首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pantoea agglomerans (synonym: Erwinia herbicola) strain Eh318 produces through antibiosis a complex zone of inhibited growth in an overlay seeded with Erwinia amylovora, the causal agent of fire blight. This zone is caused by two antibiotics, named pantocin A and B. Using a genomic library of Eh318, two cosmids, pCPP702 and pCPP704, were identified that conferred on Escherichia coli the ability to inhibit growth of E. amylovora. The two cosmids conferred different antibiotic activities on E. coli DH5α and had distinct restriction enzyme profiles. A smaller, antibiotic-conferring DNA segment from each cosmid was cloned. Each subclone was characterized and mutagenized with transposons to generate clones that were deficient in conferring pantocin A and B production, respectively. Mutated subclones were introduced into Eh318 to create three antibiotic-defective marker exchange mutants: strain Eh421 (pantocin A deficient); strain Eh439 (pantocin B deficient), and Eh440 (deficient in both pantocins). Cross-hybridization results, restriction maps, and spectrum-of-activity data using the subclones and marker exchange mutants, supported the presence of two distinct antibiotics, pantocin A and pantocin B, whose biosynthetic genes were present in pCPP702 and pCPP704, respectively. The structure of pantocin A is unknown, whereas that of pantocin B has been determined as (R)-N-[((S)-2-amino-propanoylamino)-methyl]-2-methanesulfonyl-succinamic acid. The two pantocins mainly affect other enteric bacteria, based on limited testing.  相似文献   

2.
A self-cloning system for Actinomadura verrucosospora, a producer of the angucyclic antibiotic pradimicin A (PRM A), has been developed. The system is based on reproducible and reliable protoplasting and regeneration conditions for A. verrucosospora and a novel plasmid vector that consists of a replicon from a newly found Actinomadura plasmid and a selectable marker cloned from the Actinomadura strain. The system has an efficiency of more than 105 CFU/microgram of DNA. Using this system, we have cloned and identified the polyketide synthase (PKS) genes essential for PRM A biosynthesis from A. verrucosospora. Nucleotide sequence analysis of the 3.5-kb SalI-SphI fragment showed that ketosynthase subunits (open reading frame 1 [ORF1] and ORF2) of the essential PKS genes have strong similarities (59 to 89%) to those for angucyclic antibiotic biosynthesis.  相似文献   

3.
Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.  相似文献   

4.
Erwinia carotovora subsp. betavasculorum strains produced a bactericidal antibiotic in vitro that inhibited a wide spectrum of gram-negative and gram-positive bacteria. The optimum temperature for production was 24°C, and the addition of glycerol to culture media enhanced antibiotic production. Antibiotic production by these strains in the infection court of potato was the principal determinant enabling it to gain ascendancy over competing antibiotic-sensitive Erwinia carotovora subsp. carotovora strains. There was a complete correlation between antibiotic production by E. carotovora subsp. betavasculorum in vitro and inhibition of competing E. carotovora subsp. carotovora strains in planta. Inhibition of the latter by the former was apparent after 10 h of incubation in potato tuber wounds. Population densities of sensitive E. carotovora subsp. carotovora strains in mixed potato tuber infections with E. carotovora subsp. betavasculorum were approximately 106-fold lower after 48 h of incubation than in corresponding single sensitive strain infections. E. carotovora subsp. carotovora were not inhibited in tuber infections that were incubated anaerobically. This correlated with the absence of antibiotic production during anaerobic incubation in vitro. Antibiotic-resistant strains of E. carotovora subsp. carotovora were not inhibited in planta or in vitro by E. carotovora subsp. betavasculorum. Moreover, isogenic antibiotic-negative (Ant) mutant E. carotovora subsp. betavasculorum strains were not inhibitory to sensitive E. carotovora subsp. carotovora strains in tuber infections.  相似文献   

