首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S-Adenosylmethionine (AdoMet) synthetase catalyzes the only known route of biosynthesis of the primary in vivo alkylating agent. Inhibitors of this enzyme could provide useful modifiers of biological methylation and polyamine biosynthetic processes. The AdoMet synthetase catalyzed reaction converts ATP and L-methionine to AdoMet, PP(i), and P(i), with formation of tripolyphosphate as a tightly bound intermediate. This work describes a nonhydrolyzable analogue of the tripolyphosphate (PPP(i)) reaction intermediate, diimidotriphosphate (O(3)P-NH-PO(2)-NH-PO(3)(5)(-)), as a potent inhibitor. In the presence of AdoMet, PNPNP is a slow-binding inhibitor with an overall inhibition constant (K(i)) of 2 nM and a dissociation rate of 0.6 h(-)(1). In contrast, in the absence of AdoMet PNPNP is a classical competitive inhibitor with a K(i) of 0.5 microM, a slightly higher affinity than PPP(i) itself (K(i) = 3 microM). The imido analogue of the product pyrophosphate, imidodiphosphate (O(3)P-NH-PO(3)(4)(-)) also displays slow onset inhibition only in the presence of AdoMet, with a K(i) of 0.8 microM, compared to K(i) of 250 microM for PP(i). Circular dichroism spectra of the unliganded enzyme and various complexes are indistinguishable indicating that the protein secondary structure is not greatly altered upon complex formation, suggesting local rearrangements at the active site during the slow binding process. A model based on ionization of the bridging -NH- moiety is presented which could account for the potent inhibition by PNP and PNPNP.  相似文献   

2.
Crystallographic studies of Escherichia coli S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase, MAT) have defined a flexible polypeptide loop that can gate access to the active site without contacting the substrates. The influence of the length and sequence of this active site loop on catalytic efficiency has been characterized in a mutant in which the E. coli MAT sequence (DRADPLEQ) has been replaced with the distinct sequence of the corresponding region of the otherwise highly homologous rat liver enzyme (HDLRNEEDV). Four additional mutants in which the entire DRADPLEQ sequence was replaced by five, six, seven, or eight glycines have been studied to unveil the effects of loop length and the influence of side chains. In all of the mutants, the maximal rate of S-adenosylmethionine formation (k(cat)) is diminished by more than 200-fold whereas the rate of hydrolysis of the tripolyphosphate intermediate is decreased by less than 3-fold. Thus, the function of the loop is localized to the first step in the overall reaction. The K(m) for methionine increases in all of the oligoglycine mutants, whereas the K(m) values for ATP are not substantially different. The k(cat) for the wild-type enzyme is decreased by increases in solution microviscosity with 55% of the maximal dependence. Thus, a diffusional event is coupled to the chemical step of AdoMet formation, which is known to be rate-limiting. The results indicate that a conformational change, possibly loop closure, is associated with AdoMet synthesis. The data integrate a previously discovered conformational change associated with PPP(i) binding to the E x AdoMet complex into the reaction sequence, reflecting a difference in protein conformation in the E x AdoMet x PPP(i) complex whether it is formed from the E x ATP x methionine complex or from binding of exogenous PPP(i). The temperature dependence of the k(cat) for S-adenosylmethionine formation shows that the removal of the side chains in the glycine mutants causes the activation enthalpy of the reaction to approximately double in each case, while the activation entropy changes from negative in the wild-type enzyme to positive in the mutants. The favorable activation entropy in the mutant-catalyzed reactions may reflect release of water during catalysis, while the negative activation entropy in the reaction catalyzed by the wild-type enzyme apparently reflects reorganization of the loop. The observations point to how nature can fine-tune the activity of an enzyme by modifying substrate and product access to the active site rather than by altering the enzyme x substrate contacts or the catalytic machinery itself.  相似文献   

