首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individuals with a spinal cord injury (SCI) have compromised afferent and efferent information below the lesion. Intact afferent information regarding skin temperature and the ability to regulate skin blood flow lead to an altered heat balance, which may impact the circadian variation in core body temperature (Tcore) and sleep-wake cycle. The authors assessed the circadian variation of Tcore in SCI individuals and able-bodied controls matched for the timing of the sleep-wake cycle. The authors examined subjects who had a high (cervical) or a low (thoracic) lesion. Intestinal Tcore (telemetry system) and physical activity (ambulatory activity monitor) levels were measured continuously and simultaneously in 8 tetraplegics, 7 paraplegics, and 8 able-bodied controls during one 24-h period of "normal" living. The regression slope between activity and Tcore was also calculated for each 2-h bin. Circadian rhythm parameters were estimated with partial Fourier time-series analysis, and groups were compared with general linear models, adjusted for the influence of individual wake-time. The (mean ± SD) dominant period length for controls, paraplegics, and tetraplegics were 24.4 ± 5.4 h, 22.5 ± 5.0 h, and 16.5 ± 5.1 h, respectively (p =?.02). A significantly more pronounced 8-h harmonic was found for the variation in Tcore of SCI individuals (p = .05). Tetraplegics showed the highest nocturnal mean Tcore (p = .005), a 5-h phase-advanced circadian trough time (p = .04), and more variable relationships between physical activity and Tcore (p = .03). Taken together, tetraplegics demonstrate a pronounced disturbance of the circadian variation of Tcore, whereas the variation of Tcore in paraplegics was comparable to able-bodied controls.  相似文献   

2.
Individuals with a spinal cord injury (SCI) have compromised afferent and efferent information below the lesion. Intact afferent information regarding skin temperature and the ability to regulate skin blood flow lead to an altered heat balance, which may impact the circadian variation in core body temperature (Tcore) and sleep-wake cycle. The authors assessed the circadian variation of Tcore in SCI individuals and able-bodied controls matched for the timing of the sleep-wake cycle. The authors examined subjects who had a high (cervical) or a low (thoracic) lesion. Intestinal Tcore (telemetry system) and physical activity (ambulatory activity monitor) levels were measured continuously and simultaneously in 8 tetraplegics, 7 paraplegics, and 8 able-bodied controls during one 24-h period of “normal” living. The regression slope between activity and Tcore was also calculated for each 2-h bin. Circadian rhythm parameters were estimated with partial Fourier time-series analysis, and groups were compared with general linear models, adjusted for the influence of individual wake-time. The (mean?±?SD) dominant period length for controls, paraplegics, and tetraplegics were 24.4?±?5.4?h, 22.5?±?5.0?h, and 16.5?±?5.1?h, respectively (p?=?.02). A significantly more pronounced 8-h harmonic was found for the variation in Tcore of SCI individuals (p = .05). Tetraplegics showed the highest nocturnal mean Tcore (p = .005), a 5-h phase-advanced circadian trough time (p = .04), and more variable relationships between physical activity and Tcore (p = .03). Taken together, tetraplegics demonstrate a pronounced disturbance of the circadian variation of Tcore, whereas the variation of Tcore in paraplegics was comparable to able-bodied controls. (Author correspondence: )  相似文献   

3.
In this study we tested the effect of antagonists of two subtypes of the group I metabotropic glutamate receptors (mGluRs GI) on the induction of ischemic tolerance in relation to brain temperature. These experiments were prompted by indications that glutamate receptors may participate in the mechanisms of ischemic preconditioning. The role of NMDA receptors in the induction of ischemic tolerance has been debated while there is lack of information concerning the involvement of mGluRs GI in this phenomenon. The tolerance to injurious 3 min forebrain ischemia in Mongolian gerbils was induced 48 h earlier by 2 min preconditioning ischemia. Brain temperature was measured using telemetry equipment. EMQMCM and MTEP, antagonists of mGluR1 and mGluR5, respectively, were injected i.p. at a dose of 5 mg/kg. They were administered either before preconditioning ischemia in a single dose or after 2 min ischemia three times every 2 h. Both antagonists did not inhibit the induction of ischemic tolerance. Thus, our data indicate that group I metabotropic glutamate receptors do not play an essential role in the induction of ischemic tolerance.  相似文献   

