首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Y Lee 《Biochemistry》1988,27(14):5188-5193
The subunit structures of a number of human placenta DNA polymerase delta preparations were investigated by Western blotting with polyclonal antisera and by activity staining following polyacrylamide gel electrophoresis. When immunoblots and activity stains were performed on different enzyme preparations, putative catalytic subunits of (a) 170, (b) 120, or (c) 50-70 kilodaltons (kDa) were observed. It was also observed that the lower molecular weight forms could be generated upon storage of the preparations. Western blotting of human placental tissue extracts showed that the major immunoreactive polypeptide was 160-170 kDa. Treatment of the extracts with trypsin or Staphylococcus aureus V8 protease led to the generation of immunoreactive polypeptides of lower molecular weights. These studies suggest that the 120-kDa and lower forms of the enzyme are generated via uncontrolled proteolysis and provide a rationale for the observation of different apparent subunit structures previously reported for DNA polymerase delta. In addition, these findings suggest that DNA polymerase delta has a catalytic domain which resides in a protease-resistant domain.  相似文献   

2.
DNA polymerase delta: one polypeptide, two activities   总被引:17,自引:0,他引:17  
L P Goscin  J J Byrnes 《Biochemistry》1982,21(10):2513-2518
DNA polymerase delta from rabbit bone marrow has an associated 3'-5'-exonuclease. Previous studies demonstrated a Stokes radius of 45.5 A by gel filtration and a sedimentation coefficient of 6.5 S by zone sedimentation. Thus, a molecular weight of 122000 and a frictional coefficient of 1.39 were calculated [Byrnes, J. J., & Black, V. L. (1978) Biochemistry 17, 4226-4231]. Several problems obstructed further purification and definition of DNA polymerase delta. The small amount of protein obtained limited further purification as the nonspecific loss of enzyme in subsequent procedures was excessive. Furthermore, the amount of protein recovered was insufficient for conventional analysis. These difficulties have been overcome, and DNA polymerase delta has been purified to apparent homogeneity. Under conditions of nondenaturing microgel electrophoresis, DNA polymerase b aggregates to molecular weight species of 300000 and higher. In situ assays for DNA polymerase and exonuclease in these gels generate concordant activity profiles. Upon sodium dodecyl sulfate gel electrophoresis, delta is a single polypeptide of 122000 apparent molecular weight. The DNA polymerase incorporates between 250000 and 300000 nmol of thymidine deoxyribonucleoside monophosphate (dTMP) into poly(dA)/oligo(dT) (mg of protein)-1 h-2 at 37 degrees C; the exonuclease simultaneously hydrolyzes 13% of the newly synthesized DNA. Aphidicolin, considered to be a specific inhibitor of DNA polymerase alpha, inhibits both the DNA polymerase and 3'-5'-exonuclease activities of delta. DNA polymerase alpha from rabbit bone marrow does not share a common subunit with delta. Therefore, aphidicolin binding is not specific for alpha, and conclusions based upon the supposition that it is must be reconsidered.  相似文献   

3.
A panel of murine hybridoma cell lines which produce antibodies against polypeptides present in human placental DNA polymerase delta preparations was developed. Eight of these antibodies were characterized by virtue of their ability to inhibit DNA polymerase delta activity and immunoblot the 170-kDa catalytic polypeptide. Six of these eight antibodies inhibit DNA polymerase delta but not DNA polymerase alpha, showing that the two proteins are distinct. However, the other two monoclonal antibodies inhibited both DNA polymerase delta and alpha activities, providing the first evidence that these two proteins have a structural relationship. In addition to antibodies against the catalytic polypeptide we also identified 11 antibodies which recognize 120-, 100-, 88-, 75-, 62-, 36-, and 22-kDa polypeptides in DNA polymerase delta preparations, suggesting that these proteins might be part of a replication complex. The antibody to the 36-kDa polypeptide was shown to be directed against proliferating cell nuclear antigen/cyclin. These antibodies should prove useful for studies aimed at distinguishing between DNA polymerases alpha and delta and for the investigation of the functional roles of DNA polymerase delta polypeptides.  相似文献   

