首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Human thymus of healthy subjects and patients affected by thymoma-associated Myastenia Gravis were studied in order to visualize and compare the morphological distributive pattern of four neuropeptides: vasoactive intestinal peptide, substance P, neuropeptide Y, and neurotensin. Based on our observations, we formulated hypotheses on their relations in neuro-immunomodulation under physiological and pathophysiological conditions. Immuno-histochemical staining for neuropeptides was performed and morphological and morphometrical analyses were conducted on healthy and diseased thymus. In normal thymus, a specific distributive pattern was observed for the several neuropeptide-positive nerves in different thymus lobular zones. In particular substance P-positive fibers were observed in subcapsular zone, specifically located into parenchyma, where they represent the almost total amount of fibers; neurotensin-positive fibers were observed primarily located in parenchyma than perivascular site of several thymus lobular zones, and more abundant the cortico-medullary and medullary zones. Instead VIP- and NPY-positive fibers were widely distributed in perivascular and parenchymal sites of several thymus lobular zones. In thymoma, the distribution of neuropeptide-positive fibers was quantitatively reduced, while cells immunopositive to VIP and substance P were quantitatively increased and dispersed. Observation of the perivascular and parenchymal distribution of the analyzed neuropeptides suggests evidence that a regulatory function is performed by nerves and cells that secrete neuropeptide into the thymus. The alteration of neuropeptide patterns in thymoma suggests that these neurotransmitters play a role in autoimmune diseases such as Myastenia Gravis.  相似文献   

2.
Summary In light of the possible role peripheral nerves may play in bone metabolism, the morphology of calcitonin gene-related peptide (CGRP)-, vasoactive intestinal peptide (VIP)-, substance P (SP)-, neuropeptide Y (NPY)-, and dopamine--hydroxylase (DH)-immunoreactive nerve fibers was examined in whole-mount preparations of periosteum of membranous bones (calvaria, mandible) and long bones (tibia) from the rat. Periosteum from animals treated to remove selectively either the sympathetic or fine-caliber primary afferent nerves was also examined to determine the origin of the nerve fibers. We found a consistent and often dense innervation of the periosteum. The innervation patterns of the calvaria and mandible were similar, with networks of nerves spread across the surface of the bone. Nerves in the tibial periosteum were oriented in the longitudinal axis and were more numerous at the epiphyses than in the mid-shaft region. CGRP-immunoreactive fibers were widely and densely distributed. The presence of populations of CGRP-immunoreactive fibers of differing calibers and perivascular arrangements suggests that such nerves in bone tissues may serve different functions. SP-immunoreactivity was present in a fine network of varicose fibers in the superficial layers of the periosteum. CGRP- and SP-immunoreactive nerve fibers were dramatically reduced in periosteum of capsaicin-treated animals as compared to controls, indicating the sensory origin of these nerves. VIP-immunoreactive nerve fibers were distributed in the periosteum of mandible and calvaria as small networks and individual fine varicose fibers. In tibial periosteum, larger networks of these fibers were visible. VIP-immunoreactive nerve fibers in the periosteum were associated with both vascular and nonvascular elements within the layers of cells closest to the bone, suggesting that VIP may serve more than one function in periosteal tissues. NPY-immunoreactive fibers were largely confined to vascular elements; occasional fibers were observed among the bone-lining cells. DH-immunoreactivity was associated only with blood vessels. VIP-, NPY-, and DH-immunoreactivities were dramatically reduced in the periosteum of guanethidinetreated animals, indicating the sympathetic origin of these nerves.  相似文献   

