首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High density lipoprotein (HDL) cholesterol levels are associated with decreased risk of cardiovascular disease, but not all HDL are functionally equivalent. A primary determinant of HDL functional status is the conformational adaptability of its main protein component, apoA-I, an exchangeable apolipoprotein. Chemical modification of apoA-I, as may occur under conditions of inflammation or diabetes, can severely impair HDL function and is associated with the presence of cardiovascular disease. Chemical modification of apoA-I also impairs its ability to exchange on and off HDL, a critical process in reverse cholesterol transport. In this study, we developed a method using electron paramagnetic resonance spectroscopy (EPR) to quantify HDL-apoA-I exchange. Using this approach, we measured the degree of HDL-apoA-I exchange for HDL isolated from rabbits fed a high fat, high cholesterol diet, as well as human subjects with acute coronary syndrome and metabolic syndrome. We observed that HDL-apoA-I exchange was markedly reduced when atherosclerosis was present, or when the subject carries at least one risk factor of cardiovascular disease. These results show that HDL-apoA-I exchange is a clinically relevant measure of HDL function pertinent to cardiovascular disease.  相似文献   

2.
PURPOSE OF REVIEW: Dyslipoproteinemia is a cardinal feature of the metabolic syndrome that accelerates atherosclerosis. Recent in-vivo kinetic studies of dyslipidemia in the metabolic syndrome are reviewed here. RECENT FINDINGS: The dysregulation of lipoprotein metabolism may be caused by a combination of overproduction of VLDL apolipoprotein B-100, decreased catabolism of apolipoprotein B-containing particles, and increased catabolism of HDL apolipoprotein A-I particles. Nutritional modifications and increased physical exercise may favourably alter lipoprotein transport by collectively decreasing the hepatic secretion of VLDL apolipoprotein B and the catabolism of HDL apolipoprotein A-I, as well as by increasing the clearance of LDL apolipoprotein B. Conventional and new pharmacological treatments, such as statins, fibrates and cholesteryl ester transfer protein inhibitors, can also correct dyslipidemia by several mechanisms, including decreased secretion and increased catabolism of apolipoprotein B, as well as increased secretion and decreased catabolism of apolipoprotein A-I. SUMMARY: Kinetic studies provide a mechanistic insight into the dysregulation and therapy of lipid and lipoprotein disorders. Future research mandates the development of new tracer methodologies with practicable in-vivo protocols for investigating fatty acid turnover, macrophage reverse cholesterol transport, cholesterol transport in plasma, corporeal cholesterol balance, and the turnover of several subpopulations of HDL particles.  相似文献   

3.
PURPOSE OF REVIEW: Increasing attention has focused on the development of therapeutic strategies to promote the biologic activity of HDL particles, which possess a number of functional properties that contribute to their role in cardioprotection. Currently available therapies raise levels of HDL-cholesterol by relatively modest amounts. This review describes experimental strategies that promote HDL activity. RECENT FINDINGS: The functional quality of HDL may be more important than the absolute level of HDL-cholesterol found in the systemic circulation. This is supported by the observation that small rises in HDL-cholesterol with current therapies is associated with clinical benefit. This has major implications for the development of new therapies. A number of therapeutic strategies have been developed that promote reverse cholesterol transport, inhibit inflammatory events in the vessel wall, and modify remodeling of HDL particles within the systemic circulation. SUMMARY: A number of emerging therapies appear to promote the biologic activity of HDL. These agents can be administered as acute infusions in the setting of acute ischemic syndromes or as oral therapy for chronic prevention of cardiovascular disease.  相似文献   