4.
Although much is known about the protective effect of acute estrogen therapy in cerebral ischemia, relatively little is known about the importance of apoptosis and cerebral plasticity in this mechanism. In this work 10 min global cerebral ischemia was produced by transient bilateral carotid occlusion in 4-month-old ovariectomized female gerbils. In every of our experimental group (sham for ischemia group, ischemia group and ischemia + a high, single dose 17β-estradiol pre-treatment group) apoptotic (bcl-Xl, bax) and cerebral plasticity (GAP-43, synapsin-I, nestin) hippocampal genes' expression was measured four days after surgery. Expression of the anti-apoptotic bcl-Xl (p<0.01) and the cerebral plasticity marker synapsin-I and nestin (p<0.01) increased with acute estrogen pretreatment in ischemic animals. No change, however, in bax or GAP-43 expression was detected in estrogen treated animals compared to ischemic gerbils. These results suggest that acute estrogen therapy has anti-apoptotic effect and increases cerebral plasticity, which play an important role in cytoprotection or cerebroprotection.  相似文献   

5.
Park S  Kim da S  Kang S  Kwon DY 《Life sciences》2011,88(17-18):766-773
AimsDiabetes increases the chances of stroke and the stroke itself is thought to induce hyperglycemia and diabetes. However, this latter contention remains uncorroborated. We investigated whether ischemic hippocampal neuronal cell death induces glucose dysregualtion by modulating insulin resistance, glucose-stimulated insulin secretion, and β-cell mass in Mongolian gerbils fed either a high fat or low fat diet.Main methodsGerbils were subjected to either an occlusion of the bilateral common carotid arteries for 8 mins to render them ischemic, or a sham operation. Ischemic gerbils were fed either an 11% fat diet (LFD) or a 40% fat diet (HFD) for 7, 14 or 28 days.Key findingsArtery occlusion resulted in a 70% or greater initial reduction in hippocampal CA1 neurons and only HFD decreased the percentage of CA1 neurons as the ischemic periods became longer. Oral glucose tolerance test (OGTT) results revealed that ischemia induced glucose intolerance, and longer ischemic periods and HFD exacerbated this glucose intolerance in ischemic gerbils. Insulin secretion during the OGTT was lower in ischemic gerbils than sham gerbils and the decrease was greatest in the 28 day-HFD among all the groups. Insulin resistance was elevated the most in 28 day-HFD ischemic gerbils. There was a progressive loss of pancreatic β-cell mass as the post-ischemic time period increased as consequence of HFD; the decrease being caused by increased apoptosis. This increase in apoptosis was partly associated with increased serum levels of IL-1β, TNF-α and non-esterified fatty acids.SignificanceHippoccampal neuronal cell death deteriorates glucose homeostasis initially through the modulation of insulin secretion and also causes a decrease in β-cell mass while HFD negatively impacts glucose regulation.  相似文献   

6.
Radiotelemetry has become a very popular biotelemetric tool for measuring physiological parameters such as heart rate, blood pressure, body temperature and muscle activity, as well as general behavioural activity in undisturbed, freely moving animals. In most studies using this technique, adult subjects are used. However, sometimes an ontogenetic approach is required to clarify whether changes in one parameter are preceeded or followed by changes in another parameter. Tracking physiological changes in young, developing individuals could explain given states of these animals as adults. Implanting telemetry devices can be done subcutaneously and intraperitoneally, the former method posing less of a challenge on the animal and its recovery from surgery. Because telemetry will be used in weanling gerbils during subsequent studies, we needed to investigate whether subcutaneous implantation of telemetric devices is preferable to intraperitoneal surgery with respect to animal welfare. This is a technical paper describing anaesthetic and surgical techniques in detail during a pre-trial involving subcutaneous (n=10, aged 21-29 days) and intraperitoneal (n=10, aged 19-34 days) implantation of dummy telemetry transmitters (1.9 cm3, 3.6 g after shortening of leads) in weanling gerbils, Meriones unguiculatus. Body weight was measured and analysed over four-day intervals. Optimizing anaesthetic dosages was a first step in this pilot trial. This occurred during the first few subcutaneous implantations. Three animals died while anaesthetized during the subcutaneous procedure but none post-surgery. All animals survived anaesthesia during the intraperitoneal implantation, but two died in the first three days post-surgery. In the former method, the tension on the dermal sutures caused by the presence of the transmitters was too great, resulting in the animals opening the sutures by chewing them. The animals died during the latter procedure probably due to strangulation of the intestine by the excess lead that was coiled in the abdomen. Furthermore, placement of the exposed negative lead of the transmitter on the underlying muscle had to be done on the m. pectoralis transversus in order for it to stay in place as the animal developed. This paper showed that the implantation of a telemetric device in weanling gerbils is feasible and is best executed through the intraperitoneal technique.  相似文献   