4.
A thermophilic DNA polymerase has been purified to near homogeneity from the archaebacterium Thermoplasma acidophilum. Analysis of the purified enzyme by sodium dodecyl sulfate gel electrophoresis revealed a single polypeptide of 88 kDa which co-sediments with the DNA polymerase activity on sucrose gradients. Combination of sedimentation and gel filtration analyses indicates that this DNA polymerase is an 88-kDa monomeric enzyme in its native form. The DNA polymerase is resistant to aphidicolin, slightly sensitive to 2',3'-dideoxyribosylthymine triphosphate and inhibited by N-ethylmaleimide when preincubation with this reagent is performed at 65 degrees C. We find that a 3'----5' exonuclease activity is associated with the purified DNA polymerase; the two activities of the enzyme are optimal at 65 degrees C but the exonuclease activity is active in a broader range of lower temperatures and is more thermostable than the DNA polymerase activity.  相似文献   

5.
M Y Lee  C K Tan  K M Downey  A G So 《Biochemistry》1984,23(9):1906-1913
DNA polymerase delta from calf thymus has been purified to apparent homogeneity by a new procedure which utilizes hydrophobic interaction chromatography with phenyl-Sepharose at an early step to separate most of the calcium-dependent protease activity from DNA polymerase delta and alpha. The purified enzyme migrates as a single protein band on polyacrylamide gel electrophoresis under nondenaturing conditions. The sedimentation coefficient of the enzyme is 7.9 S, and the Stokes radius is 53 A. A molecular weight of 173K has been calculated for the native enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the homogeneous enzyme reveals two polypeptides of 125 and 48 kDa. This subunit structure differs from that of DNA polymerase delta prepared by our previous procedure, which was composed of subunits of 60 and 49 kDa [Lee, M. Y. W. T., Tan, C.-K., Downey , K. M., & So, A. G. (1981) Prog . Nucleic Acid Res. Mol. Biol. 26, 83-96], suggesting that the 60-kDa polypeptide may have been derived from the 125-kDa polypeptide during enzyme purification, possibly as the result of cleavage of an unusually sensitive peptide bond. DNA polymerase delta is separated from DNA polymerase alpha by hydrophobic interaction chromatography on phenyl-Sepharose; DNA polymerase delta is eluted at pH 7.2 and DNA polymerase alpha at pH 8.5. DNA polymerase delta can also be separated from DNA polymerase alpha by chromatography on hydroxylapatite; DNA polymerase alpha binds to hydroxylapatite in the presence of 0.5 M KCl, whereas DNA polymerase delta is eluted at 90 mM KCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
DNA polymerase epsilon, formerly known as a proliferating cell nuclear antigen-independent form of DNA polymerase delta, has been shown elsewhere to be catalytically and structurally distinct from DNA polymerase delta. The catalytic activity of HeLa DNA polymerase epsilon, an enzyme consisting of greater than 200- and 55-kDa polypeptides, was assigned to the larger polypeptide by polymerase trap reaction. This catalytic polypeptide was cleaved by incubation with trypsin into two polypeptide fragments with molecular masses of 122 and 136 kDa, the former of which was relatively resistant to further proteolysis and possessed the polymerase activity. The cleavage increased the polymerase and exonuclease activities of the enzyme some 2-3-fold. DNA polymerase epsilon was also purified in a smaller 140-kDa form from calf thymus. The digestion of this form of the enzyme by trypsin also generated a 122-kDa polypeptide. These results suggest that the catalytic core of DNA polymerase epsilon is a 258-kDa polypeptide that is composed of two segments linked with a protease-sensitive area. One of the segments harbors both DNA polymerase and 3'----5' exonuclease activities. In spite of the different polypeptide structures, the catalytic properties of the HeLa enzyme, its trypsin-digested form, and the calf thymus enzyme remained essentially the same.  相似文献   

7.
We have purified yeast DNA polymerase II to near homogeneity as a 145-kDa polypeptide. During the course of this purification we have detected and purified a novel form of DNA polymerase II that we designate as DNA polymerase II. The most highly purified preparations of DNA polymerase II are composed of polypeptides with molecular masses of 200, 80, 34, 30, and 29 kDa. Immunological analysis and peptide mapping of DNA polymerase II and the 200-kDa subunit of DNA polymerase II indicate that the 145-kDa DNA polymerase II polypeptide is derived from the 200-kDa polypeptide of DNA polymerase II. Activity gel analysis shows that the 145- and the 200-kDa polypeptides have catalytic function. The polypeptides present in the DNA polymerase II preparation copurify with the polymerase activity with a constant relative stoichiometry during chromatography over five columns and co-sediment with the activity during glycerol gradient centrifugation, suggesting that this complex may be a holoenzyme form of DNA polymerase II. Both forms of DNA polymerase II possess a 3'-5' exonuclease activity that remains tightly associated with the polymerase activity during purification. DNA polymerase II is similar to the proliferating cell nuclear antigen (PCNA)-independent form of mammalian DNA polymerase delta in its resistance to butylpheny-dGTP, template specificity, stimulation of polymerase and exonuclease activity by KCl, and high processivity. Although calf thymus PCNA does not stimulate the activity of DNA polymerase II on poly(dA):oligo(dT), possibly due to the limited length of the template, the high processivity of yeast DNA polymerase II on this template can be further increased by the addition of PCNA, suggesting that conditions may exist for interactions between PCNA and yeast DNA polymerase II.  相似文献   

