首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conclusion In vitro studies have contributed greatly to an understanding of viral cytopathology, molecular biology, and pathogenesis. A model of the role of baculoviruses in a host-parasite relationship is developing which reveals the virus as gaining control of many aspects of host cell biology including control of the cell replication machinery (apoptotic response, macromolecular synthesis), the cytoskeletal structure, the nuclear membrane and intranuclear architecture. Baculovirus replication is a collection of independent but inter-related processes which work within the framework of the host cell, with the in vivo goal of maximizing production of progeny virions. Further molecular dissection of baculovirus replication should yield insight into the processes and principles of viral and host regulatory systems, perhaps facilitating development of new generations of high efficiency sub-viral expression vector systems and the development of genetically improved strains of virus safe for field use in ecologically based pest management strategies.  相似文献   

2.
The yeast Saccharomyces cerevisiae is a well-established model system for understanding fundamental cellular processes relevant to higher eukaryotic organisms. Less known is its value for virus research, an area in which Saccharomyces cerevisiae has proven to be very fruitful as well. The present review will discuss the main achievements of yeast-based studies in basic and applied virus research. These include the analysis of the function of individual proteins from important pathogenic viruses, the elucidation of key processes in viral replication through the development of systems that allow the replication of higher eukayotic viruses in yeast, and the use of yeast in antiviral drug development and vaccine production.  相似文献   

3.
We have used Xenopus egg extracts to investigate the effects of the antitumor drug daunomycin on DNA replication in vitro. Xenopus sperm nuclei replicated nearly synchronously in our egg extracts, thereby allowing us to determine the effects of the drug on both replication initiation and elongation. Titration experiments demonstrated that daunomycin effectively inhibited replication in the extract, with 50% inhibition at a total drug concentration of 2.7 μM. However, a high concentration of daunomycin 150 μM) also inhibited nuclear envelope assembly, a prerequisite for the initiation of replication in this system. Therefore, to bypass the effects of daunomycin on nuclear envelope assembly, sperm nuclei were preassembled in extract prior to drug addition. Initiation of replication in preassembled nuclei was also inhibited by daunomycin, with 50% inhibition at a drug concentration of 3.6 μM. At low drug concentrations, where replication did occur, the synchrony of initiations within individual nuclei was lost. This drug-induced disruption of initiation events may provide important clues regarding the mechanism(s) by which these events are coordinated in eukaryotic cells. Daunomycin also inhibited replication elongation in preassembled, preinitiated nuclei. However, the concentration of drug required for 50% inhibition of elongation was nearly fourfold higher than that required for inhibition of initiation. Taken together, these data demonstrate that Xenopus egg extract can be used to investigate the effects of DNA-binding antitumor drugs on a number of interrelated cellular processes, many of which are less tractable in whole cell systems. J. Cell. Biochem. 64:476–491. © 1997 Wiley-Liss, Inc.  相似文献   

4.
The condition which allows the existence of induced replication maps in (M,R)-systems is shown to place strong restrictions on the “richness” of the category from which these systems can be constructed. This condition also admits of a simple biological interpretation, which can be checked empirically, and which may offer insight into the physical and biological realizations of these abstract systems.  相似文献   

5.
Cell-cycle-specific initiation of replication   总被引:3,自引:2,他引:1  
The following characteristics are relevant when replication of chromosomes and plasmids is discussed in relation to the cell cycle: the timing or replication, the selection of molecules for replication, and the coordination of multiple initiation events within a single cell cycle. Several fundamentally different methods have been used to study these processes: Meselson—Stahl density-shift experiments, experiments with the so-called‘baby machine', sorting of cells according to size, and flow cytometry. The evidence for precise timing and co-ordination of chromosome replication in Escherichia coli is overwhelming. Similarly, the high-copy-number plasmid ColE1 and the low-copy-number plasmids R1/R100 without any doubt replicate randomly throughout the cell cycle. Data about the low-copy-number plasmids F and P1 are conflicting. This calls for new types of experiments and for a better understanding of how these plasmids control their replication and partitioning.  相似文献   