4.
Dyslipoproteinaemia is a cardinal feature of the metabolic syndrome that accelerates atherosclerosis. It is usually characterised by high plasma concentrations of triglyceride-rich and apolipoprotein (apo) B-containing lipoproteins, with depressed concentrations of high-density lipoprotein (HDL). Dysregulation of lipoprotein metabolism in these subjects may be due to a combination of overproduction of very-low-density lipoprotein (VLDL) apoB-100, decreased catabolism of apoB-containing particles, and increased catabolism of HDL apoA-I particles. These abnormalities may be consequent on a global metabolic effect of insulin resistance that increases the flux of fatty acids from adipose tissue to the liver, the accumulation of fat in the liver, the increased hepatic secretion of VLDL-triglycerides and the remodelling of both low-density lipoprotein (LDL) and HDL particles in the circulation; perturbations in lipolytic enzymes and lipid transfer proteins contribute to the dyslipidaemia. Our in vivo understanding of the kinetic defects in lipoprotein metabolism in the metabolic syndrome has been chiefly achieved by ongoing developments in the use of stable isotope tracers and mathematical modelling. Knowledge of the pathophysiology of lipoprotein metabolism in the metabolic syndrome is well complemented by extensive cell biological data. Nutritional modifications and increased physical exercise may favourably alter lipoprotein transport in the metabolic syndrome by collectively decreasing the hepatic secretion of VLDL-apoB and the catabolism of HDL apoA-I, as well as by increasing the clearance of LDL-apoB. Pharmacological treatments, such as statins, fibrates or fish oils, can also correct the dyslipidaemia by several mechanisms of action including decreased secretion and increased catabolism of apoB, as well as increased secretion and decreased catabolism of apoA-I. The complementary mechanisms of action of lifestyle and drug therapies support the use of combination regimens to treat dyslipidaemia in the metabolic syndrome.  相似文献   

5.
High density lipoprotein (HDL) cholesterol levels are inversely related to the risk of developing coronary heart disease. Apolipoprotein (apo) A-II is the second most abundant HDL apolipoprotein and apoA-II knockout mice show a 70% reduction in HDL cholesterol levels. There is also evidence, using human apoA-II transgenic mice, that apoA-II can prevent hepatic lipase-mediated HDL triglyceride hydrolysis and reduction in HDL size. These observations suggest the hypothesis that apoA-II maintains HDL levels, at least in part, by inhibiting hepatic lipase. To evaluate this, apoA-II knockout mice were crossbred with hepatic lipase knockout mice. Compared to apoA-II-deficient mice, in double knockout mice there were increased HDL cholesterol levels (57% in males and 60% in females), increased HDL size, and decreased HDL cholesteryl ester fractional catabolic rate. In vitro incubation studies of plasma from apoA-II knockout mice, which contains largely apoA-I HDL particles, showed active lipolysis of HDL triglyceride, whereas similar studies of plasma from apoA-I knockout mice, which contains largely apoA-II particles, did not. In summary, these results strongly suggest that apoA-II is a physiological inhibitor of hepatic lipase and that this is at least part of the mechanism whereby apoA-II maintains HDL cholesterol levels.  相似文献   

6.
Low concentrations of high-density lipoprotein (HDL) cholesterol constitute a risk factor for coronary heart disease (CHD). There is increasing evidence that increasing HDL-cholesterol levels reduces cardiovascular risk. The phenotype of low HDL cholesterol with or without elevated triglycerides is common and it is characteristic of patients with central obesity, insulin resistance, hypertension and type 2 diabetes mellitus; conditions associated with increased cardiovascular risk and are part of the rubric of the metabolic syndrome. Epidemiological, experimental and clinical trial evidence suggests that there is a good rationale for raising HDL-cholesterol in these and other high-risk patients. The protective effect of HDL-cholesterol against atherosclerosis and cardiovascular disease is mediated by both enhanced reverse cholesterol transport (RCT) and by direct anti-atherosclerotic mechanisms. Recent studies have elucidated mechanisms whereby HDL acts to reduce cardiovascular risk, supporting the rationale for targeting of HDL with lipid-modifying therapy. Ongoing investigation of mechanisms by which HDL acts to reduce the risk of atherosclerosis will provide opportunities for the development of new therapeutic strategies to decrease the risk of atherosclerosis.  相似文献   

