首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA polymerase delta: one polypeptide, two activities   总被引:17,自引:0,他引:17  
L P Goscin  J J Byrnes 《Biochemistry》1982,21(10):2513-2518
DNA polymerase delta from rabbit bone marrow has an associated 3'-5'-exonuclease. Previous studies demonstrated a Stokes radius of 45.5 A by gel filtration and a sedimentation coefficient of 6.5 S by zone sedimentation. Thus, a molecular weight of 122000 and a frictional coefficient of 1.39 were calculated [Byrnes, J. J., & Black, V. L. (1978) Biochemistry 17, 4226-4231]. Several problems obstructed further purification and definition of DNA polymerase delta. The small amount of protein obtained limited further purification as the nonspecific loss of enzyme in subsequent procedures was excessive. Furthermore, the amount of protein recovered was insufficient for conventional analysis. These difficulties have been overcome, and DNA polymerase delta has been purified to apparent homogeneity. Under conditions of nondenaturing microgel electrophoresis, DNA polymerase b aggregates to molecular weight species of 300000 and higher. In situ assays for DNA polymerase and exonuclease in these gels generate concordant activity profiles. Upon sodium dodecyl sulfate gel electrophoresis, delta is a single polypeptide of 122000 apparent molecular weight. The DNA polymerase incorporates between 250000 and 300000 nmol of thymidine deoxyribonucleoside monophosphate (dTMP) into poly(dA)/oligo(dT) (mg of protein)-1 h-2 at 37 degrees C; the exonuclease simultaneously hydrolyzes 13% of the newly synthesized DNA. Aphidicolin, considered to be a specific inhibitor of DNA polymerase alpha, inhibits both the DNA polymerase and 3'-5'-exonuclease activities of delta. DNA polymerase alpha from rabbit bone marrow does not share a common subunit with delta. Therefore, aphidicolin binding is not specific for alpha, and conclusions based upon the supposition that it is must be reconsidered.  相似文献   

2.
DNA polymerase delta: a second eukaryotic DNA replicase   总被引:2,自引:0,他引:2  
During the past few years significant progress has been made in our understanding of the structure and function of the proteins involved in eukaryotic DNA replication. Data from several laboratories suggest that, in contrast to prokaryotic DNA replication, two distinct DNA polymerases are required for eukaryotic DNA replication, i.e. DNA polymerase delta for the synthesis of the leading strand and DNA polymerase alpha for the lagging strand. Several accessory proteins analogous to prokaryotic replication factors have been identified and some of these are specific for pol delta whereas others affect both DNA replicases. The replicases and their accessory proteins appear to be highly conserved in eukaryotes, as homologous proteins have been found in species ranging from humans to yeast.  相似文献   

3.
E E Biswas  P E Joseph  S B Biswas 《Biochemistry》1987,26(17):5377-5382
The DNA primase from the yeast Saccharomyces cerevisiae has been purified 9200-fold to homogeneity. The yeast DNA primase is a monomeric protein of molecular weight 59,000, and under conditions described in this report, it is stable at 4 or -80 degrees C. The primase does not bind to DEAE-cellulose, is not inhibited by a high concentration of alpha-amanitin (4 mg/mL), and is capable of synthesizing small (up to 15 nucleotides in length) ribo or ribo-deoxy mixed initiator RNA primers. The primer synthesis is stimulated by ATP; however, other ribonucleotides could be replaced by deoxynucleotides without any measurable effect on the overall DNA synthesis. Thus, the purified primase is distinct from the RNA polymerases of S. cerevisiae. Immunoblot analysis of the polypeptides in a crude cell extract using a mouse polyclonal antibody prepared against the highly purified primase indicates that the 59-kilodalton polypeptide is the native form and not a degraded form of a larger polypeptide; however, primase is degraded rapidly to smaller polypeptides by yeast proteases especially in the absence of protease inhibitors.  相似文献   

