated by phytoplankton. Most evidence for this theory comes from studies in temperate or boreal regions of Europe. Because of differences in the strength of trophic interactions, such as in the pressure of zooplankton grazing on phytoplankton, this influential theory might not apply elsewhere. 2. Here, we test the theory for South American lakes, combining field data and Landsat satellite data. We studied the frequency distribution of primary producers and water transparency, looking for potential bimodality separating clear and turbid lakes. A bimodal distribution might be observed if there are indeed alternative states, although would not itself be sufficient evidence for the theory. Possible shifts between alternative states were analysed by comparing satellite data from 1987 to 2005. 3. In our field data, there was a bimodal pattern in phytoplankton abundance and possibly in the abundance of submerged macrophytes, but not in water transparency. Analyses of the larger satellite data set revealed bimodality in lake transparency in 2005, but less so in 1987. In 1987, the lakes were generally clearer, and the transition to higher turbidity was more gradual than in 2005. The stronger bimodality in the more recent data, and the overall lower transparency, could have been caused by an increase in fertiliser use and subsequent eutrophication but also by differences in hydrology. Further, 1987 was much wetter than 2005, which could have caused dilution of suspended particles, leading to clearer water. 4. While a bimodal distribution in the abundance of primary producers and water clarity is not decisive evidence for or against the theory of alternative states, our data clearly fail to refute it.  相似文献   

15.
SUMMARY 1. A biomanipulation experiment was carried out in a small (10 ha), but relatively deep (17 m) and highly eutrophic lake in northern Poland. The lake had been stocked in 1996, 1997 and 1998 with a variety of piscivorous fish (pike, catfish, trout and pikeperch), in order to reduce numbers of cyprinid planktivores.
2. Piscivore stocking was associated with a threefold decrease in the offshore fish density (night echosounding). Despite this reduction, the large planktonic cladoceran, Daphnia hyalina , remained scarce, whereas the density of small-sized zooplankton increased greatly.
3. The lack of demographic response in D. hyalina was probably due to the anoxia in the hypolimnetic refuge of this vertically migrating species. The anoxic hypolimnion, below 3–4 m depth, was inhabited day and night by numerous Chaoborus flavicans larvae.
4. Changes in zooplankton were associated with shifts in the taxonomic composition (from single-cell green algae to filamentous cyanobacteria), size structure (from nano- to net phytoplankton) and seasonal dynamics of phytoplankton, but not in the average biomass of planktonic algae. A clear-water phase, which was absent in the prestocking years, developed in spring, with Secchi depth reaching 2.5 m, a value which had never been recorded in the 20 years preceding the biomanipulation. In general, the lake's status was switched from hypertrophic to eutrophic.
5. Deteriorating food conditions, resulting from qualitative changes in the phytoplankton community, combined with predation pressure by the remaining fish and Chaoborus larvae were associated with the ultimate elimination of D. hyalina from the lake.  相似文献   

16.
1. The flow of phosphorus and nitrogen through the food web of the shallow, eutrophic lake Wolderwijd was analysed for 2 different years before and for 1 year after food web manipulation.
2. After fish removal the water became clear and the growth of macrophytes began. Fish removal resulted in a significant reduction of the total nutrient pool in the water, but differences between the nutrient cycles before and after the experiment were mainly caused by a gradual change driven by a reduced phosphorus input.
3. The zooplankton biomass before and after food web manipulation did not change significantly. Unfavourable food conditions and predation by young fish limited zooplankton biomass after the food web manipulation.
4. After fish removal benthic algae, fish, zoobenthos and macrophytes form the largest pools of nutrients apart from the sediment top layer. However, they contribute only little to nutrient cycles in the water column.  相似文献   

17.
1. The flow of phosphorus and nitrogen through the food web of the shallow, eutrophic lake Wolderwijd was analysed for 2 different years before and for 1 year after food web manipulation.
2. After fish removal the water became clear and the growth of macrophytes began. Fish removal resulted in a significant reduction of the total nutrient pool in the water, but differences between the nutrient cycles before and after the experiment were mainly caused by a gradual change driven by a reduced phosphorus input.
3. The zooplankton biomass before and after food web manipulation did not change significantly. Unfavourable food conditions and predation by young fish limited zooplankton biomass after the food web manipulation.
4. After fish removal benthic algae, fish, zoobenthos and macrophytes form the largest pools of nutrients apart from the sediment top layer. However, they contribute only little to nutrient cycles in the water column.  相似文献   