7.
Temperature measurement and control are essential in most ischemia experiments. Hypothermia lessens ischemic brain injury whereas hyperthermia exacerbates it. A substantial number of ischemia studies rely solely on rectal temperature measurements during the insult. However, rectal temperature may not accurately reflect brain temperature especially during global ischemia. Furthermore, postischemic temperature changes are often inadequately monitored. Delayed cooling reduces injury, whereas delayed hyperthermia aggravates it. This review summarizes our experiences with core and brain telemetry probes to continually measure temperature in various ischemia models. Furthermore, we discuss methods to simultaneously measure and regulate temperature in the freely moving postischemic rodent, and the need for such control in ischemia research.  相似文献   

8.
Global cerebral ischemia induced to Mongolian gerbils by ligation of common carotid arteries (CCAs) is known to result in injury to the hippocampal CA1 region. In this study, we examined whether neuronal injury can be depicted by measuring levels of mRNA encoding inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), neuron specific enolase (NSE) and -actin and whether these measurements can be use to assess ischemic tolerance. Gerbils were subjected either to cerebral ischemia induced by ligation of both CCAs for 5 min, or to an ischemic tolerance paradigm in which a 2 min ischemic preconditioning was performed 24 hr prior to the 5 min ischemia. At 48 hr after the 5 min ischemic insult, significant decreases in mRNA levels for IP3R1 (26%), NSE (38%) and -actin (50%) could be observed in the hippocampal CA1 region. Although levels of mRNA in the preconditioning group were decreased as compared to the sham control, the levels were significantly higher than those in the ischemic group. These results indicate the feasibility of using mRNA measurement as a parameter to assess cerebral ischemic damage. In addition, based on the differences in the decline in mRNA levels between the ischemia group and the preconditioned ischemia group, it can be concluded that this ischemic tolerance paradigm could offer partial protection (around 45%) against the injury due to the 5 min cerebral ischemic insult.  相似文献   

9.
Following copulation and cohabitation with a pregnant female, male gerbils show high levels of parental behavior toward their pups. The initiation of male parental behavior may be the result of neuroendocrine changes induced by cohabiting with the pregnant female or by pup stimuli. Experiment 1 examines the changes in androgen and prolactin levels in male gerbils cohabiting with females over the reproductive cycle. Gerbils were mated and blood samples taken from males for hormone analysis 1, 10, and 20 days after pairing and 3, 10, and 20 days after pups were born. A group of unmated male gerbils served as controls. Plasma prolactin levels of males were elevated throughout the female's pregnancy and lactation periods, but were only statistically significantly higher than those of unmated males 20 days after pups were born. Androgen levels rose during pregnancy and dropped significantly after the birth of the pups. These hormonal changes are similar to those found in males of monogamous birds and differ from those found in males of polygynous rodents such as the rat. Experiment 2 examined the hormonal responses of male and female gerbils to pup replacement after 4 hr of parent–pup separation. Female gerbils showed a significant elevation of prolactin levels 1 hr after pup replacement, but males did not. Males with pups returned showed no difference in androgen levels from males who did not have pups returned. Thus, male gerbils show neuroendocrine changes following long-term cohabitation with their mate and pups, but do not show acute hormone responses to pup removal and replacement. These results indicate that parental males have neuroendocrine changes associated with parental behavior and these differ from the neuroendocrine changes underlying female parental behavior.  相似文献   