3.
S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the smaller Mg(2+).  相似文献   

4.
S-Adenosylmethionine (AdoMet) is the most widely used alkyl group donor in biological systems. The formation of AdoMet from ATP and L-methionine is catalyzed by S-adenosylmethionine synthetase (AdoMet synthetase). Elucidation of the conformations of enzyme-bound substrates, product, and inhibitors is important for the understanding of the catalytic mechanism of the enzyme and the design of new inhibitors. To obtain structural data for enzyme-bound substrates and product, we have used two-dimensional transferred nuclear Overhauser effect spectroscopy to determine the conformation of enzyme-bound AdoMet and 5'-adenylyl imidodiphosphate (AMPPNP). AMPPNP, an analogue of ATP, is resistant to the ATP hydrolysis activity of AdoMet synthetase because of the presence of a nonhydrolyzable NH-link between the beta- and gamma-phosphates but is a substrate for AdoMet formation during which tripolyphosphate is produced. AdoMet and AMPPNP both bind in an anti conformation about the glycosidic bond. The ribose rings are in C3'-exo and C4'-exo conformations in AdoMet and AMPPNP, respectively. The differences in ribose ring conformations presumably reflect the different steric requirements of the C5' substituents in AMPPNP and AdoMet. The NMR-determined conformations of AdoMet and AMPPNP were docked into the E. coli AdoMet synthetase active site taken from the enzyme.ADP. Pi crystal structure. Since there are no nonexchangeable protons either in the carboxy-terminal end of the methionine segment of AdoMet or in the tripolyphosphate segment of AMPPNP, these portions of the molecules were modeled into the enzyme active site. The interactions of AdoMet and AMPPNP with the enzyme predict the location of the methionine binding site and suggest how the positive charge formed on the sulfur during AdoMet synthesis is stabilized.  相似文献   

5.
S-Adenosylmethionine synthetase (ATP:l-methionine S-adenosyltransferase, MAT) catalyzes a unique enzymatic reaction that leads to formation of the primary biological alkylating agent. MAT from the hyperthermophilic archaeon Methanococcus jannaschii (MjMAT) is a prototype of the newly discovered archaeal class of MAT proteins that are nearly unrecognizable in sequence when compared with the class that encompasses both the eucaryal and bacterial enzymes. In this study the functional properties of purified recombinant MjMAT have been evaluated. The products of the reaction are AdoMet, PP(i), and P(i); >90% of the P(i) originates from the gamma-phosphoryl group of ATP. The circular dichroism spectrum of the dimeric MjMAT indicates that the secondary structure is more helical than the Escherichia coli counterpart (EcMAT), suggesting a different protein topology. The steady state kinetic mechanism is sequential, with random addition of ATP and methionine; AdoMet is the first product released, followed by release of PP(i) and P(i). The substrate specificity differs remarkably from the previously characterized MATs; the nucleotide binding site has a very broad tolerance of alterations in the adenosine moiety. MjMAT has activity at 70 degrees C comparable with that of EcMAT at 37 degrees C, consistent with the higher temperature habitat of M. jannaschii. The activation energy for AdoMet formation is larger than that for the E. coli MAT-catalyzed reaction, in accord with the notion that enzymes from thermophilic organisms are often more rigid than their mesophilic counterparts. The broad substrate tolerance of this enzyme proffers routes to preparation of novel AdoMet analogs.  相似文献   

6.
S-Adenosylmethionine synthetase from Escherichia coli   总被引:16,自引:0,他引:16  
Adenosylmethionine (AdoMet) synthetase has been purified to homogeneity from Escherichia coli. For this purification, a strain of E. coli which was derepressed for AdoMet synthetase and which harbors a plasmid containing the structural gene for AdoMet synthetase was constructed. This strain produces 80-fold more AdoMet synthetase than a wild type E. coli. AdoMet synthetase has a molecular weight of 180,000 and is composed of four identical subunits. In addition to the synthetase reaction, the purified enzyme catalyzes a tripolyphosphatase reaction that is stimulated by AdoMet. Both enzymatic activities require a divalent metal ion and are markedly stimulated by certain monovalent cations. AdoMet synthesis also takes place if adenyl-5'yl imidodiphosphate (AMP-PNP) is substituted for ATP. The imidotriphosphate (PPNP) formed is not hydrolyzed, permitting dissociation of AdoMet formation from tripolyphosphate cleavage. An enzyme complex is formed which contains one equivalent (per subunit) of adenosylmethionine, monovalent cation, imidotriphosphate, and presumably divalent cation(s). The rate of product dissociation from this complex is 3 orders of magnitude slower than the rate of AdoMet formation from ATP. Studies with the phosphorothioate derivatives of ATP (ATP alpha S and ATP beta S) in the presence of Mg2+, Mn2+, or Co2+ indicate that a divalent ion is bound to the nucleotide during the reaction and provide information on the stereochemistry of the metal-nucleotide binding site.  相似文献   