7.
High level of high-density lipoprotein cholesterol (HDL-cholesterol) is inversely correlated to the risk of atherosclerotic cardiovascular disease. The protective effect of HDL is mostly attributed to their metabolic functions in reverse cholesterol transport (RCT), a process whereby excess cell cholesterol is taken up from peripheral cells and processed in HDL particles, and is later delivered to the liver for further metabolism and bile excretion. We have previously demonstrated that P2Y13 receptor is critical for RCT and that intravenous bolus injection of cangrelor (AR-C69931MX), a partial agonist of P2Y13 receptor, can stimulate hepatic HDL uptake and subsequent lipid biliary secretion without any change in plasma lipid levels. In the present study, we investigated the effect of longer-term treatment with cangrelor on lipoprotein metabolism in mice. We observed that continuous delivery of cangrelor at a rate of 35 μg/day/kg body weight for 3 days markedly decreased plasma HDL-cholesterol level, by increasing the clearance of HDL particles by the liver. These effects were correlated to an increase in the rate of biliary bile acid secretion. An increased expression of SREBP-regulated genes of cholesterol metabolism was also observed without any change of hepatic lipid levels as compared to non-treated mice. Thus, 3-day cangrelor treatment markedly increases the flux of HDL-cholesterol from the plasma to the liver for bile acid secretion. Taken together our results suggest that P2Y13 appears a promising target for therapeutic intervention aimed at preventing or reducing cardiovascular risk.  相似文献   

8.
Tangier disease (TD) is characterized by extremely low plasma levels of HDL, apoA-I and apoA-II due to very rapid catabolism. However, the risk of premature coronary heart disease (CHD) is not markedly increased in TD. In order to gain insight into reverse cholesterol transport in TD, we isolated LpA-I, LpA-I:A-II, LpA-II and LpA-IV particles from fasting plasma of 5 TD patients. LpA-I composition was similar to control LpA-I, but TD LpA-I had more LCAT and CETP activity (respectively, 0.35 ± 0.14 and 0.14 ± 0.04 μmol of cholesterol esterified/h/μg of protein, and 7 ± 2.5 and 1.4 ± 0.3 μmol of cholesteryl ester transferred/h/μg of protein). In contrast, TD LpA-I:A-II had abnormal composition, with a low molar ratio of apoA-I to apoA-II (0.2–1.33). In addition, LpA-I:A-II in TD contained a substantial amount of apoA-IV compared with control, making this particle an LpA-I:A-II:A-IV complex. LpA-I:A-II from normal plasma do not promote cholesterol efflux from adipocytes cells, whereas TD LpA-I:A-II:A-IV complexes promoted cholesterol efflux from these cells. Moreover LpA-I:A-II:A-IV complexes have more LCAT and CETP activity than control (respectively 1.2 ± 0.16 and 0.01 ± 0.01 μmol of cholesterol esterified/h/μg of protein and, 41 ± 3.7 and 1 ± 0.4 μmol of cholesteryl ester transferred /h/μg of protein). The LpA-II particle in TD represented in fact in LpA-II: A-IV complex (75% mol apoA-II and 22% mol apoA-IV). This particle did not promote cholesterol efflux, but LCAT and CETP activity were present. LpA-IV particles had the capacity to promote cholesterol efflux and had both LCAT and CETP activity. LpA-IV may contribute to maintain the reverse cholesterol transport in TD. Our results indicate the potential importance of apoA-IV in maintaining reverse cholesterol transport in TD. In spite of the low steady state HDL-cholesterol levels in TD, LpA-I, LpA-I: A-II: A-IV complex and LpA-IV appear to be active in reverse cholesterol transport and may help to prevent premature CHD in TD.  相似文献   

9.
Our understanding of apolipoprotein A-II (apoA-II) physiology is much more limited than that of apoA-I. However, important and rather surprising advances have been produced, mainly through analysis of genetically modified mice. These results reveal a positive association of apoA-II with FFA and VLDL triglyceride plasma concentrations; however, whether this is due to increased VLDL synthesis or to decreased VLDL catabolism remains a matter of controversy. As apoA-II-deficient mice present a phenotype of insulin hypersensitivity, a function of apoA-II in regulating FFA metabolism seems likely. Studies of human beings have shown the apoA-II locus to be a determinant of FFA plasma levels, and several genome-wide searches of different populations with type 2 diabetes have found linkage to an apoA-II intragenic marker, making apoA-II an attractive candidate gene for this disease. The increased concentration of apoB-containing lipoproteins present in apoA-II transgenic mice explains, in part, why these animals present increased atherosclerosis susceptibility. In addition, apoA-II transgenic mice also present impairment of two major HDL antiatherogenic functions: reverse cholesterol transport and protection of LDL oxidative modification. The apoA-II locus has also been suggested as an important genetic determinant of HDL cholesterol concentration, even though there is a major species-specific difference between the effects of mouse and human apoA-II. As antagonizing apoA-I antiatherogenic actions can hardly be considered the apoA-II function in HDL, this remains a topic for future investigations. We suggest that the existence of apoA-II or apoA-I in HDL could be an important signal for specific interaction with HDL receptors such as cubilin or heat shock protein 60.  相似文献   