4.
5.
DNA polymerases delta and alpha were purified from CV-1 cells, and their sensitivities to the inhibitors aphidicolin, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), and monoclonal antibodies directed against DNA polymerase alpha were determined. The effects of these inhibitors on DNA replication in permeabilized CV-1 cells were studied to investigate the potential roles of polymerases delta and alpha in DNA replication. Aphidicolin was shown to be a more potent inhibitor of DNA replication than of DNA polymerase alpha or delta activity. Inhibition of DNA replication by various concentrations of BuPdGTP was intermediate between inhibition of purified polymerase alpha or delta activity. Concentrations of BuPdGTP which totally abolished DNA polymerase alpha activity were much less effective in reducing DNA replication, as well as the activity of DNA polymerase delta. Monoclonal antibodies which specifically inhibited polymerase alpha activity reduced, but did not abolish, DNA replication in permeable cells. BuPdGTP, as well as anti-polymerase alpha antibodies, inhibited DNA replication in a nonlinear manner as a function of time. Depending upon the initial or final rates of inhibition of replication by BuPdGTP and anti-alpha antibodies, as little as 50%, or as much as 80%, of the replication activity can be attributed to polymerase alpha. The remaining replication activity (20-50%) is tentatively attributed to polymerase delta, because it was aphidicolin sensitive and resistant to both anti-polymerase alpha antibodies and low concentrations of BuPdGTP. A concentration of BuPdGTP which abolished polymerase alpha activity reduced, but did not abolish, both the synthesis and maturation of nascent DNA fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A panel of murine hybridoma cell lines which produce antibodies against polypeptides present in human placental DNA polymerase delta preparations was developed. Eight of these antibodies were characterized by virtue of their ability to inhibit DNA polymerase delta activity and immunoblot the 170-kDa catalytic polypeptide. Six of these eight antibodies inhibit DNA polymerase delta but not DNA polymerase alpha, showing that the two proteins are distinct. However, the other two monoclonal antibodies inhibited both DNA polymerase delta and alpha activities, providing the first evidence that these two proteins have a structural relationship. In addition to antibodies against the catalytic polypeptide we also identified 11 antibodies which recognize 120-, 100-, 88-, 75-, 62-, 36-, and 22-kDa polypeptides in DNA polymerase delta preparations, suggesting that these proteins might be part of a replication complex. The antibody to the 36-kDa polypeptide was shown to be directed against proliferating cell nuclear antigen/cyclin. These antibodies should prove useful for studies aimed at distinguishing between DNA polymerases alpha and delta and for the investigation of the functional roles of DNA polymerase delta polypeptides.  相似文献   

7.
DNA polymerase delta (Pol delta) isolated from Schizosaccharomyces pombe (sp) consists of at least four subunits, Pol3, Cdc1, Cdc27, and Cdm1. We have reconstituted the four-subunit complex by simultaneously expressing these polypeptides in baculovirus-infected insect cells. The properties of the purified cloned spPol delta were identical to the native spPol delta isolated from S. pombe cells. In addition, we also isolated a three-subunit complex containing Pol3, Cdc1, and Cdm1. Both three- and four-subunit complexes required replication factor C and proliferating cell nuclear antigen for DNA replication. However, in the presence of low levels of polymerase complexes, the three-subunit complex was less efficient than the four-subunit complex in supporting DNA replication. The inefficient synthesis of DNA by the three-subunit complex can be remedied by the addition of Cdc27, the subunit missing in the three-subunit complex. Gel filtration analysis demonstrated that the three-subunit complex is a monomer of the heterotrimer (Pol3, Cdc1, and Cdm1) and that the four-subunit complex is a dimer of the heterotetramer (Pol3, Cdc1, Cdc27, and Cdm1), similar to the structure of native spPol delta. We have further shown that Cdc1 and Cdc27 interact to form a heterodimeric complex. Gel filtration studies indicate that the structure of this complex is dimeric. These observations suggest that the Cdc27 subunit may play an important role contributing to the dimerization of Pol delta.  相似文献   