8.
C D Lu  J J Byrnes 《Biochemistry》1992,31(49):12403-12409
Proliferating cell nuclear antigen (PCNA) and PCNA-dependent DNA polymerase delta were partially purified and characterized from rabbit bone marrow. Rabbit DNA polymerase delta sediments at 8.2 S upon glycerol density gradient centrifugation. Similar to calf thymus PCNA-dependent DNA polymerase delta, a 125-123-kDa doublet and 48-kDa polypeptides correlate with DNA polymerase activity. Western blotting of rabbit DNA polymerase delta with polyclonal antibody to calf thymus PCNA-dependent DNA polymerase delta gives the same results as calf thymus delta; the 125-123-kDa doublet is recognized. PCNA-dependent DNA polymerase delta is resistant to inhibition by dideoxynucleotides and is relatively insensitive to inhibition by N2-[p-(n-butyl)phenyl]dGTP. A 3'-->5' exonuclease copurifies with the DNA polymerase. The processivity of DNA polymerase delta alone is very low but greatly increases with the addition of PCNA from rabbit bone marrow or calf thymus. Comparative studies of the original DNA polymerase delta from rabbit bone marrow demonstrate a lack of recognition by antibodies to calf thymus delta and a high degree of processivity in the absence of PCNA. Additionally, the originally described DNA polymerase delta is a single polypeptide of 122 kDa. These features would recategorize the original delta to the epsilon category by recently proposed convention. PCNA-dependent DNA polymerase delta is a relatively minor component of rabbit bone marrow compared to DNA polymerase alpha and PCNA-independent DNA polymerase delta (epsilon), the relative proportions being alpha, 60%; delta, 7%; and epsilon, 30%.  相似文献   

9.
Isolation of the DNA polymerase alpha core enzyme from mouse cells   总被引:2,自引:0,他引:2  
DNA polymerase alpha has been purified from mouse hybridoma cells approximately 30,000-fold using a combination of conventional and high performance liquid chromatography. In contrast to previous characterizations of mammalian DNA polymerase alpha, this enzyme has a single high molecular mass polypeptide (185 kDa) in tight association with a 68-kDa polypeptide and this structure appears to be the core DNA polymerase of the mouse cells. The biochemically purified enzyme, with a specific activity of approximately 200,000 units/mg protein, has an estimated molecular mass by gel filtration chromatography of 240 kDa and sedimentation value of 9 S, consistent with the enzyme being a heterodimer of 185 and 68 kDa. The enzyme is sensitive to both N-ethylmaleimide and aphidicolin and insensitive to ddTTP. Using an activated DNA template, the apparent Km values for the deoxynucleotide triphosphates are approximately 0.5-1 microM. The purified DNA polymerase has neither exonuclease nor primase activities and is the predominant DNA polymerase alpha activity in the mouse cells.  相似文献   

10.
We have purified to near homogeneity a DNA polymerase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Sodium dodecyl sulfate gel electrophoresis of the purified enzyme revealed a polypeptide of 100 kDa. On the basis of a Stokes radius of 4.2 nm and a sedimentation coefficient of 6 S, the purified enzyme has an estimated molecular mass of 109 kDa. These results are consistent with the enzyme being a monomer of 100 kDa. In addition a polyclonal antiserum, obtained by injection of the electroeluted 100-kDa polypeptide into a rabbit, specifically neutralized the DNA-polymerase activity. The enzyme is sensitive to both N-ethylmaleimide and 2',3'-dideoxyribosylthymine triphosphate and resistant to aphidicolin. The purified DNA polymerase has neither exonuclease nor primase activities. In our in vitro conditions, the enzyme is thermostable up to 80 degrees C and is active between 55 degrees C and 85 degrees C in the presence of activated calf-thymus DNA.  相似文献   