10.
High density lipoproteins (HDL) are heterogeneous particles consisting of about equal amounts of lipid and protein that are thought to mediate the transport of cholesterol from peripheral tissues to liver. We show that a previously identified polymorphism affecting HDL electrophoretic mobility in mice is due to a monogenic variation controlling HDL size and apolipoprotein composition. Thus, the HDL particles of various inbred strains of mice exhibit a striking difference in the ratio fo the two major apolipoproteins of HDL, apoA-I and apoA-II. HDL particles in all strains examined contain an average of about five apoA-I molecules; however, whereas the strains with small HDL contain two to three apoA-II molecules per particle, the strains with large HDL contain about five apoA-II molecules per particle. This increase in the protein content of the large HDL is also accompanied by increased lipid content. The HDL size polymorphism and apoA-II levels cosegregate with the apoA-II structural gene on mouse chromosome 1, indicating that a mutation of the apoA-II gene locus is responsible. The rates of synthesis of apoA-II are increased in the strains with large HDL and high apoA-II levels as compared to the strains with small HDL and low apoA-II levels. On the other hand, the fractional catabolic rates of both apoA-I and apoA-II among the strains are very similar, confirming that apoA-II concentrations are controlled at the level of synthesis. Despite the difference in rates of apoA-II synthesis between strains, the apoA-II mRNA levels in the strains are not discernibly different, suggesting that a mutation of the apoA-II structural gene controls apoA-II translational efficiency. This was confirmed by translating apoA-II mRNA in vitro using a rabbit reticulocyte lysate system. Sequencing of apoA-II cDNA from the strains revealed a number of nucleotide substitutions, which may affect translational efficiency. We conclude that the assembly of apoA-II into HDL does not have a set stoichiometry but, rather, is controlled by the production of apoA-II. As apoA-II levels increase, the HDL particles become larger and acquire more lipid, but apoA-I content per particle remains unchanged. These studies with mice provide a model for the metabolic relationships between apoA-I, apoA-II, and HDL lipid in humans.  相似文献   

11.
Apolipoprotein (apo)A-I is the major protein component of HDL and the cofactor for LCAT. We describe a large Spanish kindred, living in the Mediterranean Island of Mallorca, that presents a dominant form of hypoalphalipoproteinemia. The lipid profile of this family was studied because the proband, a 40-year-old male presenting signs of coronary atherosclerosis, showed severe HDL deficiency. However, none of the other family members had a known history of cardiovascular disease. Sequence analysis of the apoA-I gene in affected members identified a 33-base pair deletion, corresponding to residues 165-175 of the mature protein, eliminating the first 11 amino acids of the internal repeat 7. ApoA-I(MALLORCA) is associated with HDL-cholesterol deficiency (concentration ranging from 8-48% of the value in non-carriers), and a 2- to 3-fold decrease in plasma concentrations of apoA-I and apoA-II and endogenous LCAT activity, concomitant with a slight decrease in serum cholesterol efflux capability. Impairment of LCAT activity in HDL particles containing only mutated forms of apoA-I would not explain a pattern of dominant inheritance. HDL particles containing wild type apoA-I and at least one mutant apoA-I may also present impaired LCAT activity and/or other alterations leading to defective HDL maturation, a situation that would increase HDL lipid catabolism.We conclude that amino acids 165-175 of apoA-I are critical for normal HDL metabolism, at least in part because of their role in LCAT activation. However, apoA-I(MALLORCA) is not necessarily associated with clinical signs of atherosclerosis.  相似文献   

