首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Isopycnic sucrose gradient separation of rat liver organelles revealed the presence of two distinct branched-chain α-keto acid decarboxylase activities; a mitochondrial activity, which decarboxylates the three branched-chain α-keto acids and requires CoA and NAD+ and a cytosolic activity, which decarboxylates α-ketoisocaproate, but not α-ketoisovalerate, or α-keto-β-methylvalerate. The latter enzyme does not require added CoA or NAD+. Assay conditions for the cytosolic α-ketoisocaproate decarboxylase activity were optimized and this activity was partially characterized. In rat liver cytosol preparations this activity has a pH optimum of 6.5 and is activated by 1.5 m ammonium sulfate. The decarboxylase activity has an apparent Km of 0.03 mm for α-ketoisocaproate when optimized assay conditions are employed. Phenylpyruvate is a very potent inhibitor. α-Ketoisovalerate, α-keto-β-methylvalerate, α-ketobutyrate, and α-ketononanoate also inhibit the α-ketoisocaproate decarboxylase activity. The data indicate that the soluble α-ketoisocaproate decarboxylase is an oxidase. Rat liver cytosol preparations consumed oxygen when either α-ketoisocaproate or α-keto-γ-methiolbutyrate were added. None of the other α-keto acids tested stimulated oxygen consumption. 1-14C-Labeled α-keto-γ-methiolbutyrate is also decarboxylated by cytosol preparations. The α-ketoisocaproate oxidase was purified 20-fold from a 70,000g supernatant fraction of a rat liver homogenate. In these preparations the activity was increased 4-fold by the addition of dithiothreitol, ferrous iron, and ascorbate. The major product of this enzyme activity is β-hydroxyisovalerate. Isovalerate is not a free intermediate in the reaction. The data indicate an alternative pathway for metabolism of α-ketoisocaproate which produces β-hydroxyisovalerate.  相似文献   

3.
—The effects of the amino acids (phenylalanine, valine, leucine and isoleucine) which accumulate in phenylketonuria (PKU) and maple syrup urine disease (MSUD), and their analogue α-keto acids (phenylpyruvate, α-keto isovalerate, α-keto isocaproate, α-keto-β-Me valerate) have been studied on rat brain mitochondrial respiration. Both phenylpyruvate and α-keto isocaproate specifically inhibited the oxidation of pyruvate plus malate and β-hydroxybutyrate plus malate by rat brain mitochondria in the presence of ADP. However, no inhibitory effects of similar concentrations of phenylpyruvate or α-keto isocaproate were observed on the isolated semipurified pyruvate or β-hydroxybutyrate dehydrogenases from rat brain mitochondria. The transport of pyruvate and β-hydroxybutyrate across the brain mitochondrial membrane was studied by both uptake and exchange of radioactively labelled substrates. Both these processes were inhibited by phenylpyruvate and α-ketoisocaproate. The results are interpreted as providing evidence for both pyruvate and β-hydroxybutyrate translocases across the brain mitochondrial membrane, and that the inhibition of these systems by phenylpyruvate and α-keto isocaproate may be important lesions in phenylketonuria and maple syrup urine disease respectively.  相似文献   