7.
8.
S-adenosylmethionine synthetase from wheat embryos was purified to electrophoretic homogeneity. The mol wt of the enzyme was 174,000 as determined by molecular sieve chromatography on Sephacryl S-200. A single subunit of purified AdoMet synthetase was observed on SOS-PAGE with a mol wt of 84,000 suggesting that the enzyme is a homodimer. The apparent Km of purified enzyme with ATP and methionine is 80 μM and 100 μM, respectively. The pH optimum of the enzyme is 7.75. The enzyme requires MgCb, KCI and reduced glutathione for optimum activity. The 3H-labelled putative S-adenosylmethionine reaction product was converted into 3H-labelled 5′-methyl-thioadenosine by heat treatment (100°C, 10 min, pH 7.0). This proved the authenticity of the reaction product of the AdoMet synthetase in wheat embryos.  相似文献   

9.
Ewalt KL  Yang XL  Otero FJ  Liu J  Slike B  Schimmel P 《Biochemistry》2005,44(11):4216-4221
In cellular environments, coupled hydrolytic reactions are used to force efficient product formation in enzyme-catalyzed reactions. In the first step of protein synthesis, aminoacyl-tRNA synthetases react with amino acid and ATP to form an enzyme-bound adenylate that, in the next step, reacts with tRNA to form aminoacyl-tRNA. The reaction liberates pyrophosphate (PP(i)) which, in turn, can be hydrolyzed by pyrophosphatase to drive efficient aminoacylation. A potential polymorphic variant of human tryptophanyl-tRNA synthetase is shown here to sequester tryptophanyl adenylate. The bound adenylate does not react efficiently with the liberated PP(i) that normally competes with tRNA to resynthesize ATP and free amino acid. Structural analysis of this variant showed that residues needed for binding ATP phosphates and thus PP(i) were reoriented from their conformations in the structure of the more common sequence variant. Significantly, the reorientation does not affect reaction with tRNA, so that efficient aminoacylation is achieved.  相似文献   

10.
Q F Ma  G L Kenyon  G D Markham 《Biochemistry》1990,29(6):1412-1416
The entire family of ATP analogues that are either mono- or disubstituted with imido and methylene bridges in the polyphosphate chain of ATP have been investigated as substrates and inhibitors of S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase). The disubstituted analogues adenosine 5'-(alpha,beta:beta,gamma-diimidotriphosphate) (AMPNPNP) and adenosine 5'-(alpha,beta:alpha,beta'-diimidotriphosphate) [AMP(NP)2] have been synthesized for the first time, and a new route to adenosine 5'-(alpha,beta:beta,gamma-dimethylenetriphosphate) (AMPCPCP) has been developed. S-Adenosylmethionine synthetase catalyzes a two-step reaction: the intact polyphosphate chain is displaced from ATP, yielding AdoMet and tripolyphosphate, followed normally, but not obligatorily, by the hydrolysis of the tripolyphosphate to pyrophosphate and orthophosphate. Uniformly, the imido mono- or disubstituted derivatives are both better substrates and better inhibitors than their methylene counterparts. AMPNPNP reacts rapidly to give a single equivalent of product per active site, but subsequent turnovers are at least 1000-fold slower, enabling it to be used to quantify enzyme active site concentrations. In contrast, AMPCPCP is not detectably a substrate (less than 10(-5)% of ATP). AMP(NP)2, a branched isomer of linear AMPNPNP, was not a substrate but was a linear competitive inhibitor, greater than 100 fold more potent than ADP, indicating a reasonable degree of bulk tolerance at the alpha-phosphoryl group binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
S-adenosylmethionine (AdoMet) synthetase catalyzes a unique two-step enzymatic reaction leading to formation of the primary biological alkylating agent. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site, which lies between two subunits, contains four lysines and one histidine as basic residues. In order to test the proposed charge and hydrogen bonding roles in catalytic function, each lysine has been changed to an uncharged methionine or alanine, and the histidine has been altered to asparagine. The resultant enzyme variants are all tetramers like the wild type enzyme; however, circular dichroism spectra show reductions in helix content for the K245*M and K269M mutants. (The asterisk denotes that the residue is in the second subunit.) Four mutants have k(cat) reductions of approximately 10(3)-10(4)-fold in AdoMet synthesis; however, the k(cat) of K165*M variant is only reduced 2-fold. In each mutant, there is a smaller catalytic impairment in the partial reaction of tripolyphosphate hydrolysis. The K165*A enzyme has a 100-fold greater k(cat) for tripolyphosphate hydrolysis than the wild type enzyme, but this mutant is not activated by AdoMet in contrast to the wild type enzyme. The properties of these mutants require reassessment of the catalytic roles of these residues.  相似文献   

