首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detection of DNA sequence variation is critical to biomedical applications, including disease genetic identification, diagnosis and treatment, drug discovery and forensic analysis. Here, we describe an arrayed primer extension-based genotyping method (APEX-2) that allows multiplex (640-plex) DNA amplification and detection of single nucleotide polymorphisms (SNPs) and mutations on microarrays via four-color single-base primer extension. The founding principle of APEX-2 multiplex PCR requires two oligonucleotides per SNP/mutation to generate amplicons containing the position of interest. The same oligonucleotides are then subsequently used as immobilized single-base extension primers on a microarray. The method described here is ideal for SNP or mutation detection analysis, molecular diagnostics and forensic analysis. This robust genetic test has minimal requirements: two primers, two spots on the microarray and a low cost four-color detection system for the targeted site; and provides an advantageous alternative to high-density platforms and low-density detection systems.  相似文献   

2.
It has been well known for decades that deoxyribonucleic acid (DNA) polymerases with proofreading function have a higher fidelity in primer extension as compared to those without 3' exonuclease activities. However, polymerases with proofreading function have not been used in single nucleotide polymorphism (SNP) assays. Here, we describe a new method for single-base discrimination by proofreading the 3' phosphorothioate-modified primers using a polymerase with proofreading function. Our data show that the combination of a polymerase with 3' exonuclease activity and the 3' phosphorothioate-modified primers work efficiently as a single-base mismatch-operated on/off switch. DNA polymerization only occurred from matched primers, whereas mismatched primers were not extended at the broad range of annealing temperature tested in our study. This novel single-base discrimination method has potential in SNP assays.  相似文献   

3.
A new method was developed for the detection of single-base mutations in DNA. The polymerase chain reaction was used to prepare DNA fragments of up to 1 kb. Fragments that differed by a single-base were combined, denatured and renatured to generate heteroduplexes. The heteroduplexes were reacted with a water-soluble carbodiimide under conditions in which the carbodiimide modified Gs and Ts that were not base paired. The DNA was then used as a template for primer extension with Taq DNA polymerase under conditions in which extension terminated at the site of the carbodiimide-modified base and generated a 32P-labeled fragment that was identified by polyacrylamide gel electrophoresis as a fragment smaller than the full length product. The procedure detected all four general classes of single-base mutations in several different sequence contexts. The site of the mutation was located to within about 15 bp. Extension with both a 5'- and a 3'-primer made it possible to confirm the site of the mutation in most DNA samples or detect a mutation in heteroduplexes even if a G or T in one strand was unreactive because of its sequence context. The procedure appears to have several advantages over previously published techniques.  相似文献   

4.
It has been well known for decades that deoxyribonucleic acid (DNA) polymerases with proofreading function have a higher fidelity in primer extension as compared to those without 3′ exonuclease activities. However, polymerases with proofreading function have not been used in single nucleotide polymorphism (SNP) assays. Here, we describe a new method for single-base discrimination by proofreading the 3′ phosphorothioate-modified primers using a polymerase with proofreading function. Our data show that the combination of a polymerase with 3′ exonuclease activity and the 3′ phosphorothioate-modified primers work efficiently as a single-base mismatch-operated on/off switch. DNA polymerization only occurred from matched primers, whereas mismatched primers were not extended at the broad range of annealing temperature tested in our study. This novel single-base discrimination method has potential in SNP assays.  相似文献   

5.
Herein, we report an anomalous electrochemical behavior of surface-bound DNA duplex that has single-base mismatches at its distal end. Single-stranded 15-base DNA was immobilized at its 5'end onto gold electrode surfaces. After hybridization with complementary or mismatched DNA, electrochemical impedance spectra were obtained using [Fe(CN)(6)]3-/4- as redox marker ions. Hybridization with the complementary DNA reduced the charge-transfer resistance (R(CT)), whereas single-base mismatches at the distal end of the duplex largely increased the R(CT). This anomaly was found only with the distal end: the increase in R(CT) was not observed for mismatches at either the middle or the proximal end. These results indicate that electrochemical detection of single-base alterations at an end of sample DNA is exceptionally easy because of the diametrically opposite responses. This detection principle is promising for the typing of single-nucleotide polymorphisms in combination with the single-base primer extension protocol.  相似文献   