8.
The kinetics of nucleotide incorporation into 24/36-mer primer/template DNA by purified fetal calf thymus DNA polymerase (pol) delta was examined using steady-state and pre-steady-state kinetics. The role of the pol delta accessory protein, proliferating cell nuclear antigen (PCNA), on DNA replication by pol delta was also examined by kinetic analysis. The steady-state parameter k(cat) was similar for pol delta in the presence and absence of PCNA (0.36 and 0.30 min(-1), respectively); however, the K(m) for dNTP was 20-fold higher in the absence of PCNA (0.067 versus 1.2 microm), decreasing the efficiency of nucleotide insertion. Pre-steady-state bursts of nucleotide incorporation were observed for pol delta in the presence and absence of PCNA (rates of polymerization (k(pol)) of 1260 and 400 min(-1), respectively). The reduction in polymerization rate in the absence of PCNA was also accompanied by a 2-fold decrease in burst amplitude. The steady-state exonuclease rate of pol delta was 0.56 min(-1) (no burst, 10(3)-fold lower than the rate of polymerization). The small phosphorothioate effect of 2 for correct nucleotide incorporation into DNA by pol delta.PCNA indicated that the rate-limiting step in the polymerization cycle occurs prior to phosphodiester bond formation. A K(d)(dNTP) value of 0.93 microm for poldelta.dNTP binding was determined by pre-steady-state kinetics. A 5-fold increase in K(d)(DNA) for the pol delta.DNA complex was measured in the absence of PCNA. We conclude that the major replicative mammalian polymerase, pol delta, exhibits kinetic behavior generally similar to that observed for several prokaryotic model polymerases, particularly a rate-limiting step following product formation in the steady state (dissociation of oligonucleotides) and a rate-limiting step (probably conformational change) preceding phosphodiester bond formation. PCNA appears to affect pol delta replication in this model mainly by decreasing the dissociation of the polymerase from the DNA.  相似文献   

9.
We have partially purified a DNA methyltransferase from human placenta using a novel substrate for a highly sensitive assay of methylation of hemimethylated DNA. This substrate was prepared by extensive nick translation of bacteriophage XP12 DNA, which normally has virtually all of its cytosine residues replaced by 5-methylcytosine (m5C). Micrococcus luteus DNA was just as good a substrate if it was first similarly nick translated with m5dCTP instead of dCTP in the polymerization mixture. At different stages in purification and under various conditions (including in the presence or absence of high mobility group proteins), the methylation of m5C-deficient DNA and that of hemimethylated DNA were compared. Although hemimethylated , m5C-rich DNAs were much better substrates than were m5C-deficient DNAs and normal XP12 DNA could not be methylated, all of these DNAs were bound equally well by the enzyme. In contrast, from the same placental extract, a DNA-binding protein of unknown function was isolated which binds to m5C-rich DNA in preference to the analogous m5C-poor DNA.  相似文献   

10.
J Hu  R F Troxler    L Bogorad 《Nucleic acids research》1991,19(12):3431-3434
The 180-, 120- and 38-kDa polypeptides found in highly purified maize plastid RNA polymerase preparations are encoded by the maize plastid genes rpoC2, rpoB, and rpoA, respectively [Hu, J. and Bogorad, L. (1990) Proc. Natl. Acad. Sci. USA. 87, pp. 1531-1535]. These genes have segments that specify amino acid sequences homologous to those of E. coli RNA polymerase subunits. The plastid gene products are designated b", b and a, respectively. We report here that the amino-terminal amino acid sequence of a 78-kDa polypeptide also found in highly purified maize plastid RNA polymerase preparations matches precisely the sequence deduced from the maize plastid rpoC1 gene which has segments homologous to the 5' end of the E. coli rpoC gene. Thus, the 78-kDa polypeptide is likely to be a functional component of maize plastid DNA-dependent RNA polymerase. This polypeptide is designated subunit b'. Three polypeptides unrelated to RNA polymerase have also been identified in this preparation.  相似文献   