11.
Studies in eucaryotic cells (mainly animals and yeast) indicate that at least two DNA polymerases are involved in DNA replication at the level of the replication fork: DNA polymerase alpha, which is associated with DNA primase, is involved in the replication of the lagging strand; DNA polymerase delta, associated with an exonuclease activity, synthesizes the forward continuous DNA strand. Much less information exists concerning plant systems. Previous work from this laboratory provided preliminary evidence of an association between DNA polymerase B from wheat embryo and an exonucleolytic activity. In this paper, we present additional data on the biochemical properties of DNA polymerase B. An improved purification procedure described in this article has been developed. During all the purification steps the nuclease activity was associated with DNA polymerase activity. A biochemical study of this enzyme activity shows that it is an exonuclease which hydrolyses DNA in the 3' to 5' direction. Moreover, this exonuclease confers a proofreading function to DNA polymerase B. Comparison of DNA polymerase B properties (template specificity, sensitivity to DNA replication inhibitors like aphidicolin and butyl-phenyl dGTP, copurification of DNA polymerase and exonuclease activities) with those of animal DNA polymerase delta indicates that these enzymes share many common features. To our knowledge, this is the first report of DNA polymerase delta in higher plants.  相似文献   

12.
J Zhang  D W Chung  C K Tan  K M Downey  E W Davie  A G So 《Biochemistry》1991,30(51):11742-11750
The 125- and 48-kDa subunits of bovine DNA polymerase delta have been isolated by SDS-polyacrylamide gel electrophoresis and demonstrated to be unrelated by partial peptide mapping with N-chlorosuccinimide. A 116-kDa polypeptide, usually present in DNA polymerase delta preparations, was shown to be a degraded form of the 125-kDa catalytic subunit. Amino acid sequence data from Staphylococcus aureus V8 protease, cyanogen bromide, and trypsin digestion of the 125- and 116-kDa polypeptides were used to design primers for the polymerase chain reaction to determine the nucleotide sequence of a full-length cDNA encoding the catalytic subunit of bovine DNA polymerase delta. The predicted polypeptide is 1106 amino acids in length with a calculated molecular weight of 123,707. This is in agreement with the molecular weight of 125,000 estimated from SDS-polyacrylamide gel electrophoresis. Comparison of the deduced amino acid sequence of the catalytic subunit of bovine DNA polymerase delta with that of its counterpart from Saccharomyces cerevisiae showed that the proteins are 44% identical. The catalytic subunit of bovine DNA polymerase delta contains the seven conserved regions found in a number of bacterial, viral, and eukaryotic DNA polymerases. It also contains five additional regions that are highly conserved between bovine and yeast DNA polymerase delta, but these regions share little or no homology with the alpha polymerases. Four of these additional regions are also highly homologous to the herpes virus family of DNA polymerases, whereas one region is not homologous to any other DNA polymerase that has been sequenced thus far.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
alpha-like and beta-like DNA polymerases have previously been isolated from a halophilic archaebacterium Halobacterium halobium. In this report, we show that the alpha-like DNA polymerase has an associated 3' to 5'-exonuclease activity which is specific for single-stranded DNA, sensitive to both aphidicolin and N-ethylmaleimide and dependent on high salt concentrations like the polymerase activity. As this DNA polymerase has been shown to contain a primase activity, it may be considered as the equivalent to both eukaryotic DNA polymerases alpha and delta. As shown by glycerol-gradient centrifugation and electrophoresis under denaturing conditions, the beta-like polymerase would appear to have a monomeric structure and comprise of a single 65-kDa polypeptide. This DNA polymerase has both 3' to 5'-exonuclease and 5' to 3'-exonuclease activities which, contrary to polymerase activity, are inhibited by high salt concentrations.  相似文献   

14.
The vaccinia virus-induced DNA polymerase has been purified about 500-fold from a cytoplasmic extract of vaccinia-infected HeLa cells. Analysis of the purified fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals a single polypeptide of 110,000 daltons, which is greater than 95% pure. This polypeptide co-sediments with polymerase activity through a glycerol gradient. The sedimentation coefficient of the enzyme is 6.3 S, and its Stokes radius is 4.6 nm. The molecular weight of the native enzyme derived from these values is 115,000. Vaccinia polymerase is therefore a single large polypeptide of 110,000 to 115,000 daltons. The purified fraction has no significant endonuclease activity, but a strong exonuclease activity co-purifies with polymerase activity through every step in the isolation. The polymerase and exonuclease activities are inactivated at 45 degrees C at the same rate. It is likely, therefore, that both activities are catalyzed by the same polypeptide. The exonuclease hydrolyzes DNA predominantly in the 3' leads to 5' direction, to produce 5' mononucleotides. The exonuclease degrades single-stranded DNA more rapidly than duplex DNA, and the rate of digestion of both single-stranded and double-stranded DNA increases as the size of the substrate decreases. Single-stranded circular DNA is a potent inhibitor of the exonuclease activity, but duplex circular DNA has no significant effect on its activity.  相似文献   