4.
Summary The production of l-phenylalanine from the racemate d,l-phenyllactate in an enzyme membrane reactor has been examined. In a first step the racemate is dehydrogenated to the prochiral intermediate phenylpyruvate by the enzymes d-and l-hydroxyisocaproate dehydrogenase. In a second step phenylpyruvate is reductively aminated to l-phenylalanine by l-phenylalanine dehydrogenase. Both steps are dependent on coenzyme, the first one requires NAD, the second one NADH in stoichiometric amounts; in this way the coenzyme is regenerated and only required catalytically. The coenzyme is covalently bound to polyethylene glyco-20 000 and can thus be retained in the reactor analogously to the three enzymes. In order to optimize the continuous production of l-phenylalanine from d,l-phenyllactate, models of the reaction kinetics and of the reactor system have been set up. By means of the reactor model, we can calculate the optimum ratio of the three enzymes, the optimum coenzyme concentration and the optimum phenylpyruvate concentration in the feed.In this process, at a substrate concentration of 50 mM d,l-phenyllactate we reached a spacetime-yield of 28 g l-Phe/(l*d).Abbreviations PEG polyethylene glycol - d-HicDH d-hydroxyisocaproate dehydrogenase - l-HicDH l-hydroxyisocaproate dehydrogenase - PheDH l-phenylalanine dehydrogenase - V max maximum velocity - K M Michaelis-Menten constant - K l inhibition constant - R1 reaction rate of the d-HicDH forward reaction - R2 reaction rate of the d-HicDH reverse reaction - R3 reaction rate of the l-HicDH forward reaction - R4 reaction rate of the l-HicDH reverse reaction - R5 reaction rate of the PheDH forward reaction - R6 reaction rate of the PheDH reverse reaction - d-PLac d-phenyllactate - l-PLac l-phenyllactate - PPy phenylpyruvate - l-Phe l-phenylalanine - NH4 ammonium - residence time  相似文献   

5.
《FEBS letters》2014,588(9):1603-1607
α-Isopropylmalate synthase (IPMS) catalyses the reaction between α-ketoisovalerate and acetyl coenzyme A (AcCoA) in the first step of leucine biosynthesis. IPMS is closely related to homocitrate synthase, which catalyses the reaction between AcCoA and the unbranched α-ketoacid α-ketoglutarate. Analysis of these enzymes suggests that several differently conserved key residues are responsible for the different substrate selectivity. These residues were systematically substituted in the Mycobacterium tuberculosis IPMS, resulting in changes in substrate specificity. A variant of IPMS was constructed with a preference for the unbranched α-ketoacids α-ketobutyrate and pyruvate over the natural branched substrate α-ketoisovalerate.  相似文献   

6.
α-Ketobutyrate, an intermediate in the catabolism of threonine and methionine, is metabolized to CO2 and propionyl-CoA. Recent studies have suggested that propionyl-CoA may interfere with normal hepatic oxidative metabolism. Based on these observations, the present study examined the effect of α-ketobutyrate on palmitic acid and pyruvate metabolism in hepatocytes isolated from fed rats. α-Ketobutyrate (10 mM) inhibited the oxidation of palmitic acid by 34%. In the presence of 10 mM carnitine, the inhibition of palmitic acid oxidation by α-ketobutyrate was reduced to 21%. These observations are similar to those previously reported using propionate as an inhibitor of fatty acid oxidation, suggesting that propionyl-CoA may be responsible for the inhibition. α-Ketobutyrate (10 mM) inhibited 14CO2 generation from [14C]pyruvate by more than 75%. This inhibition was quantitatively larger than seen with equal concentrations of propionate. Carnitine (10 mM) had no effect on the inhibition of pyruvate oxidation by α-ketobutyrate despite the generation of large amounts of propionylcarnitine during the incubation. α-Ketobutyate inhibited [14C]glucose formation from [14C]pyruvate by more than 60%. This contrasted to a 30% inhibition caused by propionate. These results suggest that α-ketobutyrate inhibits hepatic pyruvate metabolism by a mechanism independent of propionyl-CoA formation. The present study demonstrates that tissue accumulation of α-ketobutyrate may lead to disruption of normal cellular metabolism. Additionally, the production of propionyl-CoA from α-ketobutyrate is associated with increased generation of propionylcarnitine. These observations provide further evidence that organic acid accumulation associated with a number of disease states may result in interference with normal hepatic metabolism and increased carnitine requirements.  相似文献   