11.
12.
Identification of a fourth subunit of mammalian DNA polymerase delta   总被引:3,自引:0,他引:3  
A 12-kDa and two 25-kDa polypeptides were isolated with highly purified calf thymus DNA polymerase delta by conventional chromatography. A 16-mer peptide sequence was obtained from the 12-kDa polypeptide which matched a new open reading frame from a human EST () encoding a hypothetical protein of unknown function. The protein was designated as p12. Human EST was identified as the putative human homologue of Schizosaccharomyces pombe Cdm1 by a tBlastn search of the EST data base using S. pombe Cdm1. The open reading frame of human EST encoded a polypeptide of 107 amino acids with a predicted molecular mass of 12.4 kDa, consistent with the experimental findings. p12 is 25% identical to S pombe Cdm1. Both of the 25-kDa polypeptide sequences matched the hypothetical KIAA0039 protein sequence, recently identified as the third subunit of pol delta. Western blotting of immunoaffinity purified calf thymus pol delta revealed the presence of p125, p50, p68 (the KIAA0039 product), and p12. With the identification of p12 mammalian pol delta can now be shown to consist of four subunits. These studies pave the way for more detailed analysis of the possible functions of the mammalian subunits of pol delta.  相似文献   

13.
Twenty-three pyrophosphate analogues were screened as inhibitors of proliferating cell nuclear antigen independent DNA polymerase delta (pol delta) derived from calf thymus. Carbonyldiphosphonate (COMDP), also known as alpha-oxomethylenediphosphonate, inhibited pol delta with a potency (Ki = 1.8 microM) 20 times greater than that displayed for DNA polymerase alpha (pol alpha) derived from the same tissue. Characterization of the mechanism of inhibition of pol delta indicated that COMDP competed with the dNTP specified by the template and was not competitive with the template-primer. In the case of pol alpha, COMDP did not compete with either the dNTP or the polynucleotide substrate. COMDP inhibited the 3'----5' exonuclease activity of pol delta weakly, displaying an IC50 greater than 1 mM.  相似文献   

14.
Daube SS  Tomer G  Livneh Z 《Biochemistry》2000,39(2):348-355
Mutations caused by DNA damage lead to the development of cancer. The critical step in the formation of these mutations is the replication of unrepaired lesions in DNA by DNA polymerases, a process termed translesion replication. Using a newly developed method for preparation of gapped plasmids, containing a site-specific synthetic abasic site, we analyzed translesion replication with purified mammalian DNA polymerases delta and beta. DNA polymerase delta was found to be unable to replicate through the abasic site. Addition of the sliding DNA clamp PCNA, the clamp loader RFC, and ATP caused a drastic 30-fold increase in translesion replication. Thus, similar to Escherichia coli DNA polymerase III, the processivity accessory proteins enable DNA polymerase delta to bypass blocking lesions. Under comparable conditions, DNA polymerase beta was unable to bypass the abasic site, unless its concentration was greatly increased. Analysis of translesion replication products revealed a marked difference in the specificity of bypass: whereas 90% of bypass events by DNA polymerase delta holoenzyme involved insertion of a dAMP residue opposite the abasic site, DNA polymerase beta tended to skip over the abasic site, producing mainly minus frameshifts (73%). The significance of these results for in vivo translesion replication is discussed.  相似文献   

15.
In Saccharomyces cerevisiae, POL3 encodes the catalytic subunit of DNA polymerase delta. While yeast POL3 mutant strains that lack the proofreading exonuclease activity of the polymerase have a strong mutator phenotype, little is known regarding the role of other Pol3p domains in mutation avoidance. We identified a number of pol3 mutations in regions outside of the exonuclease domain that have a mutator phenotype, substantially elevating the frequency of deletions. These deletions appear to reflect an increased frequency of DNA polymerase slippage. In addition, we demonstrate that reduction in the level of wild-type DNA polymerase results in a similar mutator phenotype. Lowered levels of DNA polymerase also result in increased sensitivity to the DNA-damaging agent methyl methane sulfonate. We conclude that both the quantity and the quality of DNA polymerase delta is important in ensuring genome stability.  相似文献   