3.
Characteristics of the small arteries (with a diameter of 200-250 μm) feeding the medial gastrocnemius muscle and diaphragm were studied. Recording of the mechanical activity of ring segments under isometric conditions demonstrated that, similar to other arteries feeding the muscles with a high content of slow fibers, the diaphragm arteries are highly sensitive to adrenoceptor agonists and acetylcholine. The differences in the endothelium-dependent relaxation in response to acetylcholine were retained in the presence of L-NAME and diclofenac. The diaphragm and gastrocnemius arteries similarly responded to serotonin. On the other hand, a high innervation density was characteristic of the diaphragm arteries unlike the arteries of other slow muscles. The density of adrenergic nerve plexus in the diaphragm arteries was considerably higher than in the gastrocnemius arteries. The results suggest that the characteristics of small diaphragm arteries are determined not only by the oxidative capacity of diaphragm muscle fibers, but also by the fact that this is a respiratory muscle.  相似文献   

4.
The airways of the guinea pig are richly innervated by peptide-containing nerve fibers. Among the most abundant neuropeptides are calcitonin gene-related peptide (CGRP) and substance P (SP), which are stored in nerve fibers located predominantly within and beneath the epithelium, and vasoactive intestinal peptide (VIP), which is located in fibers running mainly among smooth muscle bundles and seromucous glands. Sensory denervation (capsaicin treatment) of adult guinea pigs caused an almost total disappearance of CGRP- and SP-containing nerve fibers, while the density of VIP-containing nerve fibers located in smooth muscle seemed to increase. In the isolated trachea, perfused luminally, CGRP was found to appear in the intraluminal fluid after exposure to capsaicin but not after electrical vagal stimulation. CGRP concentrations in the tracheal wall did not change significantly. Luminally applied CGRP did not affect smooth muscle tension, measured as intraluminal volume changes.  相似文献   

5.
L Edvinsson  R Ekman 《Peptides》1984,5(2):329-331
Vasoactive intestinal polypeptide (VIP)-containing nerve fibers were demonstrated in human pial arteries by immunocytochemistry. Fine varicose fibers were located in the adventitia close to the media layer. Measurements by radioimmunoassay revealed concentrations of VIP between 0.7 and 2.7 pmol/g in the major arteries at the base of the brain, obtained at autopsy. Isolated human pial arteries, obtained in conjunction with neurosurgery, relaxed in a concentration-dependent manner upon administration of VIP. The relaxation of the vessels amounted to 57 +/- 9% of the contraction elicited by prostaglandin F2 alpha (2.5 microM) with an EC50 value of (8.5 +/- 1.2) X 10(-9) M.  相似文献   

6.
Summary The occurrence of neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) in the sympathetic and parasympathetic innervation of the nasal mucosa was studied in various species including man. A dense network of NPY-immunoreactive (IR) fibres was present around arteries and arterioles in the nasal mucosa of all species studied. NPY was also located in nerves around seromucous glands in pig and guinea-pig, but not in rat, cat and man. The NPY-IR glandular innervation corresponded to about 20% of the NPY content of the nasal mucosa as revealed by remaining NPY content determined by radioimmunoassay after sympathectomy. These periglandular NPY-positive fibres had a distribution similar to the VIP-IR and PHI-IR nerves but not to the noradrenergic markers tyrosine hydroxylase (TH) or dopamine--hydroxylase (DBH). The NPY nerves around glands and some perivascular fibres were not influenced by sympathectomy and probably originated in the sphenopalatine ganglion where NPY-IR and VIP-IR ganglion cells were present. The venous sinusoids were innervated by NPY-positive fibres in all species except the cat. Dense NPY and DBH-positive innervation was seen around thick-walled vessels in the pig nasal mucosa; the latter may represent arterio-venous shunts. Double-labelling experiments using TH and DBH, and surgical sympathectomy revealed that the majority of NPY-IR fibres around blood vessels were probably noradrenergic. The NPY-positive perivascular nerves that remained after sympathectomy in the pig nasal mucosa also contained VIP/PHI-IR. The major nasal blood vessels, i.e. sphenopalatine artery and vein, were also densely innervated by NPY-IR fibres of sympathetic origin. Perivascular VIP-IR fibres were present around small arteries, arterioles, venous sinusoids and arterio-venous shunt vessels of the nasal mucosa whereas major nasal vessels received only single VIP-positive nerves. The trigeminal ganglion of the species studied contained only single TH-IR or VIP-IR but no NPY-positive ganglion cells. It is concluded that NPY in the nasal mucosa is mainly present in perivascular nerves of sympathetic origin. In some species, such as pig, glandular and perivascular parasympathetic nerves, probably of VIP/PHI nature, also contain NPY.  相似文献   