12.
Although methanogenic archaea use B(12) extensively as a methyl carrier for methanogenesis, little is known about B(12) metabolism in these prokaryotes or any other archaea. To improve our understanding of how B(12) metabolism differs between bacteria and archaea, the gene encoding the ATP:co(I)rrinoid adenosyltransferase in Methanosarcina mazei strain G?1 (open reading frame MM3138, referred to as cobA(Mm) here) was cloned and used to restore coenzyme B(12) synthesis in a Salmonella enterica strain lacking the housekeeping CobA enzyme. cobA(Mm) protein was purified and its initial biochemical analysis performed. In vitro, the activity is enhanced 2.5-fold by the addition of Ca(2+) ions, but the activity was not enhanced by Mg(2+) and, unlike the S. enterica CobA enzyme, it was >50% inhibited by Mn(2+). The CobA(Mm) enzyme had a K(m)(ATP) of 3 microM and a K(m)(HOCbl) of 1 microM. Unlike the S. enterica enzyme, CobA(Mm) used cobalamin (Cbl) as a substrate better than cobinamide (Cbi; a Cbl precursor); the beta phosphate of ATP was required for binding to the enzyme. A striking difference between CobA(Se) and CobA(Mm) was the use of ADP as a substrate by CobA(Mm), suggesting an important role for the gamma phosphate of ATP in binding. The results from (31)P-nuclear magnetic resonance spectroscopy experiments showed that triphosphate (PPP(i)) is the reaction by-product; no cleavage of PPP(i) was observed, and the enzyme was only slightly inhibited by pyrophosphate (PP(i)). The data suggested substantial variations in ATP binding and probably corrinoid binding between CobA(Se) and CobA(Mm) enzymes.  相似文献   

13.
Hsc66 from Escherichia coli is a constitutively expressed hsp70 class molecular chaperone whose activity is coupled to ATP binding and hydrolysis. To better understand the mechanism and regulation of Hsc66, we investigated the kinetics of ATP hydrolysis and the interactions of Hsc66 with nucleotides. Steady-state experiments revealed that Hsc66 has a low affinity for ATP (K(m)(ATP) = 12.7 microM) compared with other hsp70 chaperones. The kinetics of nucleotide binding were determined by analyzing changes in the Hsc66 absorbance spectrum using stopped-flow methods at 23 degrees C. ATP binding results in a rapid, biphasic increase of Hsc66 absorbance at 280 nm; this is interpreted as arising from a two-step process in which ATP binding (k(a)(ATP) = 4.2 x 10(4) M(-1) s(-1), k(d)(ATP) = 1.1 s(-1)) is followed by a slow conformational change (k(conf) = 0. 1 s(-1)). Under single turnover conditions, the ATP-induced transition decays exponentially with a rate (k(decay) = 0.0013 s(-1)) similar to that observed in both steady-state and single turnover ATP hydrolysis experiments (k(hyd) = 0.0014 s(-1)). ADP binding to Hsc66 results in a monophasic transition in the absence (k(a)(ADP) = 7 x 10(5) M(-1) s(-1), k(d)(ADP) = 60 s(-1)) and presence of physiological levels of inorganic phosphate (k(a)(ADP(P(i)) = 0.28 x 10(5) M(-1) s(-1), k(d)(ADP(P(i)) = 9.1 s(-1)). These results indicate that ATP hydrolysis is the rate-limiting step under steady-state conditions and is >10(3)-fold slower than the rate of ADP/ATP exchange. Thus, in contrast to DnaK and eukaryotic forms of hsp70 that have been characterized to date, the R if T equilibrium balance for Hsc66 is shifted in favor of the low peptide affinity T state, and regulation of the reaction cycle is expected to occur at the ATP hydrolysis step rather than at nucleotide exchange.  相似文献   