10.
Transient global ischemia (ISC) in rats and humans causes selective and delayed neuronal death in the hippocampal CA1 sector. It is clear from rodent studies that hyperthermia aggravates, whereas hypothermia lessens, this injury. In this study we sought to relate core (Tc) and brain (Tb) temperature, measured via telemetry probes, after ISC produced in rats by bilateral common carotid artery occlusion combined with systemic hypotension (2-VO model). We also tested whether spontaneous postischemic temperature fluctuations occurred and whether they were related to cell death as previous studies indicate. We report that Tc and Tb readings are similar and are highly correlated before and after 10 min of 2-VO ISC. In the second experiment, rats were subjected to 8, 9, or 10 min of 2-VO ISC. Despite a range in CA1 injury among these animals, there was no evidence of post-ISC hyperthermia, contrary to earlier work, and neither temperature nor the physiological variables measured during ISC (e.g., glucose) predicted injury. Our findings suggest that, under the present conditions, 2-VO rats do not experience postoperative hyperthermia, which can be adequately measured with Tc telemetry probes.  相似文献   

11.
The inflammatory response in gerbils and hamsters harbouring experimental infections with Taenia solium adult parasites as well as worm burden and duration of infections were examined. For this purpose, non-suppressed or immunosuppressed rodents were infected with eight cysticerci and necropsied at different times up to 35 days post-infection. Cells in the mucosa surrounding the implantation site of T. solium scolices (duodenum-jejunum) and in ileum were counted in stained sections. A competitive enzyme linked immunosorbent assay was used to determine histamine concentration in intestinal fluid. In non-suppressed hosts, an inflammatory reaction developed with scarce macrophages, a slight increase of plasma cells, lymphocytes and fibroblasts, a moderate increase of eosinophils and neutrophils, and high numbers of goblet and mast cells. Goblet cells began to increase at 6 days post-infection and peaked at 13 days post-infection with a four-fold increase with respect to the control group. Mast cells only increased in gerbils starting at 9 days post-infection with an eight-fold increase when cells peaked between 11 and 19 days post-infection. Histamine concentration in intestinal fluid of gerbils had a similar behaviour to mast cells. Minimal increase of mast cells was seen in hamsters. The recovery of tapeworms was inversely related to the number of both cell types, which decreased when tapeworms were eliminated. Infections lasted up to 25 days in gerbils and up to 46 days in hamsters. Worms measured only 1-2 cm in gerbils and up to 40 cm in hamsters. When gerbils were suppressed with the steroid methyl predinisolone, tapeworms could be recovered up to 35 days post-infection and tapeworms measured up to 22 cm, a minor increase of goblet and mast cells was observed and histamine concentration was similar to that in non-infected animals. Our results suggest that expulsion of T. solium in gerbils and hamsters may be related to the increase of goblet cells and mast cells, but these cells may have different roles in each rodent model of taeniosis.  相似文献   

12.
Female gerbils were bilaterally bulbectomized, unilaterally bulbectomized or sham-operated at 2 days of age (Birth DAY = 0). As adults, the occurrence of scent marking and aggressive behavior was measured prior to and following administration of either testosterone propionate (TP) or oil. TP-treated sham operates showed increased scent marking; bilaterally bulbectomized and unilaterally bulbectomized females treated with TP did not. The display of aggressiveness increased for all females following TP. Neonatally bulbectomized animals treated with TP, however, were the most aggressive. Although androgen augments these species-typical response patterns, it seems dependent upon the integrity of the olfactory bulbs.  相似文献   

13.
An ischemia/reperfusion injury of rat’s sciatic nerve was experimentally developed. In this model, we measured the in vivo production of superoxide radical, as a marker of oxidative stress and the occludin expression as an indicator of blood-nerve barrier function and we examined potential protective innervations against these abnormalities. Right sciatic nerves of the animals underwent 3 h of ischemia followed by 7 days of reperfusion and were divided into three groups: ischemic, pretreated with vitamin C in conjunction with vitamin E and treated with tissue plasminogen activator. Compared to measurements from left sciatic nerves used as sham, the ischemic group showed significantly increased superoxide radical and reduced expression of occludin in western blot and immunohistochemistry. No such differences were detected between sham and nerves in the vitamin or tissue plasminogen activator groups. It is suggested that the experimental ischemia/reperfusion model was suitable for studying the relationship between oxidative state and blood-nerve barrier. The reversion of abnormalities by the applied neuroprotective agents might prove to be a clinically important finding in view of the implication of vascular supply derangement in various neuropathies in humans.  相似文献   