7.
Submandibular gland responses to sympathetic and parasympathetic nerve stimulation were studied in streptozotocin-diabetic rats. Morphologically, the acinar cells in control glands were relatively uniform in size and contained electron-lucent granules. The granular ducts were distinguished by the presence of electron-dense granules. With the exception of intracellular lipid droplets and the presence of a few autophagosomes in diabetic glands, no consistent differences in acinar cell structure were observed. In contrast, the diameter of the granular ducts and the granule content of their cells were less in diabetic glands. At 3 weeks sympathetic flow rate, salivary protein concentration, and total protein output were unaffected by diabetes. Sympathetic flow rate was greater at 3 months, and the concentration of protein in the saliva was lower. In 6-month diabetic rats flow rate remained increased, but protein concentration and total protein output were reduced. The decrease in salivary protein concentration at 3 and 6 months was accompanied by a reduction in secretory granule release from acinar and granular duct cells. No consistent differences in flow rate, protein concentration, protein output, or secretory granule release were observed following parasympathetic stimulation. We conclude that the effects of diabetes on nerve-stimulated flow rate and protein release depend on the duration of diabetes and the type of stimulation, and are independent of one another.  相似文献   

8.
Summary The roles of sympathetic and parasympathetic nerves in the secretion of saliva from submandibular glands of rats have been tested by electrical stimulation of either nerve for 1 h unilaterally in separate animals. The flows of saliva thereby induced and their protein content were monitored. Structural changes in each gland were assessed by light- and electron microscopy and compared with the unstimulated contralateral control gland, and the extent of the changes was determined morphometrically. Sympathetic nerve stimulation induced a relatively low flow of saliva that was rich in protein and was accompanied by extensive degranulation from both acinar and granular duct cells. In contrast parasympathetic nerve stimulation induced a considerable flow of saliva that had a low protein content and no detectable degranulation occurred from the secretory cells. It is possible, therefore, that some protein in parasympathetic saliva may have arisen from a non-granular pathway.  相似文献   

9.
Summary Non-hairy and hairy human skin were investigated with the use of the indirect immunohistochemical technique employing antisera to different neuronal and non-neuronal structural proteins and neurotransmitter candidates. Fibers immunoreactive to antisera against neurofilaments, neuron-specific enolase, myelin basic protein, protein S-100, substance P, neurokinin A, neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) were detected in the skin with specific distributional patterns. Neurofilament-, neuron-specific enolase-, myelin basic protein-, protein S-100-, substance P-, neurokinin A-and vasoactive intestinal polypeptide (VIP)-like immunoreactivities were found in or in association with sensory nerves; moreover, neuron-specific enolase-, myelin basic protein-, protein S-100, neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide (VIP)-like immunoreactivities occurred in or in association with autonomic nerves. It was concluded that antiserum against neurofilaments labels sensory nerve fibers exclusively, whereas neuron-specific enolase-, myelin basic protein- and protein S-100-like immunoreactivities are found in or in association with both sensory and autonomic nerves. Substance P- and neurokinin A-like immunoreactivities were observed only in sensory nerve fibers, and neuropeptide Y- and tyrosine hydroxylase-like immunoreactivities occurred only in autonomic nerve fibers, whereas vasoactive intestinal polypeptide (VIP)-like immunoreactivity was seen predominantly in autonomic nerves, but also in some sensory nerve fibers.  相似文献   