5.
Erwinia amylovora and Erwinia pyrifoliae cause fire blight and black-shoot blight, respectively, in apples and pears. E. pyrifoliae is less pathogenic and has a narrower host range than that of E. amylovora. Fire blight and black-shoot blight exhibit similar symptoms, making it difficult to distinguish one bacterial disease from the other. Molecular tools that differentiate fire blight from black-shoot blight could guide in the implementation of appropriate management strategies to control both diseases. In this study, a primer set was developed to detect and distinguish E. amylovora from E. pyrifoliae by conventional polymerase chain reaction (PCR). The primers produced amplicons of different sizes that were specific to each bacterial species. PCR products from E. amylovora and E. pyrifoliae cells at concentrations of 104 cfu/ml and 107 cfu/ml, respectively, were amplified, which demonstrated sufficient primer detection sensitivity. This primer set provides a simple molecular tool to distinguish between two types of bacterial diseases with similar symptoms.  相似文献   

6.
Erwinia herbicola strain Eh1087 produces the broad-spectrum phenazine antibiotic D-alanylgriseoluteic acid (AGA). In this report, a cluster of 16 ehp (Erwinia herbicola phenazine) plasmid genes required for the production of AGA by Eh1087 is described. The extent of the gene cluster was revealed by the isolation of 82 different Eh1087 AGA- mutants, all found to possess single mini-Tn5lacZ2 insertions within a 14 kbp DNA region. Additional transposon insertions that did not affect antibiotic production by Eh1087 were created to define the boundaries of the gene cluster. The size and location of genes between these boundaries were derived from a combination of DNA sequence analyses, minicell protein analyses and the correlation between mutation position and the production of coloured AGA intermediates by many ehp mutants. Precursor-feeding and complementation experiments resulted in 15 ehp genes being assigned to one of four functional groups according to their role in the synthesis of AGA. Group 1 is required for the synthesis of the phenazine nucleus in the form of antibiotic precursor one (AP1, phenazine-1,6-dicarboxylic acid). Group 2 is responsible for conversion of AP1 to AP2, which is subsequently modified to AP3 (griseoluteic acid) and exported by the group 3 gene products. Group 4 catalyses the addition of D-alanine to AP3 to create AGA, independently of groups 1, 2 and 3. A gene that is divergently transcribed from the 15 AGA synthesis ehp genes confers resistance to AGA.  相似文献   

7.
Xanthomonadins are yellow, membrane-bound pigments produced by members of the genus Xanthomonas. We identified an ethyl methanesulfonate-induced Xanthomonas oryzae pv. oryzae mutant (BXO65) that is deficient for xanthomonadin production and virulence on rice, as well as auxotrophic for aromatic amino acids (Pig Vir Aro). Reversion analysis indicated that these multiple phenotypes are due to a single mutation. A genomic library of the wild-type strain was used to isolate a 7.0-kb clone that complements BXO65. By transposon mutagenesis, marker exchange, sequence analysis, and subcloning, the complementing activity was localized to a 849-bp open reading frame (ORF). This ORF is homologous to the aroE gene, which encodes shikimate dehydrogenase in various bacterial species. Shikimate dehydrogenase activity was present in the wild-type strain and the mutant with the complementing clone, whereas no activity was found in BXO65. This clone also complemented an Escherichia coli aroE mutant for prototrophy, indicating that aroE is functionally conserved in X. oryzae pv. oryzae and E. coli. The nucleotide sequence of the 2.9-kb region containing aroE revealed that a putative DNA helicase gene is located adjacent to aroE. Our results indicate that aroE is required for normal levels of virulence and xanthomonadin production in X. oryzae pv. oryzae.  相似文献   

8.
Erwinia herbicola Eh1087 isolated from apple blossom inhibits development of Erwinia amylovora in immature pear fruit and produces a broad spectrum antibiotic activity in vitro that is bactericidal for Erw. amylovora. The antibiotic activity is present in cell-free culture supernatant fluids of late log-early stationary phase cultures of Eh1087. This antibiotic activity is not inhibited by proteases, excess ferric ions or essential amino acids. It is stable to acidic and basic pH and is inactivated at high temperature. The antibiotic activity is inactivated by β-lactamase digestion.  相似文献   