14.
禁食导致一些啮齿动物的贮食量增加,但禁食处理后雄性长爪沙鼠贮食行为的变化则不一致。每天禁食22 h,长爪沙鼠的一些个体表现出高水平的贮食行为(禁食贮食组),而另一些个体则没有表现出贮食行为(禁食无贮食组)。延长禁食(22 h)持续的时间(连续重复3 d 和20 d)和增加禁食时间(禁食48 h),都没有使禁食无贮食组的动物表现出贮食行为。同样在自由取食条件下,长爪沙鼠的贮食行为也表现为二型性。在自由取食和禁食条件下,贮食量与体重、体脂含量和瘦素的浓度之间无明显相关关系。研究结果表明,禁食是诱导雄性长爪沙鼠贮食行为发生的一个重要条件,但增加禁食的程度并不改变其贮食行为的表现。  相似文献   

15.
The effects of recombinant human superoxide dismutase (r-hSOD) on ischemic neuronal injury were examined. Cerebral ischemia was produced in Mongolian gerbils by occluding bilateral common carotid arteries for 5 min. Preischemic treatment with r-hSOD clearly reduced hippocampal neuronal damages while postischemic treatment did not. This result suggests that oxygen free radicals play an important role in selective vulnerability to ischemia and r-hSOD has a potential clinical usefulness against cerebral ischemia.  相似文献   

16.
We examined the intracellular delivery of Pep-1-cargo protein against transient ischemic damage in the hippocampal CA1 region in gerbils. For this study, we introduced green fluorescent protein (GFP) and constructed Pep-1-GFP protein. At 12h after Pep-1-GFP treatment, GFP fluorescence was shown in almost CA1 pyramidal neurons in ischemic animals; in the sham-operated group, GFP fluorescence was shown in a few pyramidal neurons. Next, we confirmed the long-term effects of Pep-1-Cu,Zn-superoxide dismutase 1 (SOD1) against ischemic damage. In behavioral test, locomotor activity was significantly increased in Pep-1- and Pep-1-SOD1-treated groups 1 day after ischemia/reperfusion; the locomotor activity in the Pep-1-treated group was higher than that of the Pep-1-SOD1-treated group. Thereafter, the locomotor activity in both groups was decreased with time. Four days after ischemia/reperfusion, the locomotor activity in the Pep-1-SOD1-treated group was similar to that of the sham group; in the Pep-1-treated group, the activity was lower than that of the sham group. In the histochemical study, the cresyl violet positive neurons in the Pep-1-SOD1-treated group were abundantly detected in the hippocampal CA1 region 5 days after ischemia/reperfusion. In biochemical study, SOD1 protein level and activity in all Pep-1-treated ischemic groups were significantly lower than that of the Pep-1-SOD1-treated group. Our results indicate that Pep-1-cargo fusion proteins can be efficiently delivered into neurons in the ischemic hippocampus, and that Pep-1-SOD1 treatment in ischemic animals show a neuroprotection in the ischemic hippocampus for a long time.  相似文献   

17.
This article is part of a Special Issue “Energy Balance”. Effects of γ-aminobutyric acid (GABA) on food hoarding are unknown in rodents, and the effects of energy balance and GABA have not been evaluated in females. To evaluate the role of food deprivation and GABA on food hoarding, female Mongolian gerbils were given i.p. injection of diazepam (1 mg/kg and 3 mg/kg, respectively), a GABAA receptor agonist. Among food-deprived females, there was a bimodal pattern in the frequency of gerbils with different levels of food hoarding. High food hoarding (HFH) and low food hoarding (LFH) gerbils were analyzed. Diazepam blocked food deprivation-induced food hoarding in HFH gerbils, but not in LFH gerbils. This blockade was associated with increased cellular activation in selected brain areas, such as the nucleus accumbens (NAcc), caudate putamen (CP) and ventral tegmental area (VTA), which suggested that direct activation of GABA in the brain reward circuitry decreased food hoarding in HFH females. Moreover, diazepam increased Fos expression in field CA2 and CA3 of the hippocampus, but had no significant effect on Fos expression in field CA1 and dentate gyrus (DG) of the hippocampus, indicating that the hippocampus has area-specific effects on food hoarding in HFH gerbils. Diazepam did not alter food intake in both HFH and LFH gerbils. In addition, serum corticosterone concentrations were higher in the HFH than in the LFH ones. Together, these data indicated that food deprivation increased food hoarding in female gerbils, diazepam reduced food deprivation-induced food hoarding in HFH gerbils, and that GABA might influence food hoarding via classical reward circuitry via the mesolimbic dopamine system and specific hippocampal areas.  相似文献   