10.
The intracellular signaling pathways mediating the neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in human neuroblastoma SH-SY5Y cells. Previously, we showed that SH-SY5Y cells express the PAC(1) and VIP/PACAP receptor type 2 (VPAC(2)) receptors, and that the robust cAMP production in response to PACAP and vasoactive intestinal peptide (VIP) was mediated by PAC(1) receptors (Lutz et al. 2006). Here, we investigated the ability of PACAP-38 to differentiate SH-SY5Y cells by measuring morphological changes and the expression of neuronal markers. PACAP-38 caused a concentration-dependent increase in the number of neurite-bearing cells and an up-regulation in the expression of the neuronal proteins Bcl-2, growth-associated protein-43 (GAP-43) and choline acetyltransferase: VIP was less effective than PACAP-38 and the VPAC(2) receptor-specific agonist, Ro 25-1553, had no effect. The effects of PACAP-38 and VIP were blocked by the PAC(1) receptor antagonist, PACAP6-38. As observed with PACAP-38, the adenylyl cyclase activator, forskolin, also induced an increase in the number of neurite-bearing cells and an up-regulation in the expression of Bcl-2 and GAP-43. PACAP-induced differentiation was prevented by the adenylyl cyclase inhibitor, 2',5'-dideoxyadenosine (DDA), but not the protein kinase A (PKA) inhibitor, H89, or by siRNA-mediated knock-down of the PKA catalytic subunit. PACAP-38 and forskolin stimulated the activation of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAP; p38 MAP kinase) and c-Jun N-terminal kinase (JNK). PACAP-induced neuritogenesis was blocked by the MEK1 inhibitor PD98059 and partially by the p38 MAP kinase inhibitor SB203580. Activation of exchange protein directly activated by cAMP (Epac) partially mimicked the effects of PACAP-38, and led to the phosphorylation of ERK but not p38 MAP kinase. These results provide evidence that the neurotrophic effects of PACAP-38 on human SH-SY5Y neuroblastoma cells are mediated by the PAC(1) receptor through a cAMP-dependent but PKA-independent mechanism, and furthermore suggest that this involves Epac-dependent activation of ERK as well as activation of the p38 MAP kinase signaling pathway.  相似文献   

11.
Peptide HI (PHI)-immunoreactive nerve fibres were numerous around cerebral blood vessels of the cat. The number and distribution resemble that previously found for vasoactive intestinal polypeptide (VIP), a peptide with which PHI co-exists in pial arteries, at least in some segments. PHI and VIP elicit dilatation in a concentration-dependent manner in isolated middle cerebral arteries; the maximum effects were similar but VIP was considerably more potent. Neither effect was blocked by atropine, cimetidine or propranolol, confirming an action at a non-adrenergic, non-cholinergic site. In chloralose-anaesthetized cats PHI and VIP elicited concentration-dependent dilatations; the magnitude of responses was similar, however, considerably more PHI was necessary to elicit the same response as that of VIP. The results suggest that though both peptides are co-localized and may act at the same receptor, VIP is a more likely candidate for eliciting dilatation during physiological conditions.  相似文献   

12.
The developmental pattern and distribution of peptide-containing neurons in the rat heart right atrium has been studied by indirect immunofluorescence. Antibodies against neuropeptide Y (NPY), substance P (SP), and vasoactive intestinal polypeptide (VIP) were applied to whole-mount stretch preparations of the right atria from hearts of newborn to 40-day-old animals. NPY-like immunoreactivity (LI) was compared with the synaptic vesicle marker SV2 in double immunoincubation studies. The distribution of immunofluorescence was studied by confocal laser scanning microscopy. NPY-LI and SP-LI were present throughout the atria already at birth, in contrast to VIP-LI that was observed at day 10. The postnatal changes of innervation were basically quantitative, with an increase in density of nerve fibres and number of varicosities, while the basic pattern of innervation was essentially established during the first 1–10 days. NPY- and SP-positive bundles of fibres appeared to enter the right atrium along the superior caval vein, having extrinsic origins. Nerve fibres with NPY-LI colocalized in most nerve terminals with SV2-LI, and showed a developmental pattern similar to that observed for adrenergic neurons earlier. These NPY/SV2 positive fibres probably represent the extrinsic NPY innervation. In addition, NPY-LI was identified in large intrinsic nerve cells bodies located near the atrioventricular (AV) region. Most of the VIP-LI was observed in short nerve fibres originating in intrinsic VIP-positive cell bodies, but a few apparently extrinsic VIP-positive fibres were found, probably representing preganglionic parasympathetic neurons. SP in the atria was probably of extrinsic (sensory) origin and no nerve cell bodies with SP-LI were detected. The results show that the peptidergic innervation in the developing rat right atrium involves both extrinsic and intrinsic peptidergic neurons which may participate in the regulation of neurotransmission in local neuronal circuits.  相似文献   