7.
In Nocardia sp. 239 d-phenylalanine is converted into l-phenylalanine by an inducible amino acid racemase. The further catabolism of this amino acid involves an NAD-dependent l-phenylalanine dehydrogenase. This enzyme was detected only in cells grown on l- or d-phenylalanine and in batch cultures highest activities were obtained at relatively low amino acid concentrations in the medium. The presence of additional carbon- or nitrogen sources invariably resulted in decreased enzyme levels. From experiments with phenylalanine-limited continuous cultures it appeared that the rate of synthesis of the enzyme increased with increasing growth rates. The regulation of phenylalanine dehydrogenase synthesis was studied in more detail during growth of the organism on mixtures of methanol and l-phenylalanine. Highest rates of l-phenylalanine dehydrogenase production were observed with increasing ratios of l-phenylalanine/methanol in the feed of chemostat cultures. Characteristic properties of the enzyme were investigated following its (partial) purification from l- and d-phenylalanine-grown cells. This resulted in the isolation of enzymes with identical properties. The native enzyme had a molecular weight of 42 000 and consisted of a single subunit; it showed activity with l-phenylalanine, phenylpyruvate, 4-hydroxyphenyl-pyruvate, indole-3-pyruvate and -ketoisocaproate, but not with imidazolepyruvate, d-phenylalanine and other l-amino acids tested. Maximum activities with phenylpyruvate (310 mol min-1 mg-1 of purified protein) were observed at pH 10 and 53°C. Sorbitol and glycerol stabilized the enzyme.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPT hexulose-6-phosphate isomerase - FPLC fast protein liquid chromatography  相似文献   

8.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl–tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl–tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl–tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl–tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

9.
An NAD-dependent D-2-hydroxyacid dehydrogenase (EC 1.1.1.) was isolated and characterized from the halophilic Archaeon Haloferax mediterranei. The enzyme is a dimer with a molecular mass of 101.4 ± 3.3 kDa. It is strictly NAD-dependent and exhibits its highest activity in 4 M NaCl. The enzyme is characterized by a broad substrate specificity 2-ketoisocaproate and 2-ketobutyrate being the substrates with the higher Vmax/Km. When pyruvate and 2-ketobutyrate were the substrates the optimal pH was acidic (pH 5) meanwhile for 2-ketoisocaproate maximum activity was achieved at basic pH between 7.5 and 8.5. The optimum temperature was 52 ºC and at 65 ºC there was a pronounced activity decrease. This new enzyme can be used for the production of D-2-hydroxycarboxylic acid.  相似文献   

10.
The regulatory consequences of acetate infusion on the pyruvate and the branched chain α-keto acid dehydrogenase reactions in the isolated, perfused rat liver were investigated. Metabolic flux through these two decarboxylation reactions was monitored by measuring the rate of 14CO2 production from infused 1-14C-labeled substrates. When acetate was presented to the liver as the sole substrate the rate of ketogenesis which resulted was maximal at concentrations of acetate in excess of 10 mm. The increase in hepatic ketogenesis during acetate infusion was not accompanied by an alteration of the mitochondrial oxidation-reduction state as measured by the ratio of β-hydroxybutyrate/ acetoacetate in the effluent perfusate. While acetate infusion did not affect the rate of α-keto[1-14C]isocaproate decarboxylation, the rate of α-keto[1-14C]isovalerate decarboxylation was stimulated appreciably upon acetate addition. No change was observed in the amount of extractable branched chain α-keto acid dehydrogenase during acetate infusion. The rate of [1-14C]pyruvate decarboxylation was stimulated in the presence of acetate at low (<1 mm) but not at high (>1 mm) perfusate pyruvate concentrations. The stimulation of the metabolic flux through the pyruvate dehydrogenase reaction upon acetate infusion was accompanied by an increase in the activation state of the pyruvate dehydrogenase complex from 25.7 to 35.6% in the active form. In a liver perfused in the presence of the pyruvate dehydrogenase kinase inhibitor, dichloroacetate, at a low concentration of pyruvate (0.05 mm) the infusion of acetate did not affect the rate of pyruvate decarboxylation. As the rate of mitochondrial acetoacetate efflux is increased during acetate infusion the stimulation of pyruvate and α-ketoisovalerate decarboxylation is attributed to an accelerated rate of exchange of mitochondrial acetoacetate for cytosolic pyruvate or α-ketoisovalerate on the monocarboxylate transporter.  相似文献   