15.
Thermus aquaticus DNA polymerase was shown to contain an associated 5' to 3' exonuclease activity. Both polymerase and exonuclease activities cosedimented with a molecular weight of 72,000 during sucrose gradient centrifugation. Using a novel in situ activity gel procedure to simultaneously detect these two activities, we observed both DNA polymerase and exonuclease in a single band following either nondenaturing or denaturing polyacrylamide gel electrophoresis: therefore, DNA polymerase and exonuclease activities reside in the same polypeptide. As determined by SDS-polyacrylamide gel electrophoresis this enzyme has an apparent molecular weight of 92,000. The exonuclease requires a divalent cation (MgCl2 or MnCl2), has a pH optimum of 9.0 and excises primarily deoxyribonucleoside 5'-monophosphate from double-stranded DNA. Neither heat denatured DNA nor the free oligonucleotide (24-mer) were efficient substrates for exonuclease activity. The rate of hydrolysis of a 5'-phosphorylated oligonucleotide (24-mer) annealed to M13mp2 DNA was about twofold faster than the same substrate containing a 5'-hydroxylated residue. Hydrolysis of a 5'-terminal residue from a nick was preferred threefold over the same 5'-end of duplex DNA. The 5' to 3' exonuclease activity appeared to function coordinately with the DNA polymerase to facilitate a nick translational DNA synthesis reaction.  相似文献   

16.
C A Keim  D W Mosbaugh 《Biochemistry》1991,30(46):11109-11118
Spinach chloroplast DNA polymerase was shown to copurify with a 3' to 5' exonuclease activity during DEAE-cellulose, hydroxylapatite, and heparin-agarose column chromatography. In addition, both activities comigrated during nondenaturing polyacrylamide gel electrophoresis and cosedimented through a glycerol gradient with an apparent molecular weight of 105,000. However, two forms of exonuclease activity were detected following velocity sedimentation analysis. Form I constituted approximately 35% of the exonuclease activity and was associated with the DNA polymerase, whereas the remaining activity (form II) was free of DNA polymerase and exhibited a molecular weight of approximately 26,500. Resedimentation of form I exonuclease generated both DNA polymerase associated and DNA polymerase unassociated forms of the exonuclease, suggesting that polymerase/exonuclease dissociation occurred. The exonuclease activity (form I) was somewhat resistant to inhibition by N-ethylmaleimide, whereas the DNA polymerase activity was extremely sensitive. Using in situ detection following SDS-polyacrylamide activity gel electrophoresis, both form I and II exonucleases were shown to reside in a similar, if not identical, polypeptide of approximately 20,000 molecular weight. Both form I and II exonucleases were equally inhibited by NaCl and required 7.5 mM MgCl2 for optimal activity. The 3' to 5' exonuclease excised deoxyribonucleoside 5'-monophosphates from both 3'-terminally matched and 3'-terminally mismatched primer termini. In general, the exonuclease preferred to hydrolyze mismatched 3'-terminal nucleotides as determined from the Vmax/Km ratios for all 16 possible combinations of matched and mismatched terminal base pairs. These results suggest that the 3' to 5' exonuclease may be involved in proofreading errors made by chloroplast DNA polymerase.  相似文献   

17.
F W Perrino  L A Loeb 《Biochemistry》1990,29(22):5226-5231
Purified DNA polymerase alpha, the major replicating enzyme found in mammalian cells, lacks an associated 3'----5' proofreading exonuclease that, in bacteria, contributes significantly to the accuracy of DNA replication. Calf thymus DNA polymerase alpha cannot remove mispaired 3'-termini, nor can it extend them efficiently. We designed a biochemical assay to search in cell extracts for a putative proofreading exonuclease that might function in concert with DNA polymerase alpha in vivo but dissociates from it during purification. Using this assay, we purified a 3'----5' exonuclease from calf thymus that preferentially hydrolyzes mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by DNA polymerase alpha. This exonuclease copurifies with a DNA polymerase activity that is biochemically distinct from DNA polymerase alpha and exhibits characteristics described for a second replicative DNA polymerase, DNA polymerase delta. In related studies, we showed that the 3'----5' exonuclease of authentic DNA polymerase delta, like the purified exonuclease, removes terminal mispairs, allowing extension by DNA polymerase alpha. These data suggest that a single proofreading exonuclease could be shared by DNA polymerases alpha and delta, functioning at the site of DNA replication in mammalian cells.  相似文献   