9.
Nine antibiotic producer strains of Erwinia herbicola (=Pantoea agglomerans), belonging to different groups, strongly inhibited growth of 21 streptomycin sensitive strains and 6 streptomycin resistant strains of E. amylovora. The antibacterial spectra of antibiotics produced by the tested strains of E. herbicola were mainly limited to E. amylovora and related tested species. The tested strains of E. amylovora that are resistant to streptomycin did not show cross-resistance to the different types of antibiotics produced by the tested strains of E. herbicola. The antibiotics produced by the different tested strains of E. herbicola did not exert any activity on tested fungi with the exception that strains Eh 153 and Eh 351 slightly inhibited the growth of Verticillium dahliae.  相似文献   

10.
Erwinia piriflorinigrans is a new pathogenic species of the bacterial genus Erwinia that has been described recently in Spain. Accurate detection and identification of E. piriflorinigrans are challenging because its symptoms on pear blossoms are similar to those caused by Erwinia amylovora, the causal agent of fire blight. Moreover, these two species share phenotypic and molecular characteristics. Two specific and sensitive conventional and real-time PCR protocols were developed to identify and detect E. piriflorinigrans and to differentiate it from E. amylovora and other species of this genus. These protocols were based on sequences from plasmid pEPIR37, which is present in all strains of E. piriflorinigrans analyzed. After the stability of the plasmid was demonstrated, the specificities of the protocols were confirmed by the amplification of all E. piriflorinigrans strains tested, whereas 304 closely related pathogenic and nonpathogenic Erwinia strains and microbiota from pear trees were not amplified. In sensitivity assays, 103 cells/ml extract were detected in spiked plant material by conventional or real-time PCR, and 102 cells/ml were detected in DNA extracted from spiked plant material by real-time PCR. The protocols developed here succeeded in detecting E. piriflorinigrans in 102 out of 564 symptomatic and asymptomatic naturally infected pear samples (flowers, cortex stem tissue, leaves, shoots, and fruitlets), in necrotic Pyracantha sp. blossoms, and in necrotic pear and apple tissues infected with both E. amylovora and E. piriflorinigrans. Therefore, these new tools can be used in epidemiological studies that will enhance our understanding of the life cycle of E. piriflorinigrans in different hosts and plant tissues and its interaction with E. amylovora.  相似文献   

11.
Erwinia amylovora is a devastating bacterial plant pathogen that infects Rosaceae including apple and pear and causes fire blight. Bacteriophages have been considered as a biological control agent for preventing bacterial infections of plants. In this study, nine bacteriophages (ΦFifi011, ΦFifi044, ΦFifi051, ΦFifi067, ΦFifi106, ΦFifi287, ΦFifi318, ΦFifi450, and ΦFifi451) were isolated from soil and water samples in seven orchards with fire blight in Korea. The genetic diversity of bacteriophage isolates was confirmed through restriction fragment length polymorphism pattern analysis. Host range of the nine phages was tested against 45 E. amylovora strains and 14 E. pyrifoliae strains and nine other bacterial strains. Among the nine phages, ΦFifi044 and ΦFifi451 infected and lysed E. amylovora only. And the remaining seven phages infected both E. amylovora and E. pyrifoliae. The results suggest that the isolated phages were different from each other and effective to control E. amylovora, providing a basis to develop biological agents and utilizing phage cocktails.  相似文献   

12.
The RcsA and RcsB proteins of Erwinia amylovora and Escherichia coli were expressed in E. coli and purified. Their DNA-binding activity was examined using a 1-kb DNA region containing the putative promoter of the ams operon of Ew. amylovora, which is responsible for the biosynthesis of the exopolysaccharide amylovoran. Mobility shift assays indicated specific binding of RcsA and RcsB to a region of 78?bp spanning nucleotide positions ?578 to ?501 relative to the translational start of the first open reading frame of the operon. This region includes stretches of homology to E. coliσ 70 promoter consensus sequences and to the E. coli cps promoter region. Binding of the Rcs proteins was not found at a JUMPstart consensus, typical for various promoters of polysaccharide gene clusters. DNA-binding activity was not detected for RcsA alone and only high concentrations of RcsB were able to interact with the ams promoter in our assay. The two proteins bind cooperatively at the indicated region of the ams promoter and further evidence is provided showing that the DNA-protein complex formed involves a heterodimer of RcsA and RcsB. The specific activity of RcsA, but not of RcsB, was enhanced when the protein was expressed in E. coli at 28°?C, relative to expression at 37°?C. In addition, DNA-protein complex formation is affected by temperature. The E. coli RcsA/RcsB proteins bind to the same region of the ams promoter and are able to interact with the Rcs proteins from Ew. amylovora.  相似文献   