11.
Decarboxylation rates for a series of C-3 to C-6 α-keto acids were determined in the presence of resting cells and cell-free extracts of Streptococcus lactis var. maltigenes. The C-5 and C-6 acids branched at the penultimate carbon atom were converted most rapidly to the respective aldehydes in the manner described for α-carboxylases. Pyruvate and α-ketobutyrate did not behave as α-carboxylase substrates, in that O2 was absorbed when they were reacted with resting cells. The same effect with pyruvate was noted in a nonmalty S. lactis, accounting for CO2 produced by some “homofermentative” streptococci. Mixed substrate reactions indicated that the same enzyme was responsible for decarboxylation of α-ketoisocaproate and α-ketoisovalerate, but it appeared unlikely that this enzyme was responsible for the decarboxylation of pyruvate. Ultrasonic disruption of cells of the malty culture resulted in an extract inactive for decarboxylation of pyruvate in the absence of ferricyanide. Dialyzed cell-free extracts were inactive against all keto acids and could not be reactivated.  相似文献   

12.
An enzyme catalysing a series of reactions resulting in the oxidative decarboxylation of branched chain α-keto acids and production of NADH, was extracted from rabbit liver mitochondria with the aid of NaClO4. Purification yielded a product which appeared homogeneous on electrophoresis. The enzyme is active on three substrates α-ketoisocaproate, α-keto-β-methyl valerate, and α-ketoisovalerate.  相似文献   

13.
The metabolic fate of photosynthetically-fixed CO2 was determined by labeling samples of Merismopedia tenuissima Lemmerman for 30 min with NaH14CO3 and analyzing its incorporation into low molecular weight compounds, polysaccharide and protein. In N- and P-sufficient cultures, relative incorporation into protein increased as the irradiance used during the labeling period was decreased to 20 μE · m-2 s-1. This pattern was found for cells grown at irradiances of either 20 or 180 μE · m-2· s-1, although incorporation into protein was greater in cultures grown at the higher irradiance. In N-limited continuous cultures, relative incorporation into protein was low, independent of growth rate, and the same for samples tested at 20 or 180 μE · m-2· s-1 irradiance. In contrast, 14C incorporation into protein by P-limited cultures increased as growth rate increased, and at relative growth rates greater than 0.25, the incorporation was greater at 20 than at 180 μE · m-2· s-1. However, the total RNA content and maximum photosynthetic rate of the cultures was the same at all growth rates tested. The interaction between nutrient concentration and light intensity was studied by growing-limited continuous cultures at the same dilution rate, but different irradiances. Relative incorporation into protein was highest in cultures grown at 20 μE · m-2· s-1, in which the relative growth rate was 0.4. These results suggest that photosynthetic carbon metabolism may respond to relative growth rate μ/μmax rather than to growth rate directly.  相似文献   

14.
α-Ketobutyrate decarboxylase encoded in the -methionine catabolism operon of Pseudomonas putida is homologous with the E1 component of pyruvate dehydrogenase complex from gram-negative bacteria. The enzyme was purified to homogeneity from the cell extract of an Escherichia coli transformant. The purified enzyme was homodimeric with a subunit of Mr 93,000 on SDS-PAGE. The enzyme activity was activated by the addition of both thiamine pyrophosphate (TPP) and a divalent cation, such as Mg2+, Mn2+, and Co2+. The enzyme showed high activity for α-ketobutyrate and α-keto-n-valerate rather than pyruvate, but the α-keto acids with increasing length of the side chain as well as branching, such as α-keto-n-caproate and α-keto-3-methylvalerate, were not used by the enzyme. The Km values for α-ketobutyrate and pyruvate were 0.016 and 0.147 mM, respectively, and the kcat/Km value (10.69 s−1 mM−1) for α-ketobutyrate was 29-fold greater than that for pyruvate. Thus, α-ketobutyrate decarboxylase is distinguished from the pyruvate dehydrogenase E1 component with respect to the substrate specificity, although their structural and enzymological properties were similar. These results suggest that the unique substrate specificity of α-ketobutyrate decarboxylase is due to a slight difference in the highly conserved active sites of both enzymes.  相似文献   