6.
A simple primer extension assay has been developed to distinguish homologous DNA segments differing by as little as a single nucleotide. DNA strands are synthesized with one of the four natural nucleotides replaced with an analog that affects electrophoretic mobility. DNAs that are the same length but differ in the number of analog molecules per strand exhibit different mobilities on a sequencing gel. In combination with the polymerase chain reaction (PCR; 1, 2), this method has been used to distinguish mutant and normal alleles of the human insulin receptor gene that differ by a single-base substitution. The method appears to be generally applicable to the detection of any nucleotide polymorphism in any segment of DNA.  相似文献   

7.
We examined the molecular basis of ddNTP selectivity in archaeal family B DNA polymerases by randomly mutagenizing the gene encoding Thermococcus sp. JDF-3 DNA polymerase and screening mutant libraries for improved ddNTP incorporation. We identified two mutations, P410L and A485T, that improved ddNTP uptake, suggesting the contribution of P410 and A485 to ddNTP/dNTP selectivity in archaeal DNA polymerases. The importance of A485 was identified previously in mutagenesis studies employing Pfu (A486) and Vent (A488) DNA polymerases, while the contribution of P410 to ddNTP/dNTP selectivity has not been reported. We demonstrate that a combination of mutations (P410L/A485T) has an additive effect in improving ddNTP incorporation by a total of 250-fold. To assess the usefulness of the JDF-3 P410L/A485T in fluorescent-sequencing applications, we compared the archaeal mutant to Taq F667Y with respect to fidelity and kinetic parameters for DNA and dye-ddNTPs. Although the Taq F667Y and JDF-3 P410L/A485T mutants exhibit similar K(m) and V(max) values for dye-ddNTPs in single-base extension assays, the archaeal mutant exhibits higher fidelity due to a reduced tendency to form certain (ddG:dT, ddT:dC) mispairs. DNA polymerases exhibiting higher insertion fidelity are expected to provide greater accuracy in SNP frequency determinations by single-base extension and in multiplex minisequencing assays.  相似文献   

8.
This study reports the development of an on-chip enzyme-mediated primer extension process based on a microfluidic device with microbeads array for single-nucleotide discrimination using quantum dots as labels. The functionalized microbeads were independently introduced into the arrayed chambers using the loading chip slab. A single channel was used to generate weir structures to confine the microbeads and make the beads array accessible by microfluidics. The applied allele-specific primer extension method employed a nucleotide-degrading enzyme (apyrase) to achieve specific single-nucleotide detection. Based on the apyrase-mediated allele-specific primer extension with quantum dots as labels, on-chip single-nucleotide discrimination was demonstrated with high discrimination specificity and sensitivity (0.5 pM, signal/noise > 3) using synthesized target DNA. The chip-based signal enhancement for single-nucleotide discrimination resulted in 200 times higher sensitivity than that of an off-chip test. This microfluidic device successfully achieved simultaneous detection of two disease-associated single-nucleotide polymorphism sites using polymerase chain reaction products as target. This apyrase-mediated microfluidic primer extension approach combines the rapid binding kinetics of homogeneous assays of suspended microbeads array, the liquid handling capability of microfluidics, and the fluorescence detection sensitivity of quantum dots to provide a platform for single-base analysis with small reagent consumption, short assay time, and parallel detection.  相似文献   