16.
目的构建HBVDNAPTP1基因的原核表达载体,诱导其在大肠埃希菌中表达,并对融合蛋白进行纯化。方法利用逆转录-PCR获得乙型肝炎病毒(HBV)DNA聚合酶(Polymerase)反式调节人类新基因HBVD-NAPTP1,测序正确后插入至原核表达载体pET-32a(+)中,转化BL21(DE3)宿主菌进行诱导,并利用组氨酸亲和层析方法对融合蛋白进行纯化。结果 HBVDNAPTP1原核表达载体转化宿主菌后,经0.5 mmol/L IPTG、30℃诱导5 h获得了分子量约为31 kD的HBVDNAPTP1融合蛋白的优化表达,Western blotting证实融合蛋白的特异性。亲和层析纯化后得到较纯的HBVDNAPTP1融合蛋白,每升培养菌液中可获得2.24 mg的纯化蛋白。结论成功获得纯化的HBVDNAPTP1融合蛋白,为今后开展HBVDNAPTP1的生物学功能研究奠定了物质基础。  相似文献   

17.
DNA polymerase delta was purified from human placenta and its polymerase catalytic subunit identified as a 125-kDa polypeptide by activity staining. This 125-kDa form of DNA polymerase delta resembles that reported from calf thymus (Lee, M. Y. W. T., Tan, C.-K., Downey, K. M., and So, A. G. (1984) Biochemistry 23, 1906-1913) and differs in molecular properties from a previously described form isolated from human placenta (Lee, M. Y. W. T., and Toomey, N. L. (1987) Biochemistry 26, 1076-1085) and now referred to as DNA polymerase epsilon. The properties of DNA polymerase delta were further investigated to determine its relationships with DNA polymerase epsilon. The two enzymes differed in their response to proliferating cell nuclear antigen. Monoclonal antibodies against DNA polymerase delta were raised and used to examine its immunochemical relationships with DNA polymerase alpha and epsilon. These studies provided evidence that all three proteins are structurally distinct but share a common epitope(s). Immunofluorescence microscopy indicates that DNA polymerase delta and possibly also DNA polymerase epsilon are localized to the nucleus.  相似文献   

18.
19.
The p-n-butylphenyl- and p-n-butylanilino- substituted analogs of dGTP and dATP, respectively, were tested as inhibitors of purified human placental DNA polymerases alpha and delta. It was observed that DNA polymerase alpha activity was potently inhibited by these analogs with I0.5 values as low as the nanomolar range, whereas DNA polymerase delta activity was poorly inhibited, with I0.5 values of ca. 100 micromolar. These results argue for a distinct identity of these two enzymes, and demonstrate the usefulness of these analogs as probes of DNA polymerase structures. In addition, these analogs provide a rapid method for the discrimination of the two enzyme activities and a means for the selective assay of DNA polymerase delta. Aphidicolin inhibited both DNA polymerases.  相似文献   

20.
The catalytic polypeptide of DNA polymerase alpha is often observed in vitro as a family of phosphopolypeptides predominantly of 180 and 165 kDa derived from a single primary structure. The estimated Mr of this polypeptide deduced from the full-length cDNA is 165 kDa. Immunoblot analysis with polyclonal antibodies against peptides of the N- and C-termini of the deduced primary sequence indicates that the observed family of polypeptides from 180 kDa to lower molecular weight results from proteolytic cleavage from the N-terminus. Antibodies against the N-terminal peptide detect only the 180 kDa species suggesting that this higher molecular weight polypeptide may be the result of posttranslational modification of the 165 kDa primary translation product. The catalytic polypeptide is not only phosphorylated but is also found to react with lectins ConA and RCA. N-terminal sequencing of the isolated catalytic polypeptide from human cells and of the recombinant fusion proteins indicates that the often observed 165 kDa polypeptide is the in vitro proteolytic cleavage product of the modified 180 kDa protein at the specific site between lys123 and lys124 within the sequence -RNVKKLAVTKPNN-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号