15.
A reliable and reproducible assay was developed for measuring mitochondrial α-keto acid decarboxylase activity using ferricyanide as the electron acceptor. This method permitted the functional isolation and investigation of the decarboxylase step of the branched-chain α-keto acid dehydrogenases in rat liver mitochondria. Pyruvate and α-ketoglutarate decarboxylases are known to be separate and distinct enzymes from the branched-chain α-keto acid decarboxylases and were studied as controls. The relative specific activities of rat liver mitochondrial decarboxylases as measured by the ferricyanide assay showed that pyruvate and α-ketoglutarate were decarboxylated twice as rapidly as α-ketoisovalerate and four to ten times as fast as α-keto-β-methylvalerate and α-ketoisocaproate. The three branched-chain α-keto acids individually inhibit pyruvate and α-ketoglutarate decarboxylases. Inactivation of mitochondrial branched-chain α-keto acid decarboxylase activity by freezing and thawing and by prolonged storage resulted in a proportional decrease in decarboxylase activity toward each of the three branched-chain α-keto acids. However, hypophysectomy was found to increase decarboxylase activity with α-keto-β-methylvalerate to four times normal and with α-ketoisovalerate to three times normal, but the activity with α-ketoisocaproate was not changed. Hypophysectomy did not alter mitochondrial decarboxylase activity with pyruvate, α-ketoglutarate, or α-ketovalerate. The finding that hypophysectomy differentially alters the mitochondrial decarboxylase activity with the three branched-chain α-keto acids suggests either that there is more than one substrate-specific enzyme with branched-chain α-keto acid decarboxylase activity or that there is a modification of one enzyme such that the catalytic activity is selectively altered toward the three substrates.  相似文献   

16.
Rat kidneys were perfused for 30 min with a Krebs-Henseleit bicarbonate buffer with 5 mM glucose. Albumin proved superior to pluronic polyols as oncotic agent with regard to carnitine reabsorption in the perfused kidney. The reabsorption of 30 μM (−)-[methyl-3H]carnitine was approx. 96% during the first 10 min. At 750 μM the reabsorption decreased to 40%. The tubular reabsorptive maximum (Tmax) was approx. 170 nmol/min per kidney. The fractional reabsorption and clearance of (+)-carnitine, γ-butyrobetaine, and carnitine esters did not deviate significantly from that of (−)-carnitine. (+)-Carnitine was not metabolized by the perfused kidney. In perfusions with (−)-carnitine or (−)-carnitine plus 10 mM α-ketoisocaproate or α-ketoisovalerate increased amounts of acetylcarnitine, isovalerylcarnitine and isobutyrylcarnitine were found. Propionate (5 mM) inhibited acetylcarnitine formation. Isovalerylcarnitine, isobutyrylcarnitine and propionylcarnitine were actively degraded to free (−)-carnitine. In urine, we found a disproportionally high excretion of carnitine or carnitine esters formed in the kidney, compared to the same derivatives when ultrafiltrated. Leakage of metabolites formed in the kidney into preurine may explain this phenomenon.  相似文献   

17.
Summary To establish an efficient production method for l-phenylalanine, the production of l-phenylalanine from phenylpyruvate by Paracoccus denitrificans pFPr-1 containing aminotransferase activity was investigated. By using intact cells, 0.74M l-phenylalanine was produced from 0.8M phenylpyruvate (conversion yield, 92.5%). Moreover, by using immobilized cells with -carrageenan, when the space velocity was 0.1 h-1 at 30°C, 0.135 M l-phenylalanine was produced from 0.15 M phenylpyruvate (conversion yield, 90%). The half-life of the l-phenylalanine-forming activity of the column was estimated to be about 30 days at 30°C.  相似文献   