9.
We describe the application of two different fluorescence-based techniques (ddNTP primer extension and single-strand conformation polymorphism (SSCP)) to the detection of single nucleotide polymorphisms (SNPs) by capillary electrophoresis. The ddNTP primer extension technique is based on the extension, in the presence of fluorescence-labeled dideoxy nucleotides (ddNTP, terminators), of an unlabeled oligonucleotide primer that binds to the complementary template immediately adjacent to the mutant nucleotide position. Given that there are no unlabeled dNTPs, a single ddNTP is added to its 3' end, resulting in a fluorescence-labeled primer extension product which is readily separated by capillary electrophoresis. On the other hand, the non-radioisotopic version of SSCP established in this study uses fluorescent dye to label the PCR products, which are also analyzed by capillary electrophoresis. These procedures were used to identify a well-defined SNP in exon 7 of the human p53 gene in DNA samples isolated from two human cell lines (CEM and THP-1 cells). The results revealed a heterozygous single-base transition (G to A) at nucleotide position 14071 in CEM cells, proving that both fluorescence-based ddNTP primer extension and SSCP are rapid, simple, robust, specific and with no ambiguity in interpretation for the detection of well-defined SNPs.  相似文献   

10.
Millions of single nucleotide polymorphisms (SNPs) have been identified in recent years. This provides a great opportunity for large-scale association and population studies. However, many high-throughput SNP typing techniques require expensive and dedicated instruments, which render them out of reach for many laboratories. To meet the need of these laboratories, we here report a method that uses widely available DNA sequencer for SNP typing. This method uses a type II restriction enzyme to create extendable ends at target polymorphic sites and uses single-base extension (SBE) to discriminate alleles. In this design, a restriction site is engineered in one of the two polymerase chain reaction (PCR) primers so that the restriction endonuclease cuts immediately upstream of the targeted SNP site. The digestion of the PCR products generates a 5'-overhang structure at the targeted polymorphic site. This 5'-overhang structure then serves as a template for SBE reaction to generate allele-specific products using fluorescent dye-terminator nucleotides. Following the SBE, the allele-specific products with different sizes can be resolved by DNA sequencers. Through primer design, we can create a series of PCR products that vary in size and contain only one restriction enzyme recognition site. This allows us to load many PCR products in a single capillary/lane. This method, restriction-enzyme-mediated single-base extension, is demonstrated by typing multiple SNPs simultaneously for 44 DNA samples. By multiplexing PCR and pooling multiplexed reactions together, this method has the potential to score 50-100 SNPs/capillary/run if the sizes of PCR products are arranged at every 5-10 bases from 100 to 600 base range.  相似文献   

11.
A simple primer extension method for detecting nucleotide differences is based on the substitution of mobility-shifting analogs for natural nucleotides (1). This technique can detect any single-base difference that might occur including previously unknown mutations or polymorphisms. Two technical limitations of the original procedure have now been addressed. First, switching to Thermococcus litoralis DNA polymerase has eliminated variability believed to be due to the addition of an extra, non-templated base to the 3' end of DNA by Taq DNA polymerase. Second, with the analogs used in the original study, the mobility shift induced by a single base change can usually be resolved only in DNA segments 200 nt or smaller. This size limitation has been overcome by synthesizing biotinylated nucleotides with extraordinarily long linker arms (36 atom backbone). Using these new analogs and conventional sequencing gels (0.4 mm thick), mutations in the human beta-hexosaminidase alpha and CYP2D6 genes have been detected in DNA segments up to 300 nt in length. By using very thin (0.15 mm) gels, single-base polymorphisms in the human APOE gene have been detected in 500-nt segments.  相似文献   

12.
We compared six DNA extraction methods for obtaining DNA from whole blood and saliva for use in multiplex polymerase chain reaction (PCR) assays. The aim was to evaluate saliva sampling as an alternative to blood sampling to obtain DNA for molecular diagnostics, genetic genealogy, and research purposes. The DNA quantity, DNA purity (A260/280), PCR inhibition ratio, and mitochondrial DNA/genomic DNA ratio were measured to compare the extraction methods. The different extraction methods resulted in variable DNA quantity and purity, but there were no significant differences in the efficiency of multiplex PCR and oligomicroarray signals after single-base extension on the arrayed primer extension 2 (APEX-2).  相似文献   