6.
Data from prokaryotic replicative and conjugative systems, which interrelate DNA processing events initiated by a site-specific nick, are reviewed. While the replicative systems have been established in accordance with the rolling circle replication model, the mechanism of conjugative replication has not been elucidated experimentally. We summarize data involving random point mutagenesis of the RK2 transfer origin (oriT), which yielded relaxation-deficient and transfer-deficient derivatives having mutations exclusively in a 10bp region defined as the nick region. Features of the RK2 (IncP) nick region, including the DNA sequence, nick site position, and 5′ covalent attachment of the nicking protein, have striking parallels in other systems involving nicking and mobilization of single-stranded DNA from a supercoiled substrate. These other systems include T-DNA transfer occurring in Agrobacterium tumefaciens Ti plasmid-mediated tumorigenesis in plants, and the rolling circle replication of plasmids of Gram-positive bacteria and of φX174-like bacteriophage. The structural and functional similarities suggest that IncP conjugative replication, originating at the oriT, and T-DNA transfer replication, originating at the T-DNA border, produce continuous strands via a rolling circle-type replication.  相似文献   

7.
Archaeal DNA replication and repair   总被引:1,自引:0,他引:1  
Since the first archaeal genome was sequenced, much attention has been focused on the study of these unique microorganisms. We have learnt that although archaeal DNA metabolic processes (replication, recombination and repair) are more similar to the metabolic processes of Eukarya than those of Bacteria, Archaea are not simply 'mini Eukarya'. They are, in fact, a mosaic of the eukaryal and bacterial systems that also possess archaeal-specific features. Recent biochemical and structural studies of the proteins that participate in archaeal DNA replication and repair have increased our understanding of these processes.  相似文献   

8.
9.
Integrative and conjugative elements (ICEs), a.k.a. conjugative transposons, are mobile genetic elements involved in many biological processes, including pathogenesis, symbiosis and the spread of antibiotic resistance. Unlike conjugative plasmids that are extra‐chromosomal and replicate autonomously, ICEs are integrated in the chromosome and replicate passively during chromosomal replication. It is generally thought that ICEs do not replicate autonomously. We found that when induced, Bacillus subtilis ICEBs1 undergoes autonomous plasmid‐like replication. Replication was unidirectional, initiated from the ICEBs1 origin of transfer, oriT, and required the ICEBs1‐encoded relaxase NicK. Replication also required several host proteins needed for chromosomal replication, but did not require the replicative helicase DnaC or the helicase loader protein DnaB. Rather, replication of ICEBs1 required the helicase PcrA that is required for rolling circle replication of many plasmids. Transfer of ICEBs1 from the donor required PcrA, but did not require replication, indicating that PcrA, and not DNA replication, facilitates unwinding of ICEBs1 DNA for horizontal transfer. Although not needed for horizontal transfer, replication of ICEBs1 was needed for stability of the element. We propose that autonomous plasmid‐like replication is a common property of ICEs and contributes to the stability and maintenance of these mobile genetic elements in bacterial populations.  相似文献   

10.
In bacteria, Ter sites bound to Tus/Rtp proteins halt replication forks moving only in one direction, providing a convenient mechanism to terminate them once the chromosome had been replicated. Considering the importance of replication termination and its position as a checkpoint in cell division, the accumulated knowledge on these systems has not dispelled fundamental questions regarding its role in cell biology: why are there so many copies of Ter, why are they distributed over such a large portion of the chromosome, why is the tus gene not conserved among bacteria, and why do tus mutants lack measurable phenotypes? Here we examine bacterial genomes using bioinformatics techniques to identify the region(s) where DNA polymerase III‐mediated replication has historically been terminated. We find that in both Escherichia coli and Bacillus subtilis, changes in mutational bias patterns indicate that replication termination most likely occurs at or near the dif site. More importantly, there is no evidence from mutational bias signatures that replication forks originating at oriC have terminated at Ter sites. We propose that Ter sites participate in halting replication forks originating from DNA repair events, and not those originating at the chromosomal origin of replication.  相似文献   

11.
Proteins that bind DNA are the cause of the majority of impediments to replication fork progression and can lead to subsequent collapse of the replication fork. Failure to deal with fork collapse efficiently leads to mutation or cell death. Several models have been proposed for how a cell processes a stalled or collapsed replication fork; eukaryotes and bacteria are not dissimilar in terms of the general pathways undertaken to deal with these events. This study shows that replication fork regression, the combination of replication fork reversal leading to formation of a Holliday Junction along with exonuclease digestion, is the preferred pathway for dealing with a collapsed fork in Escherichia coli. Direct endo‐nuclease activity at the replication fork was not observed. The protein that had the greatest effect on these fork processing events was the RecQ helicase, while RecG and RuvABC, which have previously been implicated in this process, were found to play a lesser role. Eukaryotic RecQ homologues, BLM and WRN, have also been implicated in processing events following replication fork collapse and may reflect a conserved mechanism. Finally, the SOS response was not induced by the protein‐DNA roadblock under these conditions, so did not affect fork processing.  相似文献   