18.
1. L-Glutamine markedly enhances insulin release evoked in rat pancreatic islets by 2-ketoisocaproate or 2-ketocaproate. L-Glutamine exerts a lesser enhancing action in the presence of 2-ketovalerate or 2-ketoisovalerate, which are themselves poor insulin secretagogues. L-Glutamine fails to affect insulin release in the presence of 2- ketobutyrate, pyruvate and β-hydroxybutyrate. 2. The relase of insulin evoked by the combination of L-glutamine and 2-ketoisocaproate represents a sustained phenomenon. It coincides with a stimulation of 45Ca net uptake by the islets, and is inhibited in the absence of extracellular Ca2+ and presence of either menadione or epinephrine. 3. L-Valine inhibits insulin releaseevoked by either 2-ketoisocaproate or 2-ketocaproate, whether in the presence or absence of L-glutamine, but does not abolish the enhancing action of L-glutamine. L-Valine fails to affect insulin release evoked by the combination of L-leucine and L-glutamine. 4. L-Isoleucine also inhibits 2-keto acid-induced insulin release. However, in contrast to L-valine, L-isoleucine fails to affect or slightly augments insulin release in the simultaneous presence of L-glutamine and either 2-ketoisocaproate or 2-ketocaproate. 5. L-Leucine causes a dose-related enhancement of insulin release evoked by the combination of 2-ketoisocaproate and L-glutamine. Likewise, in the presence of L-glutamine, L-leucine and 2-ketocaproate act synergistically upon insulin release. 6. The hypothesis is advances that the enhancing action of L-glutamine upon 2-keto acid-stimulated insulin release depends on the availability of the 2-keto acid to act as a partner in the conversion of L-glutamate derived from exogenous L-glutamine to 2-ketoglutarate by transamination reaction, rather than being attributable to activation of glutamate dehydrogenase as observed in islets exposed to both L-glutamine and L-leucine.  相似文献   

19.
A high-pressure liquid chromatographic method for the measurement of short- and medium-chain-length acyl-CoA compounds is described. Compounds are separated on a reverse-phase μBondapak C18 column with the order of elution based on differences in lipophilicity. The mobile phase consisted of variable mixtures of methanol and 50 mm KH2PO4, pH 5.3. Conditions are described that allow isocratic separation of groups of compounds of similar lipophilicity. With increasing methanol concentration, the more lipophilic compounds are eluted earlier. This has the effect of sharpening the peaks and improving quantitation. Detection of acyl-CoA intermediates is achieved using a uv detector and is based on the high absorbance of CoA-containing compounds at 254 nm. Neutralized perchloric acid extracts of tissues can thus be analyzed directly without further purification or derivatization. A mobile phase consisting of a 9:1 phosphate buffer-to-methanol mixture is used to separate CoASH, methylmalonyl-CoA, succinyl-CoA, β-hydroxy-β-methylglutaryl-CoA and acetyl-CoA. Increasing the methanol concentration to a 4:1 mixture allows separation of acetyl-CoA, propionyl-CoA, and isobutyryl-CoA, while with a 7:3 mixture of phosphate buffer to methanol, β-methylcrotonyl-CoA and isovaleryl-CoA are readily separated. Examples of results obtained using extracts from isolated hepatocytes, rat liver mitochondria, and perfused rat hearts incubated with α-ketoisocaproate, α-ketoisovalerate, or propionate are presented. In addition, methods and optimal conditions are presented for the analysis of malonyl-CoA, glutathione-CoA, dephospho-CoA, and oxidized CoA in tissue extracts.  相似文献   

20.
Summary For production of l-phenylalanine the reductive amination of phenylpyruvate, catalyzed by phenylalanine-dehydrogenase was examined. To reach high levels and a sufficient stability of the inducible intracellular enzyme, growth conditions of Brevibacterium sp. are optimized. For continuous production of l-phenylalanine in an enzyme membrane reactor, the kinetic parameters of the partially purified enzyme are determined.In continuous production a space time yield of 37.4 g l-Phe l-1 d-1 can be reached.By means of the measured kinetic parameters and simultaneous calculation of the mass balances of all reaction components the behaviour of the reactor can be simulated. For certain conditions the multi-enzyme-system shows multiple steady-states.Abbreviations l-phe l-phenylalanine - phepy phenylpyruvate - PEG polyethylenglycol - pheDH l-phenylalanine dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号