13.
Mutations in human mitochondrial DNA influence aging, induce severe neuromuscular pathologies, cause maternally inherited metabolic diseases, and suppress apoptosis. Since the genetic stability of mitochondrial DNA depends on the accuracy of DNA polymerase gamma (pol gamma), we investigated the fidelity of DNA synthesis by human pol gamma. Comparison of the wild-type 140-kDa catalytic subunit to its exonuclease-deficient derivative indicates pol gamma has high base substitution fidelity that results from high nucleotide selectivity and exonucleolytic proofreading. pol gamma is also relatively accurate for single-base additions and deletions in non-iterated and short repetitive sequences. However, when copying homopolymeric sequences longer than four nucleotides, pol gamma has low frameshift fidelity and also generates base substitutions inferred to result from a primer dislocation mechanism. The ability of pol gamma both to make and to proofread dislocation intermediates is the first such evidence for a family A polymerase. Including the p55 accessory subunit, which confers processivity to the pol gamma catalytic subunit, decreases frameshift and base substitution fidelity. Kinetic analyses indicate that p55 promotes extension of mismatched termini to lower the fidelity. These data suggest that homopolymeric runs in mitochondrial DNA may be particularly prone to frameshift mutation in vivo due to replication errors by pol gamma.  相似文献   

14.
Scientific literature describing arrayed primer extension and other array-based minisequencing technologies consistently cite the requirement for four fluorescent dideoxynucleotides (with concomitant absence/inactivation of deoxynucleotides) to ensure single-base extension and thus sequence-specific intensity data that can be interpreted as a base call or genotype. We present compelling evidence that fluorescent deoxynucleotides can reliably be used in microarray minisequencing experiments, generating fluorescent sequence extension intensity profiles that are homologous to the single-base extensions obtained with terminator dideoxynucleotides. Due to the almost 10-fold higher costs (and limited fluorophore choice) of many commercially available fluorescent dideoxynucleotides, compared to fluorescent deoxynucleotides, as well as other potentially constraining intellectual property and licensing issues, this hitherto dismissed microarray chemistry represents an important reevaluation in the field of array-based genotyping and related enzymology.  相似文献   

15.
The cultivated peanut (Arachis hypogaea L.) is an allotetraploid of recent origin, with an AABB genome and low genetic diversity. Perhaps because of its limited genetic diversity, this species lacks resistance to a number of important pests and diseases. In contrast, wild species of Arachis are genetically diverse and are rich sources of disease resistance genes. Consequently, a study of wild peanut relatives is attractive from two points of view: to help understand peanut genetics and to characterize wild alleles that could confer disease resistance. With this in mind, a diploid population from a cross between two wild peanut relatives was developed, in order to make a dense genetic map that could serve as a reference for peanut genetics and in order to characterize the regions of the Arachis genome that code for disease resistance. We tested two methods for developing and genotyping single nucleotide polymorphisms in candidate genes for disease resistance; one is based on single-base primer extension methods and the other is based on amplification refractory mutation system-polymerase chain reaction. We found single-base pair extension to be an efficient method, suitable for high-throughput, single-nucleotide polymorphism mapping; it allowed us to locate five candidate genes for resistance on our genetic map.  相似文献   

16.
DNA methylation plays a key role in epigenetic regulation of eukaryotic genomes. Hence the genome-wide distribution of 5-methylcytosine, or the methylome, has been attracting intense attention. In recent years, whole-genome bisulfite sequencing (WGBS) has enabled methylome analysis at single-base resolution. However, WGBS typically requires microgram quantities of DNA as well as global PCR amplification, thereby precluding its application to samples of limited amounts. This is presumably because bisulfite treatment of adaptor-tagged templates, which is inherent to current WGBS methods, leads to substantial DNA fragmentation. To circumvent the bisulfite-induced loss of intact sequencing templates, we conceived an alternative method termed Post-Bisulfite Adaptor Tagging (PBAT) wherein bisulfite treatment precedes adaptor tagging by two rounds of random primer extension. The PBAT method can generate a substantial number of unamplified reads from as little as subnanogram quantities of DNA. It requires only 100 ng of DNA for amplification-free WGBS of mammalian genomes. Thus, the PBAT method will enable various novel applications that would not otherwise be possible, thereby contributing to the rapidly growing field of epigenomics.  相似文献   