13.
Nitric oxide and various neuropeptides in the myenteric plexus regulate esophageal motility. We sought colocalization of nitric oxide synthase and neuropeptides in frozen sections of mid-portion of smoothmuscled opossum esophagus using NADPH-diaphorase activity to mark the synthase and immunoreactivity to detect peptides. The peptides, all with demonstrated physiological activity in this organ, were calcitonin generelated peptide, galanin, neuropeptide Y, substance P, and vasoactive intestinal polypeptide. The ExtrAvidin Peroxidase immunostain for each peptide was carried up to the final peroxidase reaction with 3-amino-9-ethylcarbazole. The NADPH-diaphorase reaction was applied with short incubation to provide light staining just before the peroxidase reaction was performed. We examined sections for the proportions of singly and dually labeled nerve cells in the myenteric plexus. NADPH-diaphorase activity was highly colocalized with calcitonin gene-related peptide (59%), galanin (54%), and vasoactive intestinal polypeptide (53%). It showed little colocalization with neuropeptide Y (10%) and substance P (8%). The proportions of all nerve cells containing each of the substances were: NADPH-diaphorase-33%, calcitonin gene-related peptide-30%, galanin-55%, neuropeptide Y-16%, substance P-35%, and vasoactive intestinal polypeptide-58%. We conclude that the nerves responsible for peristalsis in the esophagus may act by releasing nitric oxide along with other inhibitory substances, calcitonin gene-related peptide, galanin, and vasoactive intestinal polypeptide, but not excitatory substances, neuropeptide Y and substance P.  相似文献   

14.
Vasodilator responses to human adrenomedullin (hADM), a newly discovered hypotensive peptide, human calcitonin gene-related peptide- (hCGRP-) and hCGRP-, which share structural homology with hADM, were compared in the hindlimb vascular bed of the cat under constant flow conditions. Injections of hADM (0.003-1 nmol), hCGRP-, and hCGRP- (0.003-0.3 nmol) into the perfusion circuit caused dose-related decreases in hindlimb perfusion pressure. Vasodilator responses to hCGRP- and hCGRP- were similar in potency and duration, and the doses of hCGRP- and hCGRP- required to reduce hindlimb perfusion pressure 40 mm Hg (ED40 mm Hg) were significantly lower than the ED40 mm Hg for hADM. The duration of the hindlimb vasodilator responses to hCGRP- and hCGRP- were significantly longer than the duration of the response to hADM. Amylin, a peptide that shares structural homology with ADM and with CGRP, had no significant effect on hindlimb perfusion pressure when injected in doses up to 1 nmol. Decreases in hindlimb perfusion pressure in response to hADM, hCGRP-, and hCGRP- were not altered by L-N5-(1-iminoethyl)-ornithine (L-NIO) in a dose of the nitric oxide synthase inhibitor that decreased the vasodilator response to acetylcholine or by the cyclooxygenase inhibitor, meclofenamate, in a dose that decreased the vasodilator response to archidonic acid. The present data demonstrate that hADM, hCGRP-, and hCGRP- have potent, but relatively short-lasting, vasodilator activity, and that vasodilator responses are not dependent on the release of nitric oxide or vasodilator prostaglandins in the hindlimb vascular bed of the cat.  相似文献   