13.
All strains of Erwinia amylovora characterized carry a medium-size plasmid of 29 kilobases (pEA29). We mapped this plasmid with various restriction enzymes, cloned the whole DNA into an Escherichia coli plasmid, and subcloned restriction fragments. These DNA species were used for identification of E. amylovora after handling of strains in the laboratory and also in field isolates. About 70 strains of E. amylovora and 24 strains from nine other species, mainly found in plant habitats, were checked in a colony hybridization test. Virulent and avirulent E. amylovora strains reacted positively, whereas the other species were negative. Apart from the hybridization assay, the positive strains were additionally tested for ooze production on rich agar with 5% sucrose and on immature-pear slices. Unspecific background hybridization of non-E. amylovora strains found for hybridization with the whole E. amylovora plasmid was almost eliminated when a 5-kilobase SalI fragment from pEA29 was used as a probe and when the washes after the hybridization procedure were done with high stringency. Under these conditions, E. amylovora could be readily identified from field isolates.  相似文献   

14.
Copper compounds, widely used to control plant-pathogenic bacteria, have traditionally been employed against fire blight, caused by Erwinia amylovora. However, recent studies have shown that some phytopathogenic bacteria enter into the viable-but-nonculturable (VBNC) state in the presence of copper. To determine whether copper kills E. amylovora or induces the VBNC state, a mineral medium without copper or supplemented with 0.005, 0.01, or 0.05 mM Cu2+ was inoculated with 107 CFU/ml of this bacterium and monitored over 9 months. Total and viable cell counts were determined by epifluorescence microscopy using the LIVE/DEAD kit and by flow cytometry with 5-cyano-2,3-ditolyl tetrazolium chloride and SYTO 13. Culturable cells were counted on King's B nonselective solid medium. Changes in the bacterial morphology in the presence of copper were observed by scanning electron microscopy. E. amylovora entered into the VBNC state at all three copper concentrations assayed, much faster when the copper concentration increased. The addition of different agents which complex copper allowed the resuscitation (restoration of culturability) of copper-induced VBNC cells. Finally, copper-induced VBNC cells were virulent only for the first 5 days, while resuscitated cells always regained their pathogenicity on immature fruits over 9 months. These results have shown, for the first time, the induction of the VBNC state in E. amylovora as a survival strategy against copper.  相似文献   

15.
Listeria monocytogenes can cause the serious infection listeriosis, which despite antibiotic treatment has a high mortality. Understanding the response of L. monocytogenes to antibiotic exposure is therefore important to ensure treatment success. Some bacteria survive antibiotic treatment by formation of persisters, which are a dormant antibiotic-tolerant subpopulation. The purpose of this study was to determine whether L. monocytogenes can form persisters and how bacterial physiology affects the number of persisters in the population. A stationary-phase culture of L. monocytogenes was adjusted to 108 CFU ml−1, and 103 to 104 CFU ml−1 survived 72-h treatment with 100 μg of norfloxacin ml−1, indicating a persister subpopulation. This survival was not caused by antibiotic resistance as regrown persisters were as sensitive to norfloxacin as the parental strain. Higher numbers of persisters (105 to 106) were surviving when older stationary phase or surface-associated cells were treated with 100 μg of norfloxacin ml−1. The number of persisters was similar when a ΔsigB mutant and the wild type were treated with norfloxacin, but the killing rate was higher in the ΔsigB mutant. Dormant norfloxacin persisters could be activated by the addition of fermentable carbohydrates and subsequently killed by gentamicin; however, a stable surviving subpopulation of 103 CFU ml−1 remained. Nitrofurantoin that has a growth-independent mode of action was effective against both growing and dormant cells, suggesting that eradication of persisters is possible. Our study adds L. monocytogenes to the list of bacterial species capable of surviving bactericidal antibiotics in a dormant stage, and this persister phenomenon should be borne in mind when developing treatment regimens.  相似文献   