18.
The DNase that is associated with a multiprotein form of HeLa cell DNA polymerase alpha (polymerase alpha 2) has two distinct exonuclease activities: the major activity initiates hydrolysis from the 3' terminus and the other from the 5' terminus of single-stranded DNA. The two exonuclease activities show identical rates of thermal inactivation and coincidental migration during chromatofocusing, glycerol gradient centrifugation, and nondenaturing polyacrylamide gel electrophoresis of the DNase. Moreover, the purified DNase shows a single protein band of Mr 69,000 following nondenaturing polyacrylamide and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 3'----5' exonuclease activity hydrolyzes only single-stranded DNA substrates and the products are 5' mononucleotides. This activity recognizes and excizes mismatched bases at the 3' terminus of double-stranded DNA substrates. The 3'----5' exonuclease does not hydrolyze 3' phosphoryl terminated single-stranded DNA substrates. The 5'----3' exonuclease activity also only hydrolyzes single-stranded DNA substrates. The rate of hydrolysis, however is only about 1/25th the rate of the 3'----5' exonuclease. This exonuclease activity requires a 5' single-stranded terminus in order to initiate hydrolysis and does not proceed into double-stranded regions. The products of hydrolysis by 5'----3' exonuclease are also 5' nucleoside monophosphates.  相似文献   

19.
The human DNA polymerase alpha catalytic polypeptide has been functionally overexpressed by a recombinant baculovirus in insect cells at greater than 1000-fold higher levels than that found in cultured normal human cells. The recombinant polymerase alpha protein is translated from its natural translation start codon under the control of the baculovirus polyhedron promoter producing a protein of 180 kDa, identical in size to that isolated from cultured human cells. This recombinant polymerase alpha is phosphorylated and reactive to a panel of monoclonal antibodies directed against the native polymerase alpha-primase complex and to polyclonal antisera against N- and C-terminal peptides of the polymerase alpha catalytic polypeptide. The recombinant enzyme was immunopurified from insect cells as a single polypeptide. The single subunit recombinant polymerase alpha has no detectable 3'-5' exonuclease activity. The Km for primer-template and dNTP, reactivity to inhibitors, N2-(p-n-butylphenyl)-dGTP (BuPdGTP) and aphidicolin, thermosensitivity, and DNA synthetic processivity and fidelity of the recombinant polymerase alpha are identical to that observed with the four-subunit polymerase alpha-primase complex immunopurified from cultured human cells. These results strongly suggest that the presence of the other subunits, (the p70 and the two primase subunits, p48 and p58), does not influence kinetic parameters of polymerase alpha catalysis, sensitivity to inhibitors, or DNA synthetic fidelity and processivity.  相似文献   

20.
The use of 5'-AMP as a ligand for the affinity chromatography of DNA polymerases with intrinsic 3' to 5' exonuclease activities was investigated. The basis for this is that 5'-AMP would be expected to act as a ligand for the associated 3' to 5' exonuclease. The requirements for binding of Escherichia coli DNA polymerase I, T4 DNA polymerase, and calf thymus DNA polymerase delta, all of which have associated 3' to 5' exonuclease activities, to several commercially available 5'-AMP supports with different linkages of 5'-AMP to either agarose or cellulose were examined. The DNA polymerases which possessed 3' to 5' exonuclease activities were bound to agarose types in which the 5'-phosphoryl group and the 3'-hydroxyl group of the AMP were unsubstituted. Bound enzyme could be eluted by either an increase in ionic strength or competitive binding of nucleoside 5'-monophosphates. Magnesium was found to reinforce the binding of the enzyme to these affinity supports. DNA polymerase alpha, which does not have an associated 3' to 5' exonuclease activity, did not bind to any of these columns. These differences can be used to advantage for the purification of DNA polymerases that have associated 3' to 5' exonuclease activities, as well as a means for establishing the association of 3' to 5' exonuclease activities with DNA polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号