18.
Body temperature monitoring is crucial in helping to decrease the amount and severity of heat illnesses; however, a practical method of monitoring temperature is lacking. In response to the lack of a practical method of monitoring the temperature of athletes, Hothead Technologies developed a device (HOT), which continuously monitors an athlete's fluctuations in body temperature. HOT measures forehead temperature inside helmets. The purpose of this study was to compare HOT against rectal temperature (Trec). Male volunteers (n = 29, age = 23.5 ± 4.5 years, weight = 83.8 ± 10.4 kg, height = 180.1 ± 5.8 cm, body fat = 12.3 ± 4.5%) exercised on a treadmill at an intensity of 60-75% heart rate reserve (HRR) (wet bulb globe temperature [WBGT] = 28.7° C) until Trec reached 38.7° C. The correlation between Trec and HOT was 0.801 (R = 0.64, standard error of the estimate (SEE) = 0.25, p = 0.00). One reason for this relatively high correlation is the microclimate that HOT is monitoring. HOT is not affected by the external climate greatly because of its location in the helmet. Therefore, factors such as evaporation do not alter HOT temperature to a great degree. HOT was compared with Trec in a controlled setting, and the exercise used in this study was moderate aerobic exercise, very unlike that used in football. In a controlled laboratory setting, the relationship between HOT and Trec showed favorable correlations. However, in applied settings, helmets are repeatedly removed and replaced forcing HOT to equilibrate to forehead temperature every time the helmet is replaced. Therefore, future studies are needed to mimic how HOT will be used in field situations.  相似文献   

19.
1. Under controlled conditions, the rate of oxygen consumption (VO2) respiratory frequency, evaporative water loss, heat balance, rectal (Trec) and surface temperatures were determined in the dik-dik antelopes at ambient temperatures (Ta) ranging from 1 to 44 degrees C. 2. The thermal neutral zone was found to be between 24 and 35 degrees C. 3. Respiratory frequency ranged between 27 and 630 breaths/min. 4. At a Ta of 44 degrees C, 95% of the heat produced by the dik-dik was lost via respiratory evaporation. Despite an increase in Trec, cutaneous evaporation did not increase. 5. During panting, VO2 increased in accordance with the expected Q10 effect, contrary to earlier findings. 6. Measurements of circadian rhythm [LD 12:12 (7-19) CT26 degrees C] in VO2 showed that the minimum VO2 (0.42 ml O2/g/hr) occurred at midnight while the maximum (0.78 ml O2/g/hr) occurred at midday. The 24 hr mean VO2 was 0.61 ml O2/g/hr. 7. These measurements suggest that in nature, determinants other than light may be responsible for triggering the variations observed in VO2.  相似文献   

20.
The D variant of encephalomyocarditis virus (10(1)-10(5) PFU/head) was intraperitoneally inoculated into 4 species of small rodents, rats, mice, Syrian hamsters, and Mongolian gerbils, and the susceptibility of these animals to EMC virus was examined virologically and histopathologically 3 days after infection. Viral replication was detected in the brain (mice), in the heart (mice and gerbils), and in the pancreas (mice, hamsters, and gerbils). No viral replication was detected in rats. Histopathological changes were seen in the brain (mice and hamsters), in the heart (mice and gerbils), and in the pancreas (mice, hamsters, and gerbils). No histopathological changes were seen in rats. The present results suggest that it may be quite possible to produce EMC virus-induced diabetes mellitus not only in mice but also in hamsters and gerbils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号