12.
Psoriasis, a chronic inflammatory skin disease, has been linked to increased myocardial infarction and stroke. Functional impairment of HDL may contribute to the excess cardiovascular mortality of psoriatic patients. However, data available regarding the impact of psoriasis on HDL composition and function are limited. HDL from psoriasis patients and healthy controls was isolated by ultracentrifugation and shotgun proteomics, and biochemical methods were used to monitor changed HDL composition. We observed a significant reduction in apoA-I levels of HDL from psoriatic patients, whereas levels of apoA-II and proteins involved in acute-phase response, immune response, and endopeptidase/protease inhibition were increased. Psoriatic HDL contained reduced phospholipid and cholesterol. With regard to function, these compositional alterations impaired the ability of psoriatic HDL to promote cholesterol efflux from macrophages. Importantly, HDL-cholesterol efflux capability negatively correlated with psoriasis area and severity index. We observed that control HDL, as well as psoriatic HDL, inhibited dihydrorhodamine (DHR) oxidation to a similar extent, suggesting that the anti-oxidative activity of psoriatic HDL is not significantly altered. Our observations suggest that the compositional alterations observed in psoriatic HDL reflect a shift to a pro-inflammatory profile that impairs cholesterol efflux capacity of HDL and may provide a link between psoriasis and cardiovascular disease.  相似文献   

13.
Reduced levels of high-density lipoproteins (HDL) in non-obese and obese states are associated with increased risk for the development of coronary artery disease. Therefore, it is imperative to determine the mechanisms responsible for reduced HDL in obese states and, conversely, to examine therapies aimed at increasing HDL levels in these individuals. This paper examines the multiple causes for reduced HDL in obese states and the effect of exercise and diet--two non-pharmacologic therapies--on HDL metabolism in humans. In general, the concentration of HDL-cholesterol is adversely altered in obesity, with HDL-cholesterol levels associated with both the degree and distribution of obesity. More specifically, intra-abdominal visceral fat deposition is an important negative correlate of HDL-cholesterol. The specific subfractions of HDL that are altered in obese states include the HDL2, apolipoprotein A-I, and pre-beta1 subfractions. Decreased HDL levels in obesity have been attributed to both an enhancement in the uptake of HDL2 by adipocytes and an increase in the catabolism of apolipoprotein A-I on HDL particles. In addition, there is a decrease in the conversion of the pre-beta1 subfraction, the initial acceptor of cholesterol from peripheral cells, to pre-beta2 particles. Conversely, as a means of reversing the decrease in HDL levels in obesity, sustained weight loss is an effective method. More specifically, weight loss achieved through exercise is more effective at raising HDL levels than dieting. Exercise mediates positive effects on HDL levels at least partly through changes in enzymes of HDL metabolism. Increased lipid transfer to HDL by lipoprotein lipase and reduced HDL clearance by hepatic triglyceride lipase as a result of endurance training are two important mechanisms for increases in HDL observed from exercise.  相似文献   

14.
High-density lipoproteins (HDLs) are complexes of proteins (mainly apoA-I and apoA-II) and lipids that remove cholesterol and prevent atherosclerosis. Understanding the distinct properties of the heterogeneous HDL population may aid the development of new diagnostic tools and therapies for atherosclerosis. Mature human HDLs form two major subclasses differing in particle diameter and metabolic properties, HDL2 (large) and HDL3 (small). These subclasses are comprised of HDL(A-I) containing only apoA-I, and HDL(A-I/A-II) containing apoA-I and apoA-II. ApoA-I is strongly cardioprotective, but the function of the smaller, more hydrophobic apoA-II is unclear. ApoA-II is thought to counteract the cardioprotective action of apoA-I by stabilizing HDL particles and inhibiting their remodeling. To test this notion, we performed the first kinetic stability study of human HDL subclasses. The results revealed that the stability of plasma spherical HDL decreases with increasing particle diameter; which may facilitate preferential cholesterol ester uptake from large lipid-loaded HDL2. Surprisingly, size-matched plasma HDL(A-I/A-II) showed comparable or slightly lower stability than HDL(A-I); this is consistent with the destabilization of model discoidal HDL observed upon increasing the A-II to A-I ratio. These results clarify the roles of the particle size and protein composition in HDL remodeling, and help reconcile conflicting reports regarding the role of apoA-II in this remodeling.  相似文献   

