首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Numerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2alpha), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2alpha phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-kappaB) and that eIF2alpha phosphorylation is required for NF-kappaB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2alpha kinase) to uncouple eIF2alpha phosphorylation from stress and found that phosphorylation of eIF2alpha is both necessary and sufficient to activate both NF-kappaB DNA binding and an NF-kappaB reporter gene. eIF2alpha phosphorylation-dependent NF-kappaB activation correlated with decreased levels of the inhibitor IkappaBalpha protein. Unlike canonical signaling pathways that promote IkappaBalpha phosphorylation and degradation, eIF2alpha phosphorylation did not increase phosphorylated IkappaBalpha levels or affect the stability of the protein. Pulse-chase labeling experiments indicate instead that repression of IkappaBalpha translation plays an important role in NF-kappaB activation in cells experiencing high levels of eIF2alpha phosphorylation. These studies suggest a direct role for eIF2alpha phosphorylation-dependent translational control in activating NF-kappaB during ER stress.  相似文献   

3.
4.
5.
Transient phosphorylation of the alpha-subunit of translation initiation factor 2 (eIF2alpha) represses translation and activates select gene expression under diverse stressful conditions. Defects in the eIF2alpha phosphorylation-dependent integrated stress response impair resistance to accumulation of malfolded proteins in the endoplasmic reticulum (ER stress), to oxidative stress and to nutrient deprivations. To study the hypothesized protective role of eIF2alpha phosphorylation in isolation of parallel stress signaling pathways, we fused the kinase domain of pancreatic endoplasmic reticulum kinase (PERK), an ER stress-inducible eIF2alpha kinase that is normally activated by dimerization, to a protein module that binds a small dimerizer molecule. The activity of this artificial eIF2alpha kinase, Fv2E-PERK, is subordinate to the dimerizer and is uncoupled from upstream stress signaling. Fv2E-PERK activation enhanced the expression of numerous stress-induced genes and protected cells from the lethal effects of oxidants, peroxynitrite donors and ER stress. Our findings indicate that eIF2alpha phosphorylation can initiate signaling in a cytoprotective gene expression pathway independently of other parallel stress-induced signals and that activation of this pathway can single-handedly promote a stress-resistant preconditioned state.  相似文献   

6.
7.
8.
9.
The hepatitis C virus envelope protein, E2, is an endoplasmic reticulum (ER)-bound protein that contains a region of sequence homology with the double-stranded RNA-activated protein kinase PKR and its substrate, the eukaryotic translation initiation factor 2 (eIF2). We previously reported that E2 modulates global translation through inhibition of the interferon-induced antiviral protein PKR through its PKR-eIF2alpha phosphorylation site homology domain (PePHD). Here we show that the PKR-like ER-resident kinase (PERK) binds to and is also inhibited by E2. At low expression levels, E2 induced ER stress, but at high expression levels, and in vitro, E2 inhibited PERK kinase activity. Mammalian cells that stably express E2 were refractory to the translation-inhibitory effects of ER stress inducers, and E2 relieved general translation inhibition induced by PERK. The PePHD of E2 was required for the rescue of translation that was inhibited by activated PERK, similar to our previous findings with PKR. Here we report the inhibition of a second eIF2alpha kinase by E2, and these results are consistent with a pseudosubstrate mechanism of inhibition of eIF2alpha kinases. These findings may also explain how the virus promotes persistent infection by overcoming the cellular ER stress response.  相似文献   

10.
Mulvey M  Arias C  Mohr I 《Journal of virology》2006,80(15):7354-7363
Via careful control of multiple kinases that inactivate the critical translation initiation factor eIF2 by phosphorylation of its alpha subunit, the cellular translation machinery can rapidly respond to a spectrum of environmental stresses, including viral infection. Indeed, virus replication produces a battery of stresses, such as endoplasmic reticulum (ER) stress resulting from misfolded proteins accumulating within the lumen of this organelle, which could potentially result in eIF2alpha phosphorylation and inhibit translation. While cellular translation is exquisitely sensitive to ER stress-inducing agents, protein synthesis in herpes simplex virus type 1 (HSV-1)-infected cells is notably resistant. Sustained translation in HSV-1-infected cells exposed to acute ER stress does not involve the interferon-induced, double-stranded RNA-responsive eIF2alpha kinase PKR, and it does not require either the PKR inhibitor encoded by the Us11 gene or the eIF2alpha phosphatase component specified by the gamma(1)34.5 gene, the two viral functions known to regulate eIF2alpha phosphorylation. In addition, although ER stress potently induced the GADD34 cellular eIF2alpha phosphatase subunit in uninfected cells, it did not accumulate to detectable levels in HSV-1-infected cells under identical exposure conditions. Significantly, resistance of translation to the acute ER stress observed in infected cells requires HSV-1 gene expression. Whereas blocking entry into the true late phase of the viral developmental program does not abrogate ER stress-resistant translation, the presence of viral immediate-early proteins is sufficient to establish a state permissive of continued polypeptide synthesis in the presence of ER stress-inducing agents. Thus, one or more previously uncharacterized viral functions exist to counteract the accumulation of phosphorylated eIF2alpha in response to ER stress in HSV-1-infected cells.  相似文献   