18.
1. High biomass of macrophytes is considered important in the maintenance of a clear‐water state in shallow eutrophic lakes. Therefore, rehabilitation and protection of aquatic vegetation is crucial to the management of shallow lakes. 2. We conducted field mesocosm experiments in 1998 and 1999 to study community responses in the plant‐dominated littoral zone of a lake to nutrient enrichment at different fish densities. We aimed to find the threshold fish biomass for the different nutrient enrichment levels below which large herbivorous zooplankton escapes control by fish. The experiments took place in the littoral of Lake Vesijärvi in southern Finland and were part of a series of parallel studies carried out jointly at six sites across Europe. 3. In 1998, when macrophyte growth was poor, a clear‐water state with low phytoplankton biomass occurred only in unenriched mesocosms without fish or with low fish biomass (4 g fresh mass m?2). Both nutrient enrichment and high fish biomass (20 g fresh mass m?2) provoked a turbid water state with high planktonic and periphytic algal biomass. The zooplankton community was dominated by rotifers and failed to control the biomass of algae in nutrient enriched mesocosms. The littoral community thus had low buffer capacity against nutrient enrichment. 4. In 1999, macrophytes, especially free‐floating Lemna trisulca L., grew well and the zooplankton community was dominated by filter‐feeding cladocerans. The buffer capacity of the littoral community against nutrient enrichment was high; a clear‐water state with low phytoplankton biomass prevailed even under the highest nutrient enrichment. High grazing rates by cladocerans, together with reduced light penetration into the water caused by L. trisulca, were apparently the main mechanisms behind the low algal biomass. 5. Effects of fish manipulations were less pronounced than effects of nutrient enrichment. In 1999, clearance rates of cladocerans were similar in fish‐free and low‐fish treatments but decreased in the high‐fish treatment. This suggests that the threshold fish biomass was between the low‐ and high‐fish treatments. In 1998, such a threshold was found only between fish‐free and low‐fish treatments. 6. The pronounced difference in the observed responses to nutrient enrichment and fish additions in two successive years suggests that under similar nutrient conditions and fish feeding pressure either clear or turbid water may result depending on the initial community structure and on weather.  相似文献   

19.
Whole-lake food-web manipulation was carried out in the hypertrophic Lake Zwemlust (The Netherlands), with the aim of studying the effects on the lake's trophic status and to gain an insight into complex interactions among lake communities. Before manipulation this small (1.5 ha) and shallow (1.5 m) lake was characterized byMicrocystis blooms in summer and high chlorophyll-a concentrations were common (ca. 250 μg 1−1). In March 1987 the planktivorous and benthivorous fish species in the lake were completely removed (ca. 1000 kg ha−1), a new simple fish community (pike and rudd) was introduced and artificial refuges were created. The effects of this manipulation on the light climate, nutrient concentrations, phytoplankton, zooplankton, fish, macrophytes, and macrofauna were monitored during 1987, 1988 and 1989. Community interactions were investigated in phytoplankton bioassays and zooplankton grazing experiments. After the manipulation, despite the still high P and N loads to the lake (ca. 2.2 g P m−2 y−1 andca. 5.3 g N m−2 y−1), the phytoplankton density was low (Chl-a<5μg l−1), due to control by large-sized zooplankton in spring and N-limitation in summer and autumn. A marked increase in the abundance of macrophytes and filamentous green algae in 1988 and 1989, as well as N loss due to denitrification, contributed to the N limitation of the phytoplankton. Before manipulation no submerged macro-vegetation was present but in 1988, the second year after manipulation, about 50% of the lake bottom was covered by macrophytes increasing to 80% in 1989. This led to substantial accumulation of both N and P, namely 76% and 73% respectively of the total nutrients in the lake in particulate matter. Undesirable features of the increase in macrophytes were: 1) direct nuisance to swimmers; and, 2) the large scale development of snails, especiallyL. peregra, which may harbour the parasite causing ‘swimmers' itch’. But harvesting of only about 3% of the total macrophyte biomass from the swimmers' area, twice a year, reduced the nuisance for swimmers without adversely affecting the water clarity.  相似文献   

20.
Dahlgren  Stefan  Kautsky  Lena 《Hydrobiologia》2004,514(1-3):249-258
Hydrobiologia - Two different vegetative states, i.e. one clear water state dominated by benthic macrophytes and one turbid state dominated by phytoplankton, are commonly found in shallow lakes. In...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号