12.
13.
14.
V. Zachleder  S. Kawano  T. Kuroiwa 《Protoplasma》1996,192(3-4):228-234
Summary FdUrd (5-fluorodeoxyuridine), a specific inhibitor of thymidylate synthase, was used to study the relationship between reproductive processes in chloroplast and nucleocytoplasmic compartments of the chlorococcal algaScenedesmus quadricauda. The courses of DNA replication and nuclear division in both the compartments were followed in populations synchronised by the alternation of light and dark periods. DAPI-staining of DNA-containing structures was used for their visualisation and quantification. In contrast with cellular reproductive events, those in chloroplasts were not substantially affected by the presence of FdUrd (25 g/ml). It was shown that FdUrd specifically blocked nucDNA replication but not ptDNA replication. Thus, cells which had attained commitment to ptDNA replication, fission of pt-nuclei and chloroplast kinesis triggered and terminated these processes while the corresponding cellular processes were blocked. The courses of reproductive processes in chloroplasts were also substantially unaffected in cells grown in the presence of FdUrd for the whole cell cycle. This provided evidence that attainment of commitment to and termination of the entire sequence of reproductive events, including chloroplast fission, were controlled by different mechanisms than the reproductive processes in the nucleocytoplasmic compartment.Abbreviations DAPI 4,6-diamidino-2-phenylindole - ptDNA DNA of chloroplast nuclei - nucDNA DNA in cell nuclei - FdUrd 5-fluorodeoxyuridine  相似文献   

15.

Background  

High-throughput cultivations in microtiter plates are the method of choice to express proteins from recombinant clone libraries. Such processes typically include several steps, whereby some of them are linked by replication steps: transformation, plating, colony picking, preculture, main culture and induction. In this study, the effects of conventional replication methods and replication tools (8-channel pipette, 96-pin replicators: steel replicator with fixed or spring-loaded pins, plastic replicator with fixed pins) on growth kinetics of Escherichia coli SCS1 pQE-30 pSE111 were observed. Growth was monitored with the BioLector, an on-line monitoring technique for microtiter plates. Furthermore, the influence of these effects on product formation of Escherichia coli pRhotHi-2-EcFbFP was investigated. Finally, a high-throughput cultivation process was simulated with Corynebacterium glutamicum pEKEx2-phoD-GFP, beginning at the colony picking step.  相似文献   

16.
Holt LJ 《FEBS letters》2012,586(17):2773-2777
Multiple post-translational regulation systems regulate cell biology. Two key mechanisms that coordinate the myriad processes of cell replication are phosphorylation and ubiquitin-mediated degradation of proteins. Regulatory modules have evolved to integrate these two control systems at key decision points in the cell division cycle. These modules enable information to be processed with high fidelity by filtering noise, improving specificity, generating feedback loops, and optimizing spatiotemporal coordination of cellular processes. This review provides examples of these modules and considers the advantages of this signaling nexus.  相似文献   

17.
18.
19.
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments—helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.  相似文献   

20.
The general Theory of Categories is applied to the study of the (M, R)-systems previously defined. A set of axioms is provided which characterize “abstract (M, R)-systems”, defined in terms of the Theory of Categories. It is shown that the replication of the repair components of these systems may be accounted for in a natural way within this framework, thereby obviating the need for anad hoc postulation of a replication mechanism. A time-lag structure is introduced into these abstract (M, R)-systems. In order to apply this structure to a discussion of the “morphology” of these systems, it is necessary to make certain assumptions which relate the morphology to the time lags. By so doing, a system of abstract biology is in effect constructed. In particular, a formulation of a general Principle of Optimal Design is proposed for these systems. It is shown under what conditions the repair mechanism of the system will be localized into a spherical region, suggestive of the nuclear arrangements in cells. The possibility of placing an abstract (M, R)-system into optimal form in more than one way is then investigated, and a necessary and sufficient condition for this occurrence is obtained. Some further implications of the above assumptions are then discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号