17.
Rapid growth of available sequence data has made the detection of nucleic acids critical to the development of modern life sciences. Many amplification methods based on gold nanoparticles and endonuclease for sensitive DNA detection have been developed. However, these approaches require specific target sequence for endonuclease recognition, which cannot be fulfilled in all systems. Replacing the restriction enzyme with a nuclease that does not require any specific recognition sequence may offer a universally adaptable system. Here we have developed a novel homogeneous, colorimetric DNA detection method, which consists of Exo III, a linker DNA, and two DNA-modified gold nanoparticles. This system is simple, low-cost, sensitive and selective. By coupling cyclic enzymatic cleavage and gold nanoparticle for signal amplification, our system provides a colorimetric detection limit of 15 pM, which is 3 orders of magnitude more sensitive than that of a general three-component sandwich assay format. Due to the intrinsic property of Exo III, our method shows excellent detection selectivity for single-base discrimination. More importantly, superior to other methods based on nicking and FokI endonuclease, our target sequence-independent platform is generally applicable for DNA sensing. This new approach could be widely applied to sensitive nucleic acids detection.  相似文献   

18.
Primer-design for multiplexed genotyping   总被引:9,自引:1,他引:8       下载免费PDF全文
Single-nucleotide polymorphism (SNP) analysis is a powerful tool for mapping and diagnosing disease-related alleles. Mutation analysis by polymerase-mediated single-base primer extension (minisequencing) can be massively parallelized using DNA microchips or flow cytometry with microspheres as solid support. By adding a unique oligonucleotide tag to the 5′ end of the minisequencing primer and attaching the complementary antitag to the array or bead surface, the assay can be ‘demultiplexed’. Such high-throughput scoring of SNPs requires a high level of primer multiplexing in order to analyze multiple loci in one assay, thus enabling inexpensive and fast polymorphism scoring. We present a computer program to automate the design process for the assay. Oligonucleotide primers for the reaction are automatically selected by the software, a unique DNA tag/antitag system is generated, and the pairing of primers and DNA tags is automatically done in a way to avoid any crossreactivity. We report results on a 45-plex genotyping assay, indicating that minisequencing can be adapted to be a powerful tool for high-throughput, massively parallel genotyping. The software is available to academic users on request.  相似文献   

19.
The technology and application of arrayed primer extension (APEX) is presented. We describe an integrated system with DNA chip and template preparation, multiplex primer extension on the array, fluorescence imaging, and data analysis. The method is based upon an array of oligonucleotides, immobilized via the 5' end on a glass surface. A patient DNA is amplified by PCR, digested enzymatically, and annealed to the immobilized primers, which promote sites for template-dependent DNA polymerase extension reactions using four unique fluorescently labeled dideoxy nucleotides. A mutation is detected by a change in the color code of the primer sites. The technology was applied to the analysis of 10 common beta-thalassemia mutations. Nine patient DNA samples, each of which carries a different mutation, and four wild-type DNA samples were correctly identified. The signal-to-noise ratio of this technology is, on the average, 40:1, which enables the identification of heterozygous mutations with a high confidence level. The APEX method can be applied to any DNA target for efficient analysis of mutations and polymorphisms.  相似文献   

20.
A novel method, based upon primer extension, has been developed for measuring the reopening temperature of a single type of DNA hairpin structure. Two DNA oligonucleotides have been utilized and designated as primers 1 and 2. Primer 1, with its 5- and 3'-termini fully complementary to the hairpin flanking sequences, was used to evaluate primer extension conditions, and primer 2, with its 3'-end competing with the DNA hairpin stem, was used to detect the DNA hairpin reopening temperature. A single DNA hairpin structure was formed on the DNA template by thermal denaturation and renaturation, and this hairpin structure was predicted to prevent the annealing of the 3'-end of primer 2 with the template DNA, which leads to no primer extension. By incubating at different temperatures, the DNA hairpin structure can be reopened at a particular temperature where the primer extension can be carried out. This resulted in the appearance of double-stranded DNA that was detected on an agarose gel. This temperature is defined here as the hairpin reopening temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号