16.
Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related enterobacteria revealed signs of pathoadaptation to rosaceous hosts.Erwinia amylovora, a plant-associated member of the Enterobacteriaceae, causes fire blight, a devastating disease of rosaceous plants, especially pear and apple (6). The complete genome of Ea273 (ATCC 49946), a virulent strain isolated from an infected apple tree in New York State, was sequenced. Total DNA was extracted and prepared in pMAQ1 shotgun libraries. The complete shotgun sequence was obtained by using dye terminator chemistry in ABI 3730 automated sequencers and contains 88,457 reads (11.12-fold coverage), yielding a theoretical coverage of the genome of 99.99%. The sequence was assembled, finished, and annotated as described previously (1, 5), using Artemis (4) to collate data and facilitate annotation.The genome of E. amylovora consists of a circular chromosome of 3,805,874 bp and two plasmids, AMYP1 (28,243 bp) and AMYP2 (71,487 bp). Coding regions in the chromosome account for 85.1% of the total sequence, with 3,483 identified coding sequences (CDS). Two hundred fifty-four (7%) of the CDSs do not have any matches in current NCBI databases; 114 (3.3%) correspond to conserved hypothetical proteins. Forty-nine CDSs (1.4%) are similar to genes from mobile elements such as integrases, transposases, and bacteriophages, and 110 CDSs (3.2%) were classified as pseudogenes due to interruptions or truncations of the CDSs. The remaining 2,956 annotated CDSs include among other categories genes involved in biosynthesis of the cellular envelope and modifications of surface proteins (299 CDSs [11%]) and genes involved in signal transduction and regulation (228 CDSs [8%]). Seven rRNA operons and 78 tRNA sequences were identified in the chromosome; two new clusters were identified (AMY1550-1575 and AMY2648-2676) that resemble the T3SS-encoding SSR-1 island of Sodalis glossinidius (2), and four clusters that contain genes for biosynthesis of flagella, which based on their location might be regulated independently.The smaller plasmid, AMYP1, had been reported as pEA29 (3); its sequence is nearly identical to the one reported here. The larger plasmid, AMYP2, renamed pEA72 for consistency in nomenclature, contains 87 predicted CDSs, with two predicted mobile-element-related CDSs and one pseudogene. Among the CDSs with annotated functions are a cluster of genes (AMYP2_49 to AMYP2_62) that encode a putative type IV fimbrial system (pil genes).The genome of E. amylovora is only 3.8 Mb long, whereas most free-living enterobacteria, including plant pathogens, have genomes of 4.5 Mb to 5.5 Mb. Comparison of the genome of Ea273 with the sequenced genomes of 15 closely related enterobacteria identified 21 lineage-specific regions, which might be considered genomic islands. E. amylovora has many more predicted pseudogenes, relative to other enterobacteria with similar lifestyles. Given its size and the preponderance of pseudogenes, genome reduction may have occurred via mutational inactivation and subsequent deletion with the following consequences: E. amylovora has fewer genes involved in anaerobic respiration and fermentation than are found in typical related enterobacteria; this likely result in a reduced capacity to live in anaerobic environments.The genome sequence of E. amylovora has revealed clear signs of pathoadaptation to the rosaceous plant environment. For example, T3SS-related proteins are present that are more similar to proteins of other plant pathogens than to proteins of closely related enterobacteria. These include type III effectors, homologous to those of plant-pathogenic pseudomonads, which confer virulence to E. amylovora in plants, and a sorbitol-metabolizing cluster that may confer a competitive advantage for survival in rosaceous plants. The reduced genome size and erosion or loss of genes involved in anaerobic respiration and nitrate assimilation are remarkable, relative to other plant- and animal-pathogenic members of the Enterobacteriaceae.  相似文献   