15.
PURPOSE OF REVIEW: To review gene regulation of HDL-cholesterol and discuss molecular abnormalities in HDL candidate genes that may lead to human pathologic states. RECENT FINDINGS: The inverse association between HDL-cholesterol and vascular disease, especially coronary heart disease, has long been recognized, but understanding gene regulation of HDL in humans gained considerable momentum following the identification of ABCA1 as playing a pivotal role in reverse cholesterol transport. Recent data suggest that potentially important targets for upregulating HDL in humans include upregulators of ABCA1 and APOA1 (e.g. peroxisome proliferator activated receptor and liver X receptor agonists) and downregulators of CETP (e.g. JTT-705). A host of other nuclear receptors under investigation in animal models may advance to human testing in the near future. SUMMARY: Disorders affecting HDL metabolism are complex because monogenic disorders causing low HDL do not necessarily correlate with premature vascular disease. To date, pathologic phenotypes have only been deduced among several HDL candidate genes. Understanding the genetic underpinnings associated with variant HDL and reverse cholesterol transport provides an exceptional opportunity to identify novel agents that may optimize this process and reduce vascular event rates beyond currently available LDL lowering therapies.  相似文献   

16.
Familial combined hyperlipidemia (FCHL) is a common inherited hyperlipidemia and a major risk factor for atherothrombotic cardiovascular disease. The cause(s) leading to FCHL are largely unknown, but the existence of unidentified "major" genes that would increase VLDL production and of "modifier" genes that would influence the phenotype of the disease has been proposed. Expression of apolipoprotein A-II (apoA-II), a high density lipoprotein (HDL) of unknown function, in transgenic mice produced increased concentration of apoB-containing lipoproteins and decreased HDL. Here we show that expression of human apoA-II in apoE-deficient mice induces a dose-dependent increase in VLDL, resulting in plasma triglyceride elevations of up to 24-fold in a mouse line that has 2-fold the concentration of human apoA-II of normolipidemic humans, as well as other well-known characteristics of FCHL: increased concentrations of cholesterol, triglyceride, and apoB in very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and low density lipoprotein (LDL), reduced HDL cholesterol, normal lipoprotein lipase and hepatic lipase activities, increased production of VLDL triglycerides, and increased susceptibility to atherosclerosis. However, FCHL patients do not have plasma concentrations of human apoA-II as high as those of apoE-deficient mice overexpressing human apoA-II, and the apoA-II gene has not been linked to FCHL in genome-wide scans. Therefore, the apoA-II gene could be a "modifier" FCHL gene influencing the phenotype of the disease in some individuals through unkown mechanisms including an action on a "major" FCHL gene. We conclude that apoE-deficient mice overexpressing human apoA-II constitute useful animal models with which to study the mechanisms leading to overproduction of VLDL, and that apoA-II may function to regulate VLDL production.  相似文献   

17.
The precise nature and origin(s) of the abnormalities in lipoprotein and apolipoprotein profile associated with severe hepatic dysfunction and the presence of spur cells remain poorly defined. To shed light on this question, we have analyzed the plasma lipoprotein and apolipoprotein profiles in five patients with alcoholic cirrhosis and spur cells, and compared them with those of a group with similar hepatocellular dysfunction, but lacking spur cells, and with that of a control group. Lipoproteins were subfractionated by density gradient ultracentrifugation and their physicochemical properties were determined; apolipoprotein A-I, A-II, and B contents in plasma and the respective subfractions were quantitated by radial immunodiffusion, while the complement of low molecular weight apolipoproteins in each subfraction was analyzed by isoelectric focusing and electrophoresis in alkaline-urea polyacrylamide gels. Spur cell plasma was distinguished by reduced levels of apoA-II and elevated ratios of apoA-I/apoA-II (approximately 13:1 as compared to 3.3-3.9:1 in the other two groups), and by reduced concentrations of HDL3. Gradient fractionation showed the apoA-II content of HDL3 to be dramatically and significantly diminished in spur cell plasma; in addition, apoA-II content was reduced relative to apoA-I in this subclass (4.7:1 as compared to 1:1 in cirrhotics lacking spur cells and 1.9:1 in controls). Spur cell HDL2 was similarly deficient in apoA-II, with elevated ratios of apoA-I:apoA-II (9.8:1 in comparison with 1.9-2.5:1 in the two other groups). Nonetheless, high HDL2 concentrations were seen in both series of cirrhotic patients, irrespective of red cell morphology. Spur cell HDL2 thus appears to consist primarily of particles possessing only apoA-I, with a minor population containing both apoA-I and apoA-II. The free cholesterol content of all lipoprotein subfractions from spur cell plasma was increased, as indeed was the molar ratio of free cholesterol to phospholipid, in comparison with that of corresponding fractions from alcoholic cirrhotics lacking spur cells and of control subjects. LDL levels were reduced in spur cell plasma, thereby distinguishing this group from the cirrhotics without spur cells who displayed elevated LDL levels. Markedly reduced plasma levels of apoA-II, HDL3, and LDL appear characteristic of alcoholic cirrhotics presenting with spur cells. Our findings suggest that apoA-II may be essential to the normal function and metabolism of HDL, one aspect of which may be the transport of free cholesterol and thereby the direct or indirect maintenance of red cell morphology.  相似文献   