15.
Human omental arteries and veins are supplied with nerve fibers containing noradrenaline (NA) and neuropeptide Y (NPY); these two agents probably co-exist in perivascular sympathetic nerve fibers. Substance P (SP)- or vasoactive intestinal peptide (VIP)-containing fibers could not be detected. In studies on isolated omental vessels NA produced constriction. The results of blockade experiments suggest that human omental arteries are equipped predominantly with alpha 1-adrenoceptors and omental veins with a mixture of alpha 1- and alpha 2-adrenoceptors. NPY at a concentration of 10(-7) M or higher had a weak contractile effect on veins and virtually no effect on arteries. NPY at a concentration of 3 X 10(-8) M shifted the NA concentration response curve to the left in arteries (pD2 = 5.8 for NA versus 6.6. for NA in the presence of NPY; P less than 0.001) but not in veins. Both SP and VIP relaxed arteries precontracted with NA or prostaglandin F2 alpha (PGF2 alpha). The potency of SP as a relaxant agent was similar in arteries and veins; the effect of VIP was elicited at lower concentrations in veins than in arteries.  相似文献   

16.
Summary The overall distribution and origins of vasoactive intestinal polypeptide (VIP)-immunoreactive (IR), acetylcholinesterase (AChE)-positive and adrenergic nerves in the walls of the cerebral arteries were investigated in the bent-winged bat. VIP-IR and AChE-positive nerves innervating the bat cerebral vasculature appear to arise mainly from VIP-IR and AChE-positive cell bodies within microganglia found in the nerve bundle accompanying the sympathetic nerve bundle within the tympanic cavity. These microganglia, as well as the nerve bundle containing them, do not emit catecholamine fluorescence, suggesting that they are of the cranial parasympathetic outflow, probably the facial or glossopharyngeal one. The axons from VIP-IR and AChE-positive microganglia run intermingled with sympathetic adrenergic nerves in the same thick fiber bundles, and reach the cranial cavity through the carotid canal. In addition, some of the VIP-IR fibers innervating the vertebro-basilar system, at least the basilar artery, originate from VIP-IR nerve cells located in the wall of this artery.The supply of VIP-IR fibers to the bat major cerebral arteries is the richest among mammals that have been studied, and differs from other mammals in that it is much greater in the vertebro-basilar system than in the internal carotid system: plexuses of VIP-IR nerves are particularly dense along the walls from the posterior ramus to posterior cerebral and basilar arteries. Small pial and intracerebral arteries of the vertebro-basilar system, especially those of the posterior cerebral artery which supply most parts of the diencephalon and cerebrum, are also richly innervated by peripheral VIP-IR fibers. This pattern corresponds well with the innervation pattern of adrenergic and AChE-positive nerves.  相似文献   

17.
18.
In the last decades some reports reveal the neuropeptide neurotensin (NT) as an immune mediator in the Central Nervous System and in the gastrointestinal tract, however its effects on skin immunity were not identified. The present study investigates the effect of NT on signal transduction and on pro/anti-inflammatory function of skin dendritic cells. Furthermore, we investigated how neurotensin can modulate the inflammatory responses triggered by LPS in skin dendritic cells. We observed that fetal-skin dendritic cells (FSDCs) constitutively express NTR1 and NTR3 (neurotensin receptors) and that LPS treatment induces neurotensin expression. In addition, NT downregulated the activation of the inflammatory signaling pathways NF-κB and JNK, as well as, the expression of the cytokines IL-6, TNF-α, IL-10 and the vascular endothelial growth factor (VEGF), while the survival pathway ERK and epidermal growth factor (EGF) were upregulated. Simultaneous dendritic cells exposure to LPS and NT induced a similar cytokine profile to that one induced by NT alone. However, cells pre-treated with NT and then incubated with LPS, completely changed their cytokine profile, upregulating the cytokines tested, without changes on growth factor expression. Overall, our results could open new perspectives in the design of new therapies for skin diseases, like diabetic wound healing, where neuropeptide exposure seems to be beneficial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号