14.
The restriction endonuclease from Escherichia coli K is a multifunctional protein which efficiently methylates heteroduplex DNA (one strand modified and one strand unmodified) in the presence of S-adenosylmethionine (AdoMet), ATP, and Mg2+. The methylase activity is catalytic, and seems to modify different heteroduplex host specificity sites for E. coli K with equal efficiency. In the methylase reaction, both AdoMet and ATP (or its imido analog) act as allosteric effectors, but AdoMet also serves as a methyl donor. Preincubation of the enzyme with AdoMet eliminates the lag period observed in DNA methylation. The rate of enzyme activation was determined using the AdoMet analog Sinefungin. The result are consistent with the hypothesis that the early steps of AdoMet binding and enzyme activation are common to both restriction and modification reactions.  相似文献   

15.
Initial velocity determinations were conducted with human DNA (cytosine-5) methyltransferase (DNMT1) on unmethylated and hemimethylated DNA templates in order to assess the mechanism of the reaction. Initial velocity data with DNA and S-adenosylmethionine (AdoMet) as variable substrates and product inhibition studies with methylated DNA and S-adenosylhomocysteine (AdoHcy) were obtained and evaluated as double-reciprocal plots. These relationships were linear for plasmid DNA, exon-1 from the imprinted small nuclear ribonucleoprotein-associated polypeptide N, (CGG.CCG)(12), (m(5)CGG. CCG)(12), and (CGG.CCG)(73) but were not linear for (CGG. Cm(5)CG)(12). Inhibition by AdoHcy was apparently competitive versus AdoMet and uncompetitive/noncompetitive versus DNA at 相似文献   

16.
S-adenosylmethionine synthetase (AdoMet synthetase) is responsible for the synthesis of the major methyl donor S-adenosylmethionine. The AdoMet synthetase gene was identified by subtractive suppressive hybridization as being expressed at higher levels in the liver of rats continuously exposed to growth hormone (GH) than in rats intermittently exposed to the hormone. Further studies on the regulation of AdoMet synthetase showed that the activity and mRNA levels were higher in female than in male rats. Hypophysectomy increased AdoMet synthetase mRNA in both male and female rats. Combined thyroxine and cortisol treatment of hypophysectomized rats had no effect on AdoMet synthetase mRNA levels. Two daily injections of GH for 7 days, mimicking the male secretory pattern of GH, decreased AdoMet synthetase activity and mRNA levels. A continuous infusion of GH, mimicking the female secretory pattern of GH, had small or no effects on AdoMet synthetase activity and decreased the mRNA levels to a lesser degree than two daily injections. It is concluded that the lower AdoMet synthetase activity in male rats is due to an inhibitory effect of the male characteristic pulsatile secretory pattern of GH on AdoMet synthetase mRNA expression.  相似文献   

17.
Methionine adenosyltransferase III (MATIII) catalyzes S-adenosylmethionine (AdoMet) synthesis and, as part of its reaction mechanism, it also hydrolyzes tripolyphosphate. Tripolyphosphatase activity was linear over time and had a slightly sigmoidal behavior with an affinity in the low micromolar range. On the contrary, AdoMet synthetase activity showed a lag phase that was independent of protein concentration but decreased at increasing substrate concentrations. Tripolyphosphatase activity, which appeared to be slower than AdoMet synthesis, was stimulated by preincubation with ATP and methionine so that it matched AdoMet synthetase activity. This stimulation process, which is probably the origin of the lag phase, represents the slow transition between two conformations of the enzyme that could be distinguished by their different tripolyphosphatase activity and sensitivity to S-nitrosylation. Tripolyphosphatase activity appeared to be the rate-determining reaction in AdoMet synthesis and the one inhibited by S-nitrosylation. The methionine concentration necessary to obtain half-maximal stimulation was in the range of physiological methionine fluctuations. Moreover, stimulation of MAT activity by methionine was demonstrated in vivo. We propose that the hysteretic behavior of MATIII, in which methionine induces the transition to a higher specific activity conformation, can be considered as an adaptation to the specific functional requirements of the liver.  相似文献   