18.
PURPOSE OF REVIEW: To rationalize the distinctive biological behavior of apolipoprotein (apo)A-I and apoA-II in light of differences in their respective structures, properties, and physico-chemical behavior. RECENT FINDINGS: The distinctive metabolic behavior of apoA-I compared with that of apoA-II, which are revealed as differences in their interactions with the HDL receptor, scavenger receptor class B type I, can be understood in terms of their physico-chemical properties. Detergent and chaotropic perturbation of HDL unmasks properties that distinguish apoA-I from apoA-II and emulate the secondary effects of lecithin: cholesterol acyltransferase, cholesteryl ester transfer protein, and phospholipid transfer protein - the key protein factors in HDL remodeling, that is, formation of lipid-free apoA-I but not apoA-II and particle fusion. Thus, of the two major HDL apolipoproteins, apoA-I is the more plastic and labile and this difference gives apoA-I a unique physiological role that has been verified in mouse models of HDL metabolism. SUMMARY: The compositions, structures, and properties of HDL particles are important determinants of the mechanisms by which these antiatherogenic lipoproteins are metabolized. Although the plasma lipid transfer proteins and lipid-modifying enzymes are important determinants of HDL processing, the distinctive structures and properties of apoA-I and apoA-II, the two major HDL proteins, determine in different ways the thermodynamic stability of HDL - the former through its greater plasticity and the latter by its higher lipophilicity. These distinctions have been revealed by physico-chemical studies of HDL stability in the context of numerous studies of enzyme and lipid transfer activities and of the interaction of HDL with its hepatic scavenger receptor.  相似文献   

19.
The failure of high-density lipoprotein (HDL)-raising agents to reduce cardiovascular disease (CVD) together with recent findings of increased cardiovascular mortality in subjects with extremely high HDL-cholesterol levels provide new opportunities to revisit our view of HDL. The concept of HDL function developed to explain these contradictory findings has recently been expanded by a role played by HDL in the lipolysis of triglyceride-rich lipoproteins (TGRLs) by lipoprotein lipase. According to the reverse remnant-cholesterol transport (RRT) hypothesis, HDL critically contributes to TGRL lipolysis via acquirement of surface lipids, including free cholesterol, released from TGRL. Ensuing cholesterol transport to the liver with excretion into the bile may reduce cholesterol influx in the arterial wall by accelerating removal from circulation of atherogenic, cholesterol-rich TGRL remnants. Such novel function of HDL opens wide therapeutic applications to reduce CVD in statin-treated patients, which primarily involve activation of cholesterol flux upon lipolysis.  相似文献   

20.
The aim of the present study was to characterize the composition and metabolism of HDL in subjects with complete hepatic lipase (HL) deficiency. Analyses were carried out in three complete and three partial HL-deficient subjects as well as in eight normotriglyceridemic (NTG) and two hypertriglyceridemic controls. Complete HL deficiency was associated with hypertriglyceridemia and with a 3.5-fold increase in HDL-triglyceride (TG) levels. The in vivo kinetics of apolipoprotein A-I (apoA-I) and apoA-II (d < 1.25 g/l) were studied in the fasted state using a primed-constant infusion of l-(5,5,5-D3)leucine for 12 h. Complete HL deficiency was associated with a reduced fractional catabolic rate of apoA-I in the HL-deficient female proband (-47%) and in her two brothers (-21%) compared with gender- and TG-matched controls. Total plasma and HDL from complete HL-deficient patients were able to mediate normal cholesterol efflux from human skin fibroblasts labeled with [3H]cholesterol. Complete HL deficiency was also associated with normal levels of prebeta-migrating apoA-I-containing HDL separated by two-dimensional gel electrophoresis and with an accumulation of large HDL particles compared with NTG controls. These results suggest that HL activity is important for adequate HDL metabolism, although its presence may not be necessary for normal HDL-mediated reverse cholesterol transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号