17.
Nine industrially important strains of Streptococcus cremoris (HP, AM2, ML1, WC, C3, R1, E8, KH, and Wg2) were shown to possess a diversity of plasmid molecules. Molecular weights of plasmids were determined from their relative mobilities after agarose gel electrophoresis and via electron microscopy. To illustrate the varied plasmid sizes, strain HP contained plasmids of 26, 18, 8.5, 3.3, and 2 megadaltons (Mdal); strain ML1 contained plasmids of 29, 18, 9, 4, 2.2, and 1.8 Mdal; and strain AM2 had plasmids of 42, 27, 16, and 8.4 Mdal. The numbers of plasmids observed in the other strains were 6, 5, 5, 7, 5, and 4 for C3, E8, KH, R1, WC, and Wg2, respectively. A spontaneous proteinase-negative (Prt) mutant of HP was missing the 8.5-Mdal plasmid, which suggests that in this strain proteinase activity could be linked to this particular plasmid. A lactose-negative (Lac) Prt mutant of ML1 lacked the 2.2-Mdal plasmid. Under the conditions employed, antibiotic sensitivity and heavy-metal susceptibility did not correlate with the missing plasmid in Prt HP or in the Lac Prt ML1. Curing experiments with AM2, using acridine dyes and elevated temperatures, did not yield Lac variants. AM2 was also cultured at high dilution rates in a chemostat for 168 h by using a buffered milk or lactic broth at 18 or 32°C with no selection of Lac derivatives. The inability to obtain Lac variants under conditions known to facilitate plasmid elimination suggests that lactose metabolism is not plasmid-mediated in AM2.  相似文献   

18.
A novel method, which involves a nested PCR in a single closed tube, was developed for the sensitive detection of Erwinia amylovora in plant material. The external and internal primer pairs used had different annealing temperatures and directed the amplification of a specific DNA fragment from plasmid pEA29. The procedure involved two consecutive PCRs, the first of which was performed at a higher annealing temperature that allowed amplification only by the external primer pair. Using pure cultures of E. amylovora, the sensitivity of the nested PCR in one tube was similar to that of a standard nested PCR in two tubes. The specificity and sensitivity were greater than those of standard PCR procedures that used a single primer pair. The presence of inhibitors in plant material, very common in E. amylovora hosts, is overcome with this system in combination with a simple DNA extraction protocol because it eliminates many of the inhibitory compounds. In addition, it needs a very small sample volume (1 μl of DNA extracted). With 83 samples of naturally infected material, this method achieved better results than any other PCR technique: standard PCR detected 55% of positive samples, two-tube nested PCR detected 71% of positive samples, and nested PCR in a single closed tube detected 78% of positive samples. When analyzing asymptomatic plant material, the number of positive samples detected by the developed nested PCR was also the highest, compared with the PCR protocols indicated previously (17, 20, and 25% of 251 samples analyzed, respectively). This method is proposed for the detection of endophytic and epiphytic populations of E. amylovora in epidemiological studies and for routine use in quarantine surveys, due to its high sensitivity, specificity, speed, and simplicity.  相似文献   

19.
Lactococcus lactis W-37 is highly resistant to phage infection. The cryptic plasmids from this strain were coelectroporated, along with the shuttle vector pSA3, into the plasmid-free host L. lactis LM0230. In addition to pSA3, erythromycin- and phage-resistant isolates carried pSRQ900, an 11-kb plasmid from L. lactis W-37. This plasmid made the host bacteria highly resistant (efficiency of plaquing <10−8) to c2- and 936-like phages. pSRQ900 did not confer any resistance to phages of the P335 species. Adsorption, cell survival, and endonucleolytic activity assays showed that pSRQ900 encodes an abortive infection mechanism. The phage resistance mechanism is limited to a 2.2-kb EcoRV/BclI fragment. Sequence analysis of this fragment revealed a complete open reading frame (abiQ), which encodes a putative protein of 183 amino acids. A frameshift mutation within abiQ completely abolished the resistant phenotype. The predicted peptide has a high content of positively charged residues (pI = 10.5) and is, in all likelihood, a cytosolic protein. AbiQ has no homology to known or deduced proteins in the databases. DNA replication assays showed that phage c21 (c2-like) and phage p2 (936-like) can still replicate in cells harboring AbiQ. However, phage DNA accumulated in its concatenated form in the infected AbiQ+ cells, whereas the AbiQ cells contained processed (mature) phage DNA in addition to the concatenated form. The production of the major capsid protein of phage c21 was not hindered in the cells harboring AbiQ.  相似文献   

20.
Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号