11.
12.
Subtilase cytotoxin (SubAB) is the prototype of a distinct AB5 toxin family produced by Shiga toxigenic Escherichia coli. Recent reports disclosed pro-apoptotic pathways triggered by SubAB, whereas its anti-apoptotic signals have not been elucidated. In the present study, we investigated pro-survival signaling elicited by SubAB, especially focusing on extracellular signal-regulated kinase (ERK) and Akt. We found that SubAB activated ERK and Akt, and inhibition of individual kinases enhanced SubAB-triggered apoptosis. SubAB induced endoplasmic reticulum (ER) stress, and other ER stress inducers mimicked the stimulatory effects of SubAB on ERK and Akt. Attenuation of ER stress reduced SubAB-induced phosphorylation of these kinases, suggesting involvement of the unfolded protein response (UPR). SubAB induced activation of protein kinase-like ER kinase (PERK) and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and phosphorylation of eIF2α by salubrinal caused activation of ERK and Akt, leading to cell survival. Dominant-negative inhibition of PERK enhanced SubAB-induced apoptosis and reduced phosphorylation of ERK and Akt. Furthermore, the anti-apoptotic effect of eIF2α was significantly reversed by inhibition of ERK and Akt. These results suggest cytoprotective roles of ERK and Akt in SubAB-triggered, ER stress-mediated apoptosis.  相似文献   

13.
14.
Initiation of translation from most cellular mRNAs occurs via scanning; the 40 S ribosomal subunit binds to the m(7)G-cap and then moves along the mRNA until an initiation codon is encountered. Some cellular mRNAs contain internal ribosome entry sequences (IRESs) within their 5'-untranslated regions, which allow initiation independently of the 5'-cap. This study investigated the ability of cellular stress to regulate the activity of IRESs in cellular mRNAs. Three stresses were studied that cause the phosphorylation of the translation initiation factor, eIF2alpha, by activating specific kinases: (i) amino acid starvation, which activates GCN2; (ii) endoplasmic reticulum (ER) stress, which activates PKR-like ER kinase, PERK kinase; and (iii) double-stranded RNA, which activates double-stranded RNA-dependent protein kinase (PKR) by mimicking viral infection. Amino acid starvation and ER stress caused transient phosphorylation of eIF2alpha during the first hour of treatment, whereas double-stranded RNA caused a sustained phosphorylation of eIF2alpha after 2 h. The effects of these treatments on IRES-mediated initiation were investigated using bicistronic mRNA expression vectors. No effect was seen for the IRESs from the mRNAs for the chaperone BiP and the protein kinase Pim-1. In contrast, translation mediated by the IRESs from the cationic amino acid transporter, cat-1, and of the cricket paralysis virus intergenic region, were stimulated 3- to 10-fold by all three treatments. eIF2alpha phosphorylation was required for the response because inactivation of phosphorylation prevented the stimulation. It is concluded that cellular stress can stimulate translation from some cellular IRESs via a mechanism that requires the phosphorylation of eIF2alpha. Moreover, there are distinct regulatory patterns for different cellular mRNAs that contain IRESs within their 5'-untranslated regions.  相似文献   

15.
16.
17.
18.
Eukaryotic cells express a family of eukaryotic translation initiation factor 2 alpha (eIF2alpha) kinases (eg, PKR, PERK-PEK, GCN2, HRI) that are individually activated in response to distinct types of environmental stress. Phosphorylation of eIF2alpha by one or more of these kinases reduces the concentration of eIF2-guanosine triphosphate (GTP)-transfer ribonucleic acid for methionine (tRNA(Met)), the ternary complex that loads tRNA(Met) onto the small ribosomal subunit to initiate protein translation. When ternary complex levels are reduced, the related RNA-binding proteins TIA-1 and TIAR promote the assembly of a noncanonical preinitiation complex that lacks eIF2-GTP-tRNA(Met). The TIA proteins dynamically sort these translationally incompetent preinitiation complexes into discrete cytoplasmic domains known as stress granules (SGs). RNA-binding proteins that stabilize or destabilize messenger RNA (mRNA) are also recruited to SGs during stress. Thus, TIA-1 and TIAR act downstream of eIF2alpha phosphorylation to promote SG assembly and facilitate mRNA triage during stress. The role of the SG in the integration of translational efficiency, mRNA stability, and the stress response is discussed.  相似文献   

19.
Generation of nitric oxide (NO?) can upstream induce and downstream mediate the kinases that phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF2α), which plays a critical role in regulating gene expression. There are four known eIF2α kinases (EIF2AKs), and NO? affects each one uniquely. Whereas NO? directly activates EIF2AK1 (HRI), it indirectly activates EIF2AK3 (PERK). EIF2AK4 (GCN2) is activated by depletion of l-arginine, which is used by nitric oxide synthase (NOS) during the production of NO?. Finally EIF2AK2 (PKR), which can mediate inducible NOS expression and therefore NO? production, can also be activated by NO?. The production of NO? and activation of EIF2AKs coordinately regulate physiological and pathological events such as innate immune response and cell apoptosis.  相似文献   

20.
Malfolded proteins in the endoplasmic reticulum (ER) inhibit translation initiation. This response is believed to be mediated by increased phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) and is hypothesized to reduce the work load imposed on the folding machinery during stress. Here we report that mutating the gene encoding the ER stress-activated eIF2alpha kinase PERK abolishes the phosphorylation of eIF2alpha in response to accumulation of malfolded proteins in the ER resulting in abnormally elevated protein synthesis and higher levels of ER stress. Mutant cells are markedly impaired in their ability to survive ER stress and inhibition of protein synthesis by cycloheximide treatment during ER stress ameliorates this impairment. PERK thus plays a major role in the ability of cells to adapt to ER stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号