18.
In most Gram-positive bacteria, catabolite repression is mediated by a bifunctional enzyme, the HPr kinase/phosphorylase (HprK/P). It has recently been shown that HprK/P could catalyze the phosphorylation of the protein HPr by using pyrophosphate (PP(i)) as a phosphate donor instead of ATP. Here we showed that, as for ATP, PP(i) binds to the enzyme with strong positive cooperativity. However, in contrast to ATP, PP(i) binding does not modify the fluorescence properties of the unique Trp residue of Bacillus subtilis HprK/P. In addition, to understand how two conserved motifs, namely, the P-loop and the specific signature of this family, participate in the three enzymatic activities of HprK/Ps (ATP-kinase, PP(i)-kinase, and phosphorylase), several site-directed mutants were generated. Whereas the three activities are mediated by the P-loop which is directly involved in the binding of ATP, PP(i), or Pi, the signature motif seems to be involved preferentially in the dephosphorylation reaction. On the basis of these results, we propose a model in which the binding of the allosteric activator FBP induces a conformational change of a central loop located above the active site of HprK/P, thereby allowing the ATP binding. However, this conformational change is not required for the binding of PP(i).  相似文献   

19.
The bacterial enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA) catalyzes the unprecedented transfer and isomerization of the ribosyl moiety of S-adenosylmethionine (AdoMet) to a modified tRNA nucleoside in the biosynthesis of the hypermodified nucleoside queuosine. The complexity of this reaction makes it a compelling problem in fundamental mechanistic enzymology, and as part of our mechanistic studies of the QueA-catalyzed reaction, we report here the elucidation of the steady-state kinetic mechanism. Bi-substrate kinetic analysis gave initial velocity patterns indicating a sequential mechanism, and provided the following kinetic constants: K (M)(tRNA)= 1.9 +/- 0.7 microM and K (M)(AdoMet)= 98 +/- 5.0 microM. Dead-end inhibition studies with the substrate analogues S-adenosylhomocysteine and sinefungin gave competitive inhibition patterns against AdoMet and noncompetitive patterns against preQ(1)-tRNA(Tyr), with K(i) values of 133 +/- 18 and 4.6 +/- 0.5 microM for sinefungin and S-adenosylhomocysteine, respectively. Product inhibition by adenine was noncompetitive against both substrates under conditions with a subsaturating cosubstrate concentration and uncompetitive against preQ(1)-tRNA(Tyr) when AdoMet was saturating. Inhibition by the tRNA product (oQ-tRNA(Tyr)) was competitive and noncompetitive against the substrates preQ(1)-tRNA(Tyr) and AdoMet, respectively. Inhibition by methionine was uncompetitive versus preQ(1)-tRNA(Tyr), but noncompetitive against AdoMet. However, when methionine inhibition was investigated at high AdoMet concentrations, the pattern was uncompetitive. Taken together, the data are consistent with a fully ordered sequential bi-ter kinetic mechanism in which preQ(1)-tRNA(Tyr) binds first followed by AdoMet, with product release in the order adenine, methionine, and oQ-tRNA. The chemical mechanism that we previously proposed for the QueA-catalyzed reaction [Daoud Kinzie, S., Thern, B., and Iwata-Reuyl, D. (2000) Org. Lett. 2, 1307-1310] is consistent with the constraints imposed by the kinetic mechanism determined here, and we suggest that the magnitude of the inhibition constants for the dead-end inhibitors may provide insight into the catalytic strategy employed by the enzyme.  相似文献   

20.
Inorganic tripolyphosphate (PPP(i)) and pyrophosphate (PP(i)) were examined as potential phosphate donors for human deoxynucleoside kinase (dCK), deoxyguanosine kinase (dGK), cytosolic thymidine kinase (TK1), mitochondrial TK2, and the deoxynucleoside kinase (dNK) from Drosophila melanogaster. PPP(i) proved to be a good phosphate donor for dGK, as well as for dCK with dCyd, but not dAdo, as acceptor substrate, illustrating also the dependence of donor properties on acceptor. Products of phosphorylation were shown to be 5(')-phosphates. In striking contrast to ATP, the phosphorylation reaction follows strict Michaelis-Menten kinetics, with K(m) values of 74 and 92 microM for dCK and dGK, respectively, and V(max) values 40-50% that for ATP. With the other three enzymes, as well as for dCK with dAdo as acceptor